organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy-2-[(4-iodo­benzo­yl)meth­yl]-3-(3-meth­­oxy­benzo­yl)-2H-1,2-benzo­thia­zine 1,1-dioxide

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and cDepartment of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 4 August 2010; accepted 11 August 2010; online 18 August 2010)

In the title mol­ecule, C24H18INO6S, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.381 (5) and −0.449 (5) Å, respectively, from the plane formed by the remaining atoms in the ring; the puckering parameters are Q = 0.550 (2) Å, θ = 61.7 (2)° and φ = 31.4 (3)°. The conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond. The two nonfused benzene rings lie almost parallel to each other [dihedral angle = 9.18 (4)°], with a separation of 3.754 (2) Å between the centres of gravity of the two rings, indicating strong ππ inter­actions.

Related literature

For biological applications of benzothia­zines, see: Lombardino & Wiseman (1972[Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848-849.]); Zinnes et al. (1982[Zinnes, H., Sircar, J. C., Lindo, N., Schwartz, M. L., Fabian, A. C., Shavel, J. Jr, Kasulanis, C. F., Genzer, J. D., Lutomski, C. & DiPasquale, G. (1982). J. Med. Chem. 25, 12-18.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 54, 1171-1175.]); Turck et al. (1996[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79-84.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For crystal structures of related compounds, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]); Gul et al. (2010[Gul, S., Siddiqui, H. L., Ahmad, M., Nisar, M. & Parvez, M. (2010). Acta Cryst. E66, o2314-o2315.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18INO6S

  • Mr = 575.35

  • Monoclinic, P 21 /c

  • a = 9.7392 (2) Å

  • b = 11.5288 (3) Å

  • c = 20.4634 (4) Å

  • β = 100.5288 (11)°

  • V = 2258.97 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 173 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.836, Tmax = 0.886

  • 16229 measured reflections

  • 3960 independent reflections

  • 3620 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.061

  • S = 1.08

  • 3960 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4 0.84 1.76 2.509 (3) 147

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzothiazine nucleus occupies a significant position among heterocyclic compounds. Oxicams are benzothiazine derivatives which are in use for the treatment of various inflammatory diseases (Lombardino & Wiseman, 1972; Zinnes et al., 1982). Besides oxicams, numerous other benzothiazine compounds are found to possess antimicrobial (Zia-ur-Rehman et al., 2005), analgesic (Turck et al., 1996), antioxidant activities (Ahmad et al., 2010). In this paper, we report the synthesis and crystal structure of the title compound.

The structure of the title compound contains independent molecules separated by normal van der Waals distances (Fig. 1). The heterocyclic thiazine ring adopts a half-chair conformation, with atoms S1 and N1 displaced by 0.381 (5) and -0.449 (5) Å, respectively, from the plane formed by atoms C1/C6/C7/C8; the puckering parameters (Cremer & Pople, 1975) are: Q = 0.550 (2) Å, θ = 61.7 (2)° and φ = 31.4 (3)°. Similar conformations of the corresponding rings have been reported in some closely related compounds (Siddiqui et al., 2008). Unlike the structure of 4-hydroxy-3-(3-methoxy)benzoyl-2-(3-methoxy)phenacyl-2H-1,2- benzothiazine 1,1-dioxide (Gul et al., 2010) where in the carbon fragments C1–C15 and C17–C24 were more or less planar individually and lie at an angle 77.17 (2)° with respect to each other, the benzene rings C10–C15 and C19–C24 in the title compound, lie almost parallel to each other (dihedral angle 9.18 (4)°) with a separation of 3.754 (2) Å between the centers of gravity of the two rings indicating strong ππ interactions.

The structure is stabilized by intramolecular interactions C11—H11···N1 and O3—H3O···O4 resulting in six membered rings and C17—H17A···O2 forming a five membered ring (Table 1).

Related literature top

For biological applications of benzothiazines, see: Lombardino & Wiseman (1972); Zinnes et al. (1982); Zia-ur-Rehman et al. (2005); Turck et al. (1996); Ahmad et al. (2010). For crystal structures of related compounds, see: Siddiqui et al. (2008); Gul et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

4-Hydroxy-1,1-dioxido-2H-1,2-benzothiazin-3-yl)(3-methoxyphenyl) methanone (2.0 g, 6.0 mmol), K2CO3 (1.24 g, 9.0 mmol), 4-iodophenacyl bromide (2.01 g, 6.2 mmol) and acetonitrile (25 ml) were refluxed for 6 h. The completion of reaction was monitored by TLC. After cooling to room temperature, the reaction mixture was poured into ice cold water. Yellow precipitates of the title compound obtained were filtered, washed with cold water and dried. The crystals suitable for X-ray crystallographic analysis were grown from a solution of methanol and chloroform (1:1).

Refinement top

The H-atoms were located from difference Fourier maps and were included in the refinement at geometrically idealized positions in riding-model approximation with O—H = 0.84 Å and C—H = 0.95–0.99 Å; the Uiso(H) were allowed at 1.2Ueq(C) or 1.5Ueq(O). The final difference map was essentially featurless.

Structure description top

Benzothiazine nucleus occupies a significant position among heterocyclic compounds. Oxicams are benzothiazine derivatives which are in use for the treatment of various inflammatory diseases (Lombardino & Wiseman, 1972; Zinnes et al., 1982). Besides oxicams, numerous other benzothiazine compounds are found to possess antimicrobial (Zia-ur-Rehman et al., 2005), analgesic (Turck et al., 1996), antioxidant activities (Ahmad et al., 2010). In this paper, we report the synthesis and crystal structure of the title compound.

The structure of the title compound contains independent molecules separated by normal van der Waals distances (Fig. 1). The heterocyclic thiazine ring adopts a half-chair conformation, with atoms S1 and N1 displaced by 0.381 (5) and -0.449 (5) Å, respectively, from the plane formed by atoms C1/C6/C7/C8; the puckering parameters (Cremer & Pople, 1975) are: Q = 0.550 (2) Å, θ = 61.7 (2)° and φ = 31.4 (3)°. Similar conformations of the corresponding rings have been reported in some closely related compounds (Siddiqui et al., 2008). Unlike the structure of 4-hydroxy-3-(3-methoxy)benzoyl-2-(3-methoxy)phenacyl-2H-1,2- benzothiazine 1,1-dioxide (Gul et al., 2010) where in the carbon fragments C1–C15 and C17–C24 were more or less planar individually and lie at an angle 77.17 (2)° with respect to each other, the benzene rings C10–C15 and C19–C24 in the title compound, lie almost parallel to each other (dihedral angle 9.18 (4)°) with a separation of 3.754 (2) Å between the centers of gravity of the two rings indicating strong ππ interactions.

The structure is stabilized by intramolecular interactions C11—H11···N1 and O3—H3O···O4 resulting in six membered rings and C17—H17A···O2 forming a five membered ring (Table 1).

For biological applications of benzothiazines, see: Lombardino & Wiseman (1972); Zinnes et al. (1982); Zia-ur-Rehman et al. (2005); Turck et al. (1996); Ahmad et al. (2010). For crystal structures of related compounds, see: Siddiqui et al. (2008); Gul et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).
4-Hydroxy-2-[(4-iodobenzoyl)methyl]-3-(3-methoxybenzoyl)-2H- 1,2-benzothiazine 1,1-dioxide top
Crystal data top
C24H18INO6SF(000) = 1144
Mr = 575.35Dx = 1.692 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5266 reflections
a = 9.7392 (2) Åθ = 1.0–27.5°
b = 11.5288 (3) ŵ = 1.55 mm1
c = 20.4634 (4) ÅT = 173 K
β = 100.5288 (11)°Prism, yellow
V = 2258.97 (9) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3960 independent reflections
Radiation source: fine-focus sealed tube3620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω and φ scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1111
Tmin = 0.836, Tmax = 0.886k = 1313
16229 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.061H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0174P)2 + 2.9397P]
where P = (Fo2 + 2Fc2)/3
3960 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C24H18INO6SV = 2258.97 (9) Å3
Mr = 575.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7392 (2) ŵ = 1.55 mm1
b = 11.5288 (3) ÅT = 173 K
c = 20.4634 (4) Å0.12 × 0.10 × 0.08 mm
β = 100.5288 (11)°
Data collection top
Nonius KappaCCD
diffractometer
3960 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3620 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.886Rint = 0.017
16229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.08Δρmax = 0.76 e Å3
3960 reflectionsΔρmin = 0.83 e Å3
300 parameters
Special details top

Experimental. Yield: 1.96 g, 70%, m.p. 413–414 K, IR (KBr, νmax): 2957, 1682, 1340, 1128 cm-1, EI–MS (m/z): 575.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.309451 (19)0.222186 (19)0.434249 (8)0.04263 (8)
S10.12938 (6)0.42205 (5)0.72012 (3)0.02558 (14)
O10.15136 (17)0.53974 (15)0.69887 (9)0.0335 (4)
O20.18899 (17)0.33084 (16)0.67691 (9)0.0330 (4)
O30.1160 (2)0.56345 (19)0.89527 (10)0.0465 (5)
H3O0.19210.58750.88670.070*
O40.30729 (19)0.59168 (17)0.82968 (11)0.0448 (5)
O50.1389 (2)0.5711 (2)0.54065 (11)0.0515 (6)
O60.33468 (18)0.27269 (16)0.77976 (9)0.0310 (4)
N10.04075 (19)0.40214 (17)0.73891 (10)0.0239 (4)
C10.1770 (3)0.4068 (2)0.79852 (12)0.0281 (5)
C20.3034 (3)0.3567 (2)0.80468 (14)0.0346 (6)
H20.36410.32660.76680.042*
C30.3395 (3)0.3513 (3)0.86691 (16)0.0465 (7)
H30.42600.31780.87200.056*
C40.2503 (4)0.3946 (3)0.92140 (17)0.0563 (9)
H40.27650.39170.96390.068*
C50.1229 (3)0.4422 (3)0.91516 (15)0.0495 (8)
H50.06210.47050.95350.059*
C60.0831 (3)0.4489 (2)0.85358 (13)0.0334 (6)
C70.0526 (3)0.4997 (2)0.84576 (14)0.0343 (6)
C80.1083 (2)0.4833 (2)0.78869 (13)0.0277 (5)
C90.2346 (3)0.5410 (2)0.78018 (15)0.0350 (6)
C100.2832 (3)0.5437 (2)0.71554 (15)0.0337 (6)
C110.1901 (3)0.5553 (2)0.65576 (15)0.0359 (6)
H110.09270.56020.65560.043*
C120.2394 (3)0.5599 (2)0.59636 (16)0.0403 (7)
C130.3816 (3)0.5525 (3)0.59645 (17)0.0448 (7)
H130.41540.55430.55570.054*
C140.4742 (3)0.5427 (3)0.65634 (17)0.0461 (8)
H140.57160.53860.65640.055*
C150.4271 (3)0.5388 (2)0.71568 (16)0.0403 (7)
H150.49150.53280.75640.048*
C160.1815 (4)0.5671 (4)0.47757 (17)0.0605 (10)
H16A0.09880.56740.44220.073*
H16B0.23550.49630.47450.073*
H16C0.23940.63500.47270.073*
C170.0871 (3)0.2799 (2)0.75191 (12)0.0251 (5)
H17A0.02140.22650.72400.030*
H17B0.08900.26020.79920.030*
C180.2332 (3)0.2673 (2)0.73533 (12)0.0250 (5)
C190.2470 (3)0.2523 (2)0.66453 (12)0.0256 (5)
C200.1333 (3)0.2615 (2)0.61251 (13)0.0292 (6)
H200.04260.27410.62200.035*
C210.1508 (3)0.2524 (2)0.54714 (13)0.0334 (6)
H210.07310.26030.51190.040*
C220.2828 (3)0.2318 (2)0.53356 (13)0.0313 (6)
C230.3973 (3)0.2196 (3)0.58470 (14)0.0355 (6)
H230.48720.20370.57500.043*
C240.3789 (3)0.2308 (2)0.64959 (13)0.0320 (6)
H240.45720.22380.68470.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03981 (12)0.06393 (15)0.02580 (11)0.00825 (9)0.01039 (8)0.00513 (8)
S10.0217 (3)0.0240 (3)0.0290 (3)0.0021 (2)0.0009 (2)0.0009 (2)
O10.0263 (9)0.0271 (9)0.0435 (11)0.0010 (7)0.0030 (8)0.0076 (8)
O20.0305 (9)0.0333 (10)0.0335 (10)0.0090 (8)0.0016 (8)0.0047 (8)
O30.0362 (11)0.0499 (13)0.0488 (12)0.0011 (10)0.0046 (9)0.0239 (10)
O40.0290 (10)0.0373 (11)0.0609 (13)0.0048 (8)0.0103 (9)0.0153 (10)
O50.0337 (10)0.0716 (16)0.0476 (13)0.0016 (10)0.0034 (9)0.0235 (11)
O60.0295 (9)0.0363 (10)0.0248 (9)0.0047 (8)0.0017 (8)0.0009 (8)
N10.0211 (10)0.0205 (10)0.0281 (11)0.0006 (8)0.0011 (8)0.0003 (8)
C10.0288 (13)0.0257 (13)0.0294 (13)0.0046 (10)0.0040 (10)0.0006 (10)
C20.0311 (13)0.0314 (15)0.0417 (15)0.0026 (11)0.0074 (12)0.0027 (12)
C30.0421 (16)0.0507 (19)0.0509 (18)0.0010 (15)0.0194 (14)0.0049 (15)
C40.062 (2)0.072 (2)0.0396 (17)0.0041 (18)0.0203 (16)0.0002 (17)
C50.0495 (18)0.061 (2)0.0362 (16)0.0040 (16)0.0044 (14)0.0104 (15)
C60.0328 (13)0.0322 (15)0.0341 (14)0.0061 (11)0.0029 (11)0.0045 (11)
C70.0291 (13)0.0288 (14)0.0403 (15)0.0056 (11)0.0066 (11)0.0076 (12)
C80.0231 (12)0.0223 (12)0.0340 (14)0.0038 (10)0.0048 (10)0.0031 (11)
C90.0256 (13)0.0203 (13)0.0540 (17)0.0053 (10)0.0059 (12)0.0003 (12)
C100.0239 (12)0.0187 (13)0.0559 (17)0.0031 (10)0.0004 (12)0.0030 (12)
C110.0221 (12)0.0288 (14)0.0542 (17)0.0044 (11)0.0001 (12)0.0113 (13)
C120.0321 (14)0.0317 (15)0.0551 (18)0.0028 (12)0.0030 (13)0.0171 (13)
C130.0318 (14)0.0421 (17)0.062 (2)0.0022 (13)0.0123 (14)0.0108 (15)
C140.0235 (13)0.0397 (17)0.074 (2)0.0025 (12)0.0065 (14)0.0071 (16)
C150.0230 (13)0.0295 (15)0.063 (2)0.0016 (11)0.0053 (13)0.0036 (14)
C160.0512 (19)0.078 (3)0.053 (2)0.0050 (18)0.0125 (16)0.0238 (19)
C170.0303 (13)0.0198 (12)0.0252 (12)0.0014 (10)0.0049 (10)0.0005 (10)
C180.0303 (13)0.0178 (12)0.0262 (13)0.0029 (10)0.0033 (11)0.0017 (10)
C190.0270 (12)0.0248 (13)0.0239 (12)0.0013 (10)0.0019 (10)0.0019 (10)
C200.0249 (12)0.0365 (15)0.0259 (13)0.0008 (11)0.0035 (10)0.0013 (11)
C210.0265 (13)0.0463 (16)0.0254 (13)0.0035 (12)0.0007 (10)0.0014 (12)
C220.0337 (14)0.0378 (15)0.0230 (13)0.0045 (12)0.0072 (11)0.0024 (11)
C230.0260 (13)0.0472 (17)0.0335 (15)0.0013 (12)0.0063 (11)0.0031 (13)
C240.0257 (13)0.0403 (16)0.0277 (14)0.0034 (11)0.0014 (10)0.0014 (11)
Geometric parameters (Å, º) top
I1—C222.098 (3)C10—C111.389 (4)
S1—O21.4272 (18)C10—C151.402 (4)
S1—O11.4290 (18)C11—C121.387 (4)
S1—N11.6472 (19)C11—H110.9500
S1—C11.758 (3)C12—C131.388 (4)
O3—C71.311 (3)C13—C141.387 (4)
O3—H3O0.8400C13—H130.9500
O4—C91.267 (3)C14—C151.375 (4)
O5—C121.366 (4)C14—H140.9500
O5—C161.427 (4)C15—H150.9500
O6—C181.216 (3)C16—H16A0.9800
N1—C81.450 (3)C16—H16B0.9800
N1—C171.489 (3)C16—H16C0.9800
C1—C21.386 (4)C17—C181.530 (3)
C1—C61.402 (4)C17—H17A0.9900
C2—C31.383 (4)C17—H17B0.9900
C2—H20.9500C18—C191.489 (3)
C3—C41.376 (5)C19—C201.393 (3)
C3—H30.9500C19—C241.396 (4)
C4—C51.383 (5)C20—C211.383 (4)
C4—H40.9500C20—H200.9500
C5—C61.387 (4)C21—C221.384 (4)
C5—H50.9500C21—H210.9500
C6—C71.480 (4)C22—C231.390 (4)
C7—C81.388 (4)C23—C241.378 (4)
C8—C91.437 (4)C23—H230.9500
C9—C101.484 (4)C24—H240.9500
O2—S1—O1119.32 (11)O5—C12—C13124.7 (3)
O2—S1—N1108.66 (10)C11—C12—C13120.1 (3)
O1—S1—N1106.96 (10)C14—C13—C12119.6 (3)
O2—S1—C1110.27 (12)C14—C13—H13120.2
O1—S1—C1108.82 (12)C12—C13—H13120.2
N1—S1—C1101.24 (11)C15—C14—C13121.0 (3)
C7—O3—H3O109.5C15—C14—H14119.5
C12—O5—C16118.0 (2)C13—C14—H14119.5
C8—N1—C17113.69 (18)C14—C15—C10119.5 (3)
C8—N1—S1112.47 (15)C14—C15—H15120.3
C17—N1—S1115.63 (15)C10—C15—H15120.3
C2—C1—C6122.1 (2)O5—C16—H16A109.5
C2—C1—S1120.8 (2)O5—C16—H16B109.5
C6—C1—S1117.17 (19)H16A—C16—H16B109.5
C3—C2—C1118.8 (3)O5—C16—H16C109.5
C3—C2—H2120.6H16A—C16—H16C109.5
C1—C2—H2120.6H16B—C16—H16C109.5
C4—C3—C2120.0 (3)N1—C17—C18108.30 (19)
C4—C3—H3120.0N1—C17—H17A110.0
C2—C3—H3120.0C18—C17—H17A110.0
C3—C4—C5120.9 (3)N1—C17—H17B110.0
C3—C4—H4119.6C18—C17—H17B110.0
C5—C4—H4119.6H17A—C17—H17B108.4
C4—C5—C6120.7 (3)O6—C18—C19121.9 (2)
C4—C5—H5119.6O6—C18—C17119.4 (2)
C6—C5—H5119.6C19—C18—C17118.7 (2)
C5—C6—C1117.5 (3)C20—C19—C24118.7 (2)
C5—C6—C7121.6 (3)C20—C19—C18122.3 (2)
C1—C6—C7120.9 (2)C24—C19—C18118.9 (2)
O3—C7—C8121.7 (2)C21—C20—C19120.8 (2)
O3—C7—C6116.2 (2)C21—C20—H20119.6
C8—C7—C6122.1 (2)C19—C20—H20119.6
C7—C8—C9120.9 (2)C20—C21—C22119.4 (2)
C7—C8—N1118.8 (2)C20—C21—H21120.3
C9—C8—N1120.2 (2)C22—C21—H21120.3
O4—C9—C8118.8 (3)C21—C22—C23120.9 (2)
O4—C9—C10118.7 (2)C21—C22—I1119.18 (19)
C8—C9—C10122.5 (2)C23—C22—I1119.96 (19)
C11—C10—C15119.8 (3)C24—C23—C22119.2 (2)
C11—C10—C9121.6 (2)C24—C23—H23120.4
C15—C10—C9118.6 (3)C22—C23—H23120.4
C12—C11—C10120.1 (2)C23—C24—C19121.0 (2)
C12—C11—H11120.0C23—C24—H24119.5
C10—C11—H11120.0C19—C24—H24119.5
O5—C12—C11115.2 (2)
O2—S1—N1—C8173.39 (16)C7—C8—C9—C10168.2 (2)
O1—S1—N1—C856.56 (19)N1—C8—C9—C1014.9 (4)
C1—S1—N1—C857.30 (19)O4—C9—C10—C11141.7 (3)
O2—S1—N1—C1740.51 (19)C8—C9—C10—C1138.2 (4)
O1—S1—N1—C17170.56 (17)O4—C9—C10—C1535.8 (4)
C1—S1—N1—C1775.58 (18)C8—C9—C10—C15144.3 (3)
O2—S1—C1—C230.4 (2)C15—C10—C11—C121.2 (4)
O1—S1—C1—C2102.2 (2)C9—C10—C11—C12178.7 (3)
N1—S1—C1—C2145.3 (2)C16—O5—C12—C11175.2 (3)
O2—S1—C1—C6150.53 (19)C16—O5—C12—C134.5 (4)
O1—S1—C1—C676.8 (2)C10—C11—C12—O5179.8 (2)
N1—S1—C1—C635.6 (2)C10—C11—C12—C130.1 (4)
C6—C1—C2—C32.0 (4)O5—C12—C13—C14179.2 (3)
S1—C1—C2—C3177.0 (2)C11—C12—C13—C141.1 (4)
C1—C2—C3—C40.4 (5)C12—C13—C14—C150.7 (5)
C2—C3—C4—C51.0 (5)C13—C14—C15—C100.6 (4)
C3—C4—C5—C60.9 (5)C11—C10—C15—C141.6 (4)
C4—C5—C6—C10.6 (5)C9—C10—C15—C14179.2 (3)
C4—C5—C6—C7179.9 (3)C8—N1—C17—C1874.6 (2)
C2—C1—C6—C52.0 (4)S1—N1—C17—C18153.04 (16)
S1—C1—C6—C5177.0 (2)N1—C17—C18—O697.6 (3)
C2—C1—C6—C7178.7 (2)N1—C17—C18—C1980.6 (3)
S1—C1—C6—C72.3 (3)O6—C18—C19—C20171.2 (2)
C5—C6—C7—O316.8 (4)C17—C18—C19—C206.9 (3)
C1—C6—C7—O3162.5 (2)O6—C18—C19—C247.4 (4)
C5—C6—C7—C8164.7 (3)C17—C18—C19—C24174.5 (2)
C1—C6—C7—C816.0 (4)C24—C19—C20—C211.6 (4)
O3—C7—C8—C93.4 (4)C18—C19—C20—C21177.0 (2)
C6—C7—C8—C9175.0 (2)C19—C20—C21—C221.3 (4)
O3—C7—C8—N1173.5 (2)C20—C21—C22—C230.3 (4)
C6—C7—C8—N18.0 (4)C20—C21—C22—I1178.5 (2)
C17—N1—C8—C785.5 (3)C21—C22—C23—C241.4 (4)
S1—N1—C8—C748.3 (3)I1—C22—C23—C24177.4 (2)
C17—N1—C8—C991.4 (3)C22—C23—C24—C191.0 (4)
S1—N1—C8—C9134.7 (2)C20—C19—C24—C230.5 (4)
C7—C8—C9—O411.6 (4)C18—C19—C24—C23178.2 (2)
N1—C8—C9—O4165.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.841.762.509 (3)147
C11—H11···N10.952.613.006 (3)106
C17—H17A···O20.992.422.902 (3)109

Experimental details

Crystal data
Chemical formulaC24H18INO6S
Mr575.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.7392 (2), 11.5288 (3), 20.4634 (4)
β (°) 100.5288 (11)
V3)2258.97 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.836, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
16229, 3960, 3620
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.08
No. of reflections3960
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.83

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.841.762.509 (3)147
C11—H11···N10.952.613.006 (3)106
C17—H17A···O20.992.422.902 (3)109
 

Acknowledgements

HLS is grateful to the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGul, S., Siddiqui, H. L., Ahmad, M., Nisar, M. & Parvez, M. (2010). Acta Cryst. E66, o2314–o2315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848–849.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79–84.  PubMed Web of Science Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 54, 1171–1175.  Google Scholar
First citationZinnes, H., Sircar, J. C., Lindo, N., Schwartz, M. L., Fabian, A. C., Shavel, J. Jr, Kasulanis, C. F., Genzer, J. D., Lutomski, C. & DiPasquale, G. (1982). J. Med. Chem. 25, 12–18.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds