organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Thienyl­methyl­­idene)-p-toluene­sulfono­hydrazide

aChemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 August 2010; accepted 14 August 2010; online 21 August 2010)

The S—N(H)—N=C linkage in the title mol­ecule, C12H12N2O2S2, is non-planar [torsion angle = 15.5 (1)°] as the amino N atom is pyramidally coordinated. The amino group acts as a hydrogen-bond donor to an O atom of an adjacent mol­ecule, generating chains running parallel to the c axis.

Related literature

For the structure of the (E)-N′-benzyl­idene-p-toluene­sulf­ono­hydrazide homolog, see: Mehrabi et al. (2008[Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O2S2

  • Mr = 280.36

  • Monoclinic, P 21 /c

  • a = 14.3758 (10) Å

  • b = 9.8613 (7) Å

  • c = 9.6172 (7) Å

  • β = 104.981 (1)°

  • V = 1317.03 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.857, Tmax = 0.925

  • 8238 measured reflections

  • 3022 independent reflections

  • 2728 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.085

  • S = 1.04

  • 3022 reflections

  • 168 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.06 (1) 2.874 (2) 159 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

p-Toluenesulfonyl hydrazide, CH3-4-C6H4SO2NHNH2, condenses with carbonyl compounds to form Schiff bases, and among the plethora nearly a hundred have had their crystal structures determined. The compounds have the azomethine double-bond in an E-configuration. In the Schiff base product between p-toluenesulfonyl hydrazide and thiophene-2-carboxaldehyde, the S–N(H)–NC linkage is non-planar [torsion angle 15.5 (1) °] because the amino nitrogen atom (which bears a hydrogen atom) is pyramidally coordinated (Fig. 1). The amino group acts as a hydrogen-bond donor to an oxygen atom of an adjacent molecule to generate a chain running along the c-axis of the monoclinic cell (Fig. 2). The oxygen atom involved in hydrogen bonding [S–O 1.4355 (10) Å] is marginally farther from the sulfur atom than the oxygen that is not involved in hydrogen bonding [S–O 1.4288 (10) Å].

Related literature top

For the structure of the (E)-N'-benzylidene-p-toluenesulfonohydrazide homolog, see: Mehrabi et al. (2008).

Experimental top

p-Toluenesulfonyl hydrazide (4.66 g, 2.5 mmol) and thiophene-2-carboxaldehyde (2.80 g, 2.5 mmol) were heated in methanol (50 ml) for two hours. The cool solution yielded a precipitate that was recrystallized from ethanol and collected in 90% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, U(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint [N–H 0.86 (1) Å]; its temperature factor was freely refined.

Structure description top

p-Toluenesulfonyl hydrazide, CH3-4-C6H4SO2NHNH2, condenses with carbonyl compounds to form Schiff bases, and among the plethora nearly a hundred have had their crystal structures determined. The compounds have the azomethine double-bond in an E-configuration. In the Schiff base product between p-toluenesulfonyl hydrazide and thiophene-2-carboxaldehyde, the S–N(H)–NC linkage is non-planar [torsion angle 15.5 (1) °] because the amino nitrogen atom (which bears a hydrogen atom) is pyramidally coordinated (Fig. 1). The amino group acts as a hydrogen-bond donor to an oxygen atom of an adjacent molecule to generate a chain running along the c-axis of the monoclinic cell (Fig. 2). The oxygen atom involved in hydrogen bonding [S–O 1.4355 (10) Å] is marginally farther from the sulfur atom than the oxygen that is not involved in hydrogen bonding [S–O 1.4288 (10) Å].

For the structure of the (E)-N'-benzylidene-p-toluenesulfonohydrazide homolog, see: Mehrabi et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H12N2O2S2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the chain structure resulting from N—H···O hydrogen-bonding.
(E)-N'-(2-Thienylmethylidene)-p-toluenesulfonohydrazide top
Crystal data top
C12H12N2O2S2F(000) = 584
Mr = 280.36Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4750 reflections
a = 14.3758 (10) Åθ = 2.5–28.3°
b = 9.8613 (7) ŵ = 0.40 mm1
c = 9.6172 (7) ÅT = 100 K
β = 104.981 (1)°Prism, yellow
V = 1317.03 (16) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3022 independent reflections
Radiation source: fine-focus sealed tube2728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.857, Tmax = 0.925k = 1212
8238 measured reflectionsl = 812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.7746P]
where P = (Fo2 + 2Fc2)/3
3022 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C12H12N2O2S2V = 1317.03 (16) Å3
Mr = 280.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3758 (10) ŵ = 0.40 mm1
b = 9.8613 (7) ÅT = 100 K
c = 9.6172 (7) Å0.40 × 0.20 × 0.20 mm
β = 104.981 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3022 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2728 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.925Rint = 0.020
8238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.42 e Å3
3022 reflectionsΔρmin = 0.36 e Å3
168 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16267 (2)0.25347 (3)0.52894 (3)0.01262 (10)
S20.51633 (3)0.43030 (4)0.75091 (4)0.02186 (11)
O10.18378 (8)0.21042 (11)0.67638 (11)0.0176 (2)
O20.08674 (7)0.18970 (10)0.42362 (11)0.0174 (2)
N10.26105 (9)0.22234 (13)0.47478 (13)0.0148 (2)
H10.2522 (14)0.235 (2)0.3840 (11)0.024 (5)*
N20.34437 (9)0.28097 (12)0.56466 (13)0.0156 (2)
C10.14605 (10)0.42992 (14)0.52115 (15)0.0136 (3)
C20.08653 (10)0.48722 (15)0.39742 (15)0.0159 (3)
H20.05300.43130.32030.019*
C30.07698 (10)0.62763 (15)0.38847 (15)0.0170 (3)
H30.03600.66730.30480.020*
C40.12658 (10)0.71101 (15)0.50031 (16)0.0172 (3)
C50.18520 (11)0.65074 (15)0.62312 (16)0.0206 (3)
H50.21890.70650.70030.025*
C60.19530 (11)0.51082 (15)0.63480 (15)0.0191 (3)
H60.23530.47100.71920.023*
C70.11737 (12)0.86307 (15)0.48857 (17)0.0216 (3)
H7A0.12900.90250.58510.032*
H7B0.05240.88700.43220.032*
H7C0.16470.89870.44080.032*
C80.41651 (11)0.28677 (14)0.51016 (16)0.0169 (3)
H80.41090.25230.41610.020*
C90.50662 (10)0.34545 (15)0.59069 (16)0.0173 (3)
C100.59275 (11)0.34852 (15)0.55085 (17)0.0208 (3)
H100.60190.30790.46580.025*
C110.66556 (11)0.41995 (16)0.65279 (19)0.0235 (3)
H110.72910.43240.64310.028*
C120.63483 (11)0.46843 (16)0.76529 (18)0.0238 (3)
H120.67450.51790.84320.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01349 (18)0.01241 (17)0.01124 (17)0.00057 (12)0.00189 (13)0.00002 (11)
S20.0198 (2)0.0240 (2)0.0209 (2)0.00308 (14)0.00374 (15)0.00061 (14)
O10.0225 (5)0.0173 (5)0.0128 (5)0.0004 (4)0.0045 (4)0.0019 (4)
O20.0160 (5)0.0164 (5)0.0175 (5)0.0029 (4)0.0002 (4)0.0010 (4)
N10.0137 (6)0.0176 (6)0.0120 (6)0.0007 (4)0.0014 (4)0.0019 (4)
N20.0142 (6)0.0142 (5)0.0163 (6)0.0001 (4)0.0000 (5)0.0006 (4)
C10.0136 (6)0.0128 (6)0.0149 (6)0.0002 (5)0.0048 (5)0.0003 (5)
C20.0133 (6)0.0180 (7)0.0152 (6)0.0005 (5)0.0018 (5)0.0011 (5)
C30.0136 (6)0.0192 (7)0.0168 (7)0.0024 (5)0.0017 (5)0.0031 (5)
C40.0161 (7)0.0159 (7)0.0210 (7)0.0011 (5)0.0073 (6)0.0017 (5)
C50.0249 (7)0.0170 (7)0.0177 (7)0.0016 (6)0.0013 (6)0.0032 (6)
C60.0226 (7)0.0179 (7)0.0138 (7)0.0015 (6)0.0005 (5)0.0002 (5)
C70.0246 (8)0.0143 (7)0.0256 (8)0.0008 (6)0.0062 (6)0.0017 (6)
C80.0184 (7)0.0140 (6)0.0176 (7)0.0017 (5)0.0032 (5)0.0006 (5)
C90.0169 (7)0.0145 (6)0.0199 (7)0.0012 (5)0.0038 (5)0.0026 (5)
C100.0203 (7)0.0163 (7)0.0248 (8)0.0010 (6)0.0040 (6)0.0040 (6)
C110.0164 (7)0.0190 (7)0.0340 (9)0.0011 (6)0.0048 (6)0.0077 (6)
C120.0189 (7)0.0192 (7)0.0293 (8)0.0042 (6)0.0006 (6)0.0035 (6)
Geometric parameters (Å, º) top
S1—O21.4288 (10)C4—C71.507 (2)
S1—O11.4355 (10)C5—C61.389 (2)
S1—N11.6572 (13)C5—H50.9500
S1—C11.7553 (14)C6—H60.9500
S2—C121.7148 (16)C7—H7A0.9800
S2—C91.7270 (15)C7—H7B0.9800
N1—N21.4074 (16)C7—H7C0.9800
N1—H10.859 (9)C8—C91.447 (2)
N2—C81.279 (2)C8—H80.9500
C1—C61.3901 (19)C9—C101.388 (2)
C1—C21.3932 (19)C10—C111.422 (2)
C2—C31.392 (2)C10—H100.9500
C2—H20.9500C11—C121.357 (2)
C3—C41.395 (2)C11—H110.9500
C3—H30.9500C12—H120.9500
C4—C51.394 (2)
O2—S1—O1119.85 (6)C4—C5—H5119.3
O2—S1—N1104.68 (6)C1—C6—C5119.03 (13)
O1—S1—N1106.02 (6)C1—C6—H6120.5
O2—S1—C1109.60 (6)C5—C6—H6120.5
O1—S1—C1109.08 (7)C4—C7—H7A109.5
N1—S1—C1106.74 (6)C4—C7—H7B109.5
C12—S2—C991.59 (8)H7A—C7—H7B109.5
N2—N1—S1113.01 (9)C4—C7—H7C109.5
N2—N1—H1116.3 (13)H7A—C7—H7C109.5
S1—N1—H1112.1 (13)H7B—C7—H7C109.5
C8—N2—N1114.73 (12)N2—C8—C9120.48 (14)
C6—C1—C2120.95 (13)N2—C8—H8119.8
C6—C1—S1119.95 (11)C9—C8—H8119.8
C2—C1—S1119.03 (11)C10—C9—C8126.88 (14)
C1—C2—C3119.03 (13)C10—C9—S2111.33 (11)
C1—C2—H2120.5C8—C9—S2121.73 (11)
C3—C2—H2120.5C9—C10—C11111.76 (14)
C4—C3—C2121.08 (13)C9—C10—H10124.1
C4—C3—H3119.5C11—C10—H10124.1
C2—C3—H3119.5C12—C11—C10113.01 (14)
C3—C4—C5118.60 (13)C12—C11—H11123.5
C3—C4—C7120.76 (13)C10—C11—H11123.5
C5—C4—C7120.65 (14)C11—C12—S2112.32 (12)
C6—C5—C4121.31 (14)C11—C12—H12123.8
C6—C5—H5119.3S2—C12—H12123.8
O2—S1—N1—N2178.54 (9)C3—C4—C5—C60.5 (2)
O1—S1—N1—N253.83 (11)C7—C4—C5—C6179.24 (15)
C1—S1—N1—N262.38 (11)C2—C1—C6—C50.6 (2)
S1—N1—N2—C8164.50 (11)S1—C1—C6—C5176.50 (12)
O2—S1—C1—C6163.60 (12)C4—C5—C6—C10.2 (2)
O1—S1—C1—C630.58 (14)N1—N2—C8—C9179.61 (12)
N1—S1—C1—C683.57 (13)N2—C8—C9—C10174.24 (14)
O2—S1—C1—C219.24 (14)N2—C8—C9—S29.0 (2)
O1—S1—C1—C2152.26 (11)C12—S2—C9—C100.45 (12)
N1—S1—C1—C293.59 (12)C12—S2—C9—C8177.63 (13)
C6—C1—C2—C30.2 (2)C8—C9—C10—C11177.28 (14)
S1—C1—C2—C3176.95 (11)S2—C9—C10—C110.27 (16)
C1—C2—C3—C40.6 (2)C9—C10—C11—C120.12 (19)
C2—C3—C4—C51.0 (2)C10—C11—C12—S20.46 (18)
C2—C3—C4—C7178.80 (14)C9—S2—C12—C110.52 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.06 (1)2.874 (2)159 (2)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H12N2O2S2
Mr280.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.3758 (10), 9.8613 (7), 9.6172 (7)
β (°) 104.981 (1)
V3)1317.03 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
8238, 3022, 2728
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.085, 1.04
No. of reflections3022
No. of parameters168
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.06 (1)2.874 (2)159 (2)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds