metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­pyridine­zinc(II)]-μ2-3,3′-(p-phenyl­ene)diacrylato] pyridine solvate]

aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People's Republic of China
*Correspondence e-mail: zyfu@scut.edu.cn

(Received 27 July 2010; accepted 17 August 2010; online 28 August 2010)

The title compound, {[Zn(C12H8O4)(C5H5N)(H2O)]·C5H5N}n, has been prepared by hydro­thermal reaction. The ZnII atom is six-coordinated by four carboxyl­ate O atoms of two p-phenylenediacrylate (ppda2−) ligands, one N atom of a pyridine mol­ecule and one O atom of a water mol­ecule in a distorted octa­hedral environment. The carboxyl­ate groups of the ppda2− anions are in a bridging–chelating mode, in which two O atoms chelate one Zn2+ ion. These connections result in an extended chain structure. Parallel packing of the chains forms a two-dimensional network with inter­molecular edge-to-face inter­actions. Further linkages between the layers through O—H⋯O hydrogen-bonding inter­actions result in a three-dimensional supra­molecular architecture with one-dimensional recta­nglar channels.

Related literature

For the applications of metal-organic frameworks, see: Li et al. (2009[Li, J. R., Kuppler, R. J. & Zhou, H. C. (2009). Chem. Soc. Rev. 3838, 1477-1504.]); Zhang et al. (2010[Zhang, L., Yao, Y. L., Che, Y. X. & Zheng, J. M. (2010). Cryst. Growth Des. 10, 528-533.]). For the rational design and synthesis of coordination polymers by covalent interactions or supra­molecular contacts, see: Jose et al. (2010[Jose, J. C., Herbert, H. & Miguel, P. H. (2010). Inorg. Chim. Acta, 363, 1179-1185.]); Zeng et al. (2010[Zeng, F. H., Ni, J., Wang, Q. G. & Xie, Y. S. (2010). Cryst. Growth Des. 10, 1611-1622.]). For a similar complex, see: Sun et al. (2009[Sun, Q., Yue, Q., Zhang, J. Y., Wang, L., Li, X. & Gao, E. Q. (2009). Cryst. Growth Des. 9, 2310-2317.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H8O4)(C5H5N)(H2O)]·C5H5N

  • Mr = 457.77

  • Monoclinic, P 21 /c

  • a = 10.2132 (15) Å

  • b = 17.375 (3) Å

  • c = 12.8144 (19) Å

  • β = 112.360 (2)°

  • V = 2103.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 110 K

  • 0.30 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.74, Tmax = 0.85

  • 9012 measured reflections

  • 3657 independent reflections

  • 2923 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.05

  • 3657 reflections

  • 267 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.093 (2)
Zn1—O5 2.0288 (19)
Zn1—O4 2.0324 (18)
Zn1—O2i 2.0368 (18)
Zn1—O1i 2.3019 (18)
Zn1—O3 2.4099 (19)
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O4ii 0.80 (4) 1.94 (4) 2.743 (4) 172 (4)
Symmetry code: (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic frameworks (MOFs) became one of the most active research areas in chemistry and materials in recent years due to their intriguing variety of architectures as well as promising applications as functional materials (Li et al., 2009; Zhang et al., 2010). One of the current interesting topics is to rationally design and synthesize coordination polymers and supramolecular organization by coordinated covalent bonds or supramolecular contacts (Zeng et al., 2010; Jose et al., 2010). Herein, we report the synthesis and characterization of a new metal organic framework with three-dimensional supramolecular structural motif. In the title compound, the ZnII center is six-coordinated in a distorted octahedral geometry (Figure 1), surrounded by O1, O2, O4 from two ppda2- ligand and O5 from a water molecule in the equatorial plane, and N1, O3 of pyridine molecule and ppda2- ligand respectively in the axial position. The ppda2- anion adopts a bridging coordination mode, interconnect with the zinc ions forming a 1-D infinite chain. The shortest distance between the neighbour zinc centers is 15.26 Å. The parallel chains are arranged into a two-dimensional network by intermolecular edge-to-face C—H···pi interactions (Figure 2). Two neighboring pyridine molecules from adjacent chains are parallel and form a dihedral angle of 58.1° with the plane of uncoordinated pyridine molecule. C—H···pi interactions exist between uncoordinated pyridine molecule and coordinated pyridine molecules. The C19—H19A and C22—H22A groups point to the center of adjacent pyridine rings, with H···centroid distances 2.9408 (3) and 3.3096 (5) Å. These two-dimensional networks are further linked via interlayer strong O—H···O hydrogen-bonding interactions, forming a three-dimensional supramolecular architecture with one-dimensional rectangle-shaped channels along the a direction (Figure 3). The H1···O4 distance is 1.8628Å and the O5—H1···O4 bond angle is 171.58°. Guest pyridine molecules are situated in the cavities.

Related literature top

For the applications of metal-organic frameworks, see: Li et al. (2009); Zhang et al. (2010). For the rational design and synthesis of coordination polymers by coordinated covalent bonds or supramolecular contacts, see: Jose et al. (2010); Zeng et al. (2010). For a similar complex, see: Sun et al. (2009).

Experimental top

A mixture of H2ppda (0.0218 g, 0.1 mmol), Zn(OAc)2.2H2O (0.0219 g, 0.1 mmol), 4,4,-bpy (0.0156 g, 0.1 mmol), and py/H2O (1:3, 12 ml) was sealed in a 25 ml Teflon-lined bomb and heated at 353 K for 48 h. The reaction mixture was then allowed to cool to room temperature at a rate of 3 K/h. Colorless block-shape crystals were obtained.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). The non-hydrogen atoms were refined anisotropically. 34 low-theta reflections were omitted from the data set. These Low-theta reflections which calculate large but have a near-zero Fobs, might have been obscured by the beamstop. They were omitted for a well refinement. A restraint was applied for the O5 and H2 atom with O5—H2 = 0.82 Å.

Structure description top

Metal-organic frameworks (MOFs) became one of the most active research areas in chemistry and materials in recent years due to their intriguing variety of architectures as well as promising applications as functional materials (Li et al., 2009; Zhang et al., 2010). One of the current interesting topics is to rationally design and synthesize coordination polymers and supramolecular organization by coordinated covalent bonds or supramolecular contacts (Zeng et al., 2010; Jose et al., 2010). Herein, we report the synthesis and characterization of a new metal organic framework with three-dimensional supramolecular structural motif. In the title compound, the ZnII center is six-coordinated in a distorted octahedral geometry (Figure 1), surrounded by O1, O2, O4 from two ppda2- ligand and O5 from a water molecule in the equatorial plane, and N1, O3 of pyridine molecule and ppda2- ligand respectively in the axial position. The ppda2- anion adopts a bridging coordination mode, interconnect with the zinc ions forming a 1-D infinite chain. The shortest distance between the neighbour zinc centers is 15.26 Å. The parallel chains are arranged into a two-dimensional network by intermolecular edge-to-face C—H···pi interactions (Figure 2). Two neighboring pyridine molecules from adjacent chains are parallel and form a dihedral angle of 58.1° with the plane of uncoordinated pyridine molecule. C—H···pi interactions exist between uncoordinated pyridine molecule and coordinated pyridine molecules. The C19—H19A and C22—H22A groups point to the center of adjacent pyridine rings, with H···centroid distances 2.9408 (3) and 3.3096 (5) Å. These two-dimensional networks are further linked via interlayer strong O—H···O hydrogen-bonding interactions, forming a three-dimensional supramolecular architecture with one-dimensional rectangle-shaped channels along the a direction (Figure 3). The H1···O4 distance is 1.8628Å and the O5—H1···O4 bond angle is 171.58°. Guest pyridine molecules are situated in the cavities.

For the applications of metal-organic frameworks, see: Li et al. (2009); Zhang et al. (2010). For the rational design and synthesis of coordination polymers by coordinated covalent bonds or supramolecular contacts, see: Jose et al. (2010); Zeng et al. (2010). For a similar complex, see: Sun et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. View of the two-dimensional supramolecular layer of the title compound.
[Figure 3] Fig. 3. Three-dimensional supramolecular network of the title complex.
catena-Poly[[[aquapyridinezinc(II)]-µ2-3,3'-(p-phenylene)diacrylato] pyridine solvate] top
Crystal data top
[Zn(C12H8O4)(C5H5N)(H2O)]·C5H5NF(000) = 944
Mr = 457.77Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3657 reflections
a = 10.2132 (15) Åθ = 2.9–25.0°
b = 17.375 (3) ŵ = 1.20 mm1
c = 12.8144 (19) ÅT = 110 K
β = 112.360 (2)°Block, colorless
V = 2103.0 (5) Å30.30 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3657 independent reflections
Radiation source: fine-focus sealed tube2923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.74, Tmax = 0.85k = 2015
9012 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.044P)2 + 1.4847P]
where P = (Fo2 + 2Fc2)/3
3657 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.91 e Å3
1 restraintΔρmin = 0.81 e Å3
Crystal data top
[Zn(C12H8O4)(C5H5N)(H2O)]·C5H5NV = 2103.0 (5) Å3
Mr = 457.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2132 (15) ŵ = 1.20 mm1
b = 17.375 (3) ÅT = 110 K
c = 12.8144 (19) Å0.30 × 0.16 × 0.15 mm
β = 112.360 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3657 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2923 reflections with I > 2σ(I)
Tmin = 0.74, Tmax = 0.85Rint = 0.026
9012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.91 e Å3
3657 reflectionsΔρmin = 0.81 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5178 (2)0.01394 (13)0.75537 (18)0.0163 (5)
C180.9544 (3)0.03667 (18)0.3132 (2)0.0260 (7)
H18A0.93480.00540.36630.031*
Zn10.41999 (3)0.072906 (17)0.63842 (2)0.01285 (11)
C11.3097 (3)0.35091 (15)0.2483 (2)0.0145 (6)
O11.44021 (18)0.34052 (11)0.27971 (15)0.0177 (4)
O21.24483 (18)0.39778 (11)0.16907 (14)0.0149 (4)
O30.40900 (19)0.18631 (11)0.52712 (15)0.0193 (4)
O40.58751 (18)0.10624 (10)0.60053 (14)0.0148 (4)
O50.3145 (2)0.00368 (12)0.50538 (16)0.0183 (4)
H20.239 (3)0.0196 (18)0.451 (2)0.031 (9)*
H10.351 (4)0.026 (2)0.476 (3)0.030 (10)*
C21.2295 (3)0.30907 (16)0.3060 (2)0.0155 (6)
H2A1.27360.26700.35390.019*
C31.0980 (3)0.32845 (15)0.2929 (2)0.0146 (6)
H3A1.05590.36920.24170.018*
C41.0110 (3)0.29379 (15)0.3489 (2)0.0144 (6)
C50.8720 (3)0.31994 (16)0.3217 (2)0.0167 (6)
H5A0.83690.36060.26880.020*
C60.7854 (3)0.28786 (16)0.3702 (2)0.0158 (6)
H6A0.69090.30580.34890.019*
C70.8350 (3)0.22904 (15)0.4506 (2)0.0137 (5)
C80.9737 (3)0.20268 (15)0.4779 (2)0.0137 (6)
H8A1.00890.16230.53130.016*
C91.0604 (3)0.23431 (15)0.4286 (2)0.0141 (5)
H9A1.15430.21570.44890.017*
C100.7473 (3)0.19340 (15)0.5051 (2)0.0138 (6)
H10A0.78870.15170.55480.017*
C110.6165 (3)0.21278 (15)0.4930 (2)0.0152 (6)
H11A0.57550.25760.45070.018*
C120.5322 (3)0.16709 (15)0.5429 (2)0.0141 (6)
C130.6192 (3)0.00035 (18)0.8551 (2)0.0309 (5)
H13A0.64820.05220.87390.037*
C140.6844 (4)0.05630 (18)0.9326 (3)0.0360 (6)
H14A0.75760.04361.00270.043*
C150.6423 (4)0.13168 (19)0.9073 (3)0.0345 (8)
H15A0.68270.17150.96070.041*
C160.5408 (4)0.14810 (19)0.8033 (3)0.0360 (6)
H16A0.51180.19960.78170.043*
C170.4820 (4)0.08740 (17)0.7307 (3)0.0309 (5)
H17A0.41160.09880.65880.037*
N21.0893 (3)0.05277 (14)0.3312 (2)0.0227 (6)
C191.1138 (3)0.09713 (18)0.2556 (3)0.0296 (7)
H19A1.20930.10910.26760.035*
C201.0086 (4)0.12641 (19)0.1615 (3)0.0344 (8)
H20A1.03090.15750.10950.041*
C210.8701 (3)0.1097 (2)0.1440 (3)0.0330 (8)
H21A0.79460.12960.08020.040*
C220.8431 (3)0.0636 (2)0.2209 (3)0.0343 (8)
H22A0.74850.05050.21020.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0178 (12)0.0153 (12)0.0166 (11)0.0013 (10)0.0073 (9)0.0012 (9)
C180.0300 (17)0.0237 (16)0.0258 (16)0.0048 (13)0.0123 (14)0.0010 (13)
Zn10.01274 (17)0.01317 (17)0.01527 (17)0.00028 (13)0.00828 (12)0.00003 (13)
C10.0161 (14)0.0127 (14)0.0160 (13)0.0010 (11)0.0075 (11)0.0045 (11)
O10.0132 (10)0.0198 (10)0.0219 (10)0.0013 (8)0.0088 (8)0.0035 (8)
O20.0149 (9)0.0156 (9)0.0166 (9)0.0006 (8)0.0087 (8)0.0029 (8)
O30.0166 (10)0.0215 (11)0.0244 (10)0.0026 (8)0.0130 (8)0.0056 (8)
O40.0153 (9)0.0145 (10)0.0174 (9)0.0008 (8)0.0093 (8)0.0014 (8)
O50.0181 (11)0.0179 (11)0.0179 (10)0.0039 (9)0.0058 (9)0.0049 (9)
C20.0159 (14)0.0166 (14)0.0161 (13)0.0002 (11)0.0084 (11)0.0021 (11)
C30.0156 (13)0.0154 (14)0.0128 (13)0.0010 (11)0.0055 (11)0.0009 (11)
C40.0127 (13)0.0178 (14)0.0131 (13)0.0024 (11)0.0056 (11)0.0018 (11)
C50.0175 (14)0.0161 (14)0.0157 (13)0.0014 (11)0.0056 (11)0.0032 (11)
C60.0107 (13)0.0206 (15)0.0170 (13)0.0012 (11)0.0063 (11)0.0006 (11)
C70.0124 (13)0.0158 (14)0.0134 (13)0.0030 (11)0.0053 (10)0.0021 (11)
C80.0174 (14)0.0106 (13)0.0106 (12)0.0006 (11)0.0024 (11)0.0009 (10)
C90.0110 (13)0.0157 (14)0.0157 (13)0.0002 (11)0.0054 (10)0.0028 (11)
C100.0155 (13)0.0143 (14)0.0104 (12)0.0027 (11)0.0038 (10)0.0003 (10)
C110.0190 (14)0.0118 (13)0.0163 (13)0.0007 (11)0.0082 (11)0.0016 (11)
C120.0141 (14)0.0162 (14)0.0138 (13)0.0026 (11)0.0073 (11)0.0051 (11)
C130.0386 (13)0.0196 (12)0.0240 (11)0.0022 (10)0.0002 (10)0.0009 (9)
C140.0455 (14)0.0231 (12)0.0272 (12)0.0026 (11)0.0000 (11)0.0008 (10)
C150.047 (2)0.0245 (17)0.0240 (16)0.0069 (15)0.0042 (15)0.0071 (13)
C160.0455 (14)0.0231 (12)0.0272 (12)0.0026 (11)0.0000 (11)0.0008 (10)
C170.0386 (13)0.0196 (12)0.0240 (11)0.0022 (10)0.0002 (10)0.0009 (9)
N20.0251 (14)0.0194 (13)0.0230 (13)0.0037 (10)0.0084 (11)0.0013 (10)
C190.0239 (16)0.0305 (18)0.0362 (18)0.0024 (14)0.0135 (14)0.0017 (14)
C200.039 (2)0.0326 (19)0.0330 (18)0.0029 (15)0.0154 (15)0.0118 (15)
C210.0267 (17)0.0352 (19)0.0313 (17)0.0053 (15)0.0042 (14)0.0083 (15)
C220.0227 (17)0.039 (2)0.0382 (19)0.0055 (15)0.0081 (15)0.0018 (16)
Geometric parameters (Å, º) top
N1—C131.327 (4)C5—H5A0.9500
N1—C171.332 (4)C6—C71.402 (4)
Zn1—N12.093 (2)C6—H6A0.9500
C18—N21.336 (4)C7—C81.401 (4)
C18—C221.374 (4)C7—C101.466 (4)
C18—H18A0.9500C8—C91.382 (4)
Zn1—O52.0288 (19)C8—H8A0.9500
Zn1—O42.0324 (18)C9—H9A0.9500
Zn1—O2i2.0368 (18)C10—C111.328 (4)
Zn1—O1i2.3019 (18)C10—H10A0.9500
Zn1—O32.4099 (19)C11—C121.484 (4)
Zn1—C1i2.492 (3)C11—H11A0.9500
Zn1—C122.560 (3)C13—C141.377 (4)
C1—O11.250 (3)C13—H13A0.9500
C1—O21.273 (3)C14—C151.378 (4)
C1—C21.485 (4)C14—H14A0.9500
C1—Zn1ii2.492 (3)C15—C161.371 (4)
O1—Zn1ii2.3019 (18)C15—H15A0.9500
O2—Zn1ii2.0368 (18)C16—C171.383 (4)
O3—C121.241 (3)C16—H16A0.9500
O4—C121.291 (3)C17—H17A0.9500
O5—H20.864 (18)N2—C191.334 (4)
O5—H10.80 (4)C19—C201.372 (4)
C2—C31.333 (4)C19—H19A0.9500
C2—H2A0.9500C20—C211.377 (5)
C3—C41.466 (4)C20—H20A0.9500
C3—H3A0.9500C21—C221.377 (5)
C4—C51.403 (4)C21—H21A0.9500
C4—C91.405 (4)C22—H22A0.9500
C5—C61.377 (4)
C13—N1—C17116.8 (2)C6—C5—C4121.3 (2)
C13—N1—Zn1122.7 (2)C6—C5—H5A119.3
C17—N1—Zn1120.53 (19)C4—C5—H5A119.3
N2—C18—C22122.6 (3)C5—C6—C7120.8 (2)
N2—C18—H18A118.7C5—C6—H6A119.6
C22—C18—H18A118.7C7—C6—H6A119.6
O5—Zn1—O4101.20 (8)C8—C7—C6118.0 (2)
O5—Zn1—O2i94.92 (8)C8—C7—C10119.1 (2)
O4—Zn1—O2i148.85 (8)C6—C7—C10122.9 (2)
N1—Zn1—O597.50 (9)C9—C8—C7121.3 (2)
O4—Zn1—N199.25 (8)C9—C8—H8A119.4
O2i—Zn1—N1104.90 (8)C7—C8—H8A119.4
O5—Zn1—O1i155.29 (8)C8—C9—C4120.6 (2)
O4—Zn1—O1i99.78 (7)C8—C9—H9A119.7
O1i—Zn1—O2i60.49 (7)C4—C9—H9A119.7
N1—Zn1—O1i91.86 (8)C11—C10—C7127.3 (2)
O5—Zn1—O395.57 (7)C11—C10—H10A116.3
O3—Zn1—O458.64 (7)C7—C10—H10A116.3
O2i—Zn1—O393.61 (7)C10—C11—C12122.5 (2)
N1—Zn1—O3156.24 (8)C10—C11—H11A118.8
O1i—Zn1—O384.33 (7)C12—C11—H11A118.8
O5—Zn1—C1i125.46 (8)O3—C12—O4120.6 (2)
O4—Zn1—C1i125.88 (8)O3—C12—C11120.3 (2)
O2i—Zn1—C1i30.61 (8)O4—C12—C11119.0 (2)
N1—Zn1—C1i99.99 (8)O3—C12—Zn168.89 (14)
O1i—Zn1—C1i29.89 (7)O4—C12—Zn151.76 (12)
O3—Zn1—C1i88.32 (7)C11—C12—Zn1170.73 (19)
O5—Zn1—C1299.68 (8)N1—C13—C14123.2 (3)
O4—Zn1—C1229.91 (8)N1—C13—H13A118.4
O2i—Zn1—C12121.19 (8)C14—C13—H13A118.4
N1—Zn1—C12128.66 (9)C13—C14—C15119.1 (3)
O1i—Zn1—C1292.05 (7)C13—C14—H14A120.4
O3—Zn1—C1228.72 (7)C15—C14—H14A120.4
C1i—Zn1—C12108.13 (8)C16—C15—C14118.7 (3)
O1—C1—O2121.1 (2)C16—C15—H15A120.7
O1—C1—C2119.4 (2)C14—C15—H15A120.7
O2—C1—C2119.4 (2)C15—C16—C17118.0 (3)
O1—C1—Zn1ii66.61 (14)C15—C16—H16A121.0
O2—C1—Zn1ii54.53 (12)C17—C16—H16A121.0
C2—C1—Zn1ii173.96 (19)N1—C17—C16124.2 (3)
C1—O1—Zn1ii83.50 (15)N1—C17—H17A117.9
C1—O2—Zn1ii94.86 (15)C16—C17—H17A117.9
C12—O3—Zn182.39 (15)C19—N2—C18117.5 (3)
C12—O4—Zn198.33 (15)N2—C19—C20123.5 (3)
Zn1—O5—H2121 (2)N2—C19—H19A118.3
Zn1—O5—H1125 (2)C20—C19—H19A118.3
H2—O5—H1105 (3)C19—C20—C21118.5 (3)
C3—C2—C1122.3 (3)C19—C20—H20A120.7
C3—C2—H2A118.8C21—C20—H20A120.7
C1—C2—H2A118.8C20—C21—C22118.7 (3)
C2—C3—C4127.2 (3)C20—C21—H21A120.7
C2—C3—H3A116.4C22—C21—H21A120.7
C4—C3—H3A116.4C21—C22—C18119.2 (3)
C5—C4—C9117.9 (2)C21—C22—H22A120.4
C5—C4—C3119.3 (2)C18—C22—H22A120.4
C9—C4—C3122.8 (2)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O4iii0.80 (4)1.94 (4)2.743 (4)172 (4)
Symmetry code: (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C12H8O4)(C5H5N)(H2O)]·C5H5N
Mr457.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)10.2132 (15), 17.375 (3), 12.8144 (19)
β (°) 112.360 (2)
V3)2103.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.30 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.74, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
9012, 3657, 2923
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.05
No. of reflections3657
No. of parameters267
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 0.81

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N12.093 (2)Zn1—O1i2.3019 (18)
Zn1—O52.0288 (19)Zn1—O32.4099 (19)
Zn1—O42.0324 (18)Zn1—C1i2.492 (3)
Zn1—O2i2.0368 (18)Zn1—C122.560 (3)
N1—Zn1—O597.50 (9)O3—Zn1—O458.64 (7)
O1i—Zn1—O2i60.49 (7)
Symmetry code: (i) x1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O4ii0.80 (4)1.94 (4)2.743 (4)172 (4)
Symmetry code: (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the NNSFC (No. 20701014), the Fundamental Research Funds for the Central Universities (2009ZM0030) and the SRP program of the SCUT for financial support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJose, J. C., Herbert, H. & Miguel, P. H. (2010). Inorg. Chim. Acta, 363, 1179–1185.  Google Scholar
First citationLi, J. R., Kuppler, R. J. & Zhou, H. C. (2009). Chem. Soc. Rev. 3838, 1477–1504.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Q., Yue, Q., Zhang, J. Y., Wang, L., Li, X. & Gao, E. Q. (2009). Cryst. Growth Des. 9, 2310–2317.  Web of Science CSD CrossRef CAS Google Scholar
First citationZeng, F. H., Ni, J., Wang, Q. G. & Xie, Y. S. (2010). Cryst. Growth Des. 10, 1611–1622.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L., Yao, Y. L., Che, Y. X. & Zheng, J. M. (2010). Cryst. Growth Des. 10, 528–533.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds