organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(9-Anthryl­methyl­­idene)-p-toluene­sulfono­hydrazide

aChemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 August 2010; accepted 14 August 2010; online 21 August 2010)

The S—N(H)—N=C linkage in the title mol­ecule, C22H18N2O2S, is non-planar [torsion angle = 30.6 (1)°] as the amino N atom is pyramidally coordinated. In the crystal, the amino group acts as a hydrogen-bond donor to an O atom of an adjacent mol­ecule, generating chains running parallel to the b axis.

Related literature

For the structure of the (E)-N′-benzyl­idene-p-toluene­sulf­ono­hydrazide analog, see: Mehrabi et al. (2008[Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N2O2S

  • Mr = 374.44

  • Orthorhombic, P b c a

  • a = 17.3634 (15) Å

  • b = 9.2438 (8) Å

  • c = 22.882 (2) Å

  • V = 3672.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.990

  • 22220 measured reflections

  • 4209 independent reflections

  • 3158 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.02

  • 4209 reflections

  • 249 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.07 (1) 2.911 (2) 169 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

p-Toluenesulfonyl hydrazide, CH3-4-C6H4SO2NHNH2, condenses with carbonyl compounds to form Schiff bases, and among the plethora, nearly a hundred have had their crystal structures determined. The compounds have the azomethine double-bond in an E-configuration. In the Schiff base product between p-toluenesulfonyl hydrazide and thiophene-2-carboxaldehyde, the S–N(H)–NC linkage is non-planar [torsion angle 30.6 (1) °] as the amino nitrogen atom (which bears a hydrogen atom) is pyramidally coordinated (Fig. 1). The amino group acts as a hydrogen-bond donor to an oxygen atom of an adjacent molecule to generate chains running parallel to the b-axis of the cell (Fig. 2).

Related literature top

For the structure of the (E)-N'-benzylidene-p-toluenesulfonohydrazide homolog, see: Mehrabi et al. (2008).

Experimental top

p-Toluenesulfonyl hydrazide (4.66 g, 2.5 mmol) and anthracene-9-carboxaldehyde (5.162.80 g, 2.5 mmol) were heated in methanol (50 ml) for two hours. The cool solution yielded a precipitate that was recrystallized from ethanol and collected in 90% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, U(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint [N–H 0.86 (1) Å]; its temperature factor was freely refined.

Structure description top

p-Toluenesulfonyl hydrazide, CH3-4-C6H4SO2NHNH2, condenses with carbonyl compounds to form Schiff bases, and among the plethora, nearly a hundred have had their crystal structures determined. The compounds have the azomethine double-bond in an E-configuration. In the Schiff base product between p-toluenesulfonyl hydrazide and thiophene-2-carboxaldehyde, the S–N(H)–NC linkage is non-planar [torsion angle 30.6 (1) °] as the amino nitrogen atom (which bears a hydrogen atom) is pyramidally coordinated (Fig. 1). The amino group acts as a hydrogen-bond donor to an oxygen atom of an adjacent molecule to generate chains running parallel to the b-axis of the cell (Fig. 2).

For the structure of the (E)-N'-benzylidene-p-toluenesulfonohydrazide homolog, see: Mehrabi et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C22H18N2O2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the chain structure resulting from N—H···O hydrogen-bonding.
(E)-N'-(9-Anthrylmethylidene)-p-toluenesulfonohydrazide top
Crystal data top
C22H18N2O2SF(000) = 1568
Mr = 374.44Dx = 1.354 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3593 reflections
a = 17.3634 (15) Åθ = 2.3–27.6°
b = 9.2438 (8) ŵ = 0.20 mm1
c = 22.882 (2) ÅT = 100 K
V = 3672.6 (6) Å3Prism, yellow
Z = 80.40 × 0.20 × 0.05 mm
Data collection top
Bruker SMART APEX
diffractometer
4209 independent reflections
Radiation source: fine-focus sealed tube3158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1822
Tmin = 0.926, Tmax = 0.990k = 1210
22220 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0442P)2 + 1.8913P]
where P = (Fo2 + 2Fc2)/3
4209 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
C22H18N2O2SV = 3672.6 (6) Å3
Mr = 374.44Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.3634 (15) ŵ = 0.20 mm1
b = 9.2438 (8) ÅT = 100 K
c = 22.882 (2) Å0.40 × 0.20 × 0.05 mm
Data collection top
Bruker SMART APEX
diffractometer
4209 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3158 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.990Rint = 0.055
22220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
4209 reflectionsΔρmin = 0.46 e Å3
249 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70021 (2)0.57688 (5)0.781940 (19)0.01816 (12)
O10.67930 (7)0.71367 (13)0.75666 (6)0.0228 (3)
O20.75969 (7)0.57170 (14)0.82533 (5)0.0244 (3)
N10.73235 (8)0.47229 (17)0.72874 (6)0.0188 (3)
H10.7581 (11)0.4002 (17)0.7419 (9)0.032 (6)*
N20.67630 (8)0.44447 (16)0.68590 (6)0.0187 (3)
C10.61574 (10)0.4956 (2)0.80808 (8)0.0207 (4)
C20.54464 (11)0.5595 (2)0.79729 (9)0.0263 (4)
H20.54120.64740.77600.032*
C30.47881 (11)0.4919 (2)0.81839 (9)0.0324 (5)
H30.42990.53410.81110.039*
C40.48310 (12)0.3638 (2)0.84988 (9)0.0319 (5)
C50.55497 (13)0.3014 (2)0.85908 (9)0.0326 (5)
H50.55840.21290.88000.039*
C60.62165 (11)0.3659 (2)0.83825 (8)0.0256 (4)
H60.67050.32200.84450.031*
C70.41088 (13)0.2933 (3)0.87297 (10)0.0437 (6)
H7A0.37550.36790.88720.066*
H7B0.42420.22790.90510.066*
H7C0.38610.23820.84160.066*
C80.68260 (10)0.32154 (19)0.66045 (7)0.0190 (4)
H80.72240.25800.67270.023*
C90.63107 (10)0.27431 (19)0.61321 (7)0.0181 (4)
C100.55246 (10)0.31693 (19)0.61075 (8)0.0196 (4)
C110.51458 (10)0.3970 (2)0.65569 (8)0.0225 (4)
H110.54340.42920.68850.027*
C120.43788 (11)0.4284 (2)0.65260 (9)0.0256 (4)
H120.41390.47890.68390.031*
C130.39353 (11)0.3870 (2)0.60350 (9)0.0284 (4)
H130.34060.41240.60130.034*
C140.42673 (11)0.3113 (2)0.55987 (9)0.0274 (4)
H140.39680.28490.52680.033*
C150.50621 (10)0.2698 (2)0.56239 (8)0.0232 (4)
C160.53801 (11)0.1800 (2)0.51995 (8)0.0248 (4)
H160.50710.15110.48770.030*
C170.61374 (10)0.1311 (2)0.52330 (8)0.0207 (4)
C180.64417 (11)0.0329 (2)0.48093 (8)0.0249 (4)
H180.61210.00050.45000.030*
C190.71804 (11)0.0149 (2)0.48399 (8)0.0247 (4)
H190.73720.08080.45570.030*
C200.76612 (11)0.0344 (2)0.52973 (8)0.0229 (4)
H200.81790.00170.53160.028*
C210.73965 (10)0.1276 (2)0.57109 (8)0.0204 (4)
H210.77360.15940.60100.025*
C220.66168 (10)0.17906 (19)0.57053 (7)0.0184 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0166 (2)0.0169 (2)0.0210 (2)0.00194 (17)0.00059 (17)0.00158 (17)
O10.0222 (7)0.0163 (6)0.0300 (7)0.0008 (5)0.0016 (5)0.0003 (5)
O20.0203 (7)0.0287 (7)0.0241 (7)0.0025 (6)0.0044 (5)0.0040 (6)
N10.0164 (7)0.0189 (8)0.0211 (8)0.0014 (6)0.0012 (6)0.0008 (6)
N20.0167 (7)0.0209 (8)0.0184 (7)0.0022 (6)0.0009 (6)0.0003 (6)
C10.0204 (9)0.0205 (9)0.0212 (9)0.0052 (7)0.0050 (7)0.0043 (7)
C20.0219 (9)0.0249 (10)0.0323 (10)0.0008 (8)0.0037 (8)0.0067 (8)
C30.0222 (10)0.0366 (12)0.0386 (12)0.0036 (9)0.0077 (9)0.0149 (10)
C40.0330 (11)0.0353 (12)0.0274 (10)0.0164 (9)0.0122 (9)0.0173 (9)
C50.0449 (13)0.0250 (11)0.0279 (10)0.0115 (9)0.0087 (9)0.0030 (9)
C60.0296 (10)0.0220 (10)0.0252 (9)0.0029 (8)0.0049 (8)0.0017 (8)
C70.0381 (13)0.0554 (16)0.0375 (12)0.0261 (11)0.0144 (10)0.0162 (11)
C80.0177 (9)0.0198 (9)0.0195 (9)0.0003 (7)0.0016 (7)0.0035 (7)
C90.0190 (9)0.0171 (9)0.0182 (8)0.0017 (7)0.0004 (7)0.0026 (7)
C100.0187 (9)0.0184 (9)0.0216 (9)0.0010 (7)0.0008 (7)0.0031 (7)
C110.0197 (9)0.0241 (10)0.0238 (9)0.0020 (7)0.0005 (7)0.0015 (8)
C120.0220 (9)0.0249 (10)0.0300 (10)0.0017 (8)0.0035 (8)0.0020 (8)
C130.0184 (9)0.0299 (11)0.0369 (11)0.0042 (8)0.0030 (8)0.0015 (9)
C140.0229 (10)0.0311 (11)0.0282 (10)0.0044 (8)0.0083 (8)0.0004 (9)
C150.0213 (9)0.0248 (10)0.0235 (9)0.0015 (8)0.0036 (7)0.0035 (8)
C160.0243 (10)0.0297 (10)0.0203 (9)0.0018 (8)0.0067 (8)0.0007 (8)
C170.0222 (9)0.0218 (9)0.0182 (8)0.0009 (7)0.0005 (7)0.0022 (7)
C180.0274 (10)0.0283 (10)0.0191 (9)0.0004 (8)0.0040 (8)0.0010 (8)
C190.0289 (10)0.0252 (10)0.0200 (9)0.0015 (8)0.0039 (8)0.0007 (8)
C200.0199 (9)0.0231 (10)0.0258 (10)0.0020 (7)0.0023 (7)0.0031 (8)
C210.0193 (9)0.0210 (9)0.0210 (8)0.0010 (7)0.0005 (7)0.0019 (7)
C220.0199 (9)0.0176 (9)0.0176 (8)0.0018 (7)0.0001 (7)0.0046 (7)
Geometric parameters (Å, º) top
S1—O11.4370 (13)C9—C101.422 (2)
S1—O21.4334 (13)C10—C111.428 (2)
S1—N11.6516 (15)C10—C151.435 (2)
S1—C11.7532 (18)C11—C121.365 (3)
N1—N21.405 (2)C11—H110.9500
N1—H10.857 (9)C12—C131.415 (3)
N2—C81.281 (2)C12—H120.9500
C1—C61.387 (3)C13—C141.349 (3)
C1—C21.391 (3)C13—H130.9500
C2—C31.389 (3)C14—C151.434 (3)
C2—H20.9500C14—H140.9500
C3—C41.388 (3)C15—C161.392 (3)
C3—H30.9500C16—C171.392 (3)
C4—C51.391 (3)C16—H160.9500
C4—C71.509 (3)C17—C181.429 (3)
C5—C61.387 (3)C17—C221.434 (2)
C5—H50.9500C18—C191.358 (3)
C6—H60.9500C18—H180.9500
C7—H7A0.9800C19—C201.414 (3)
C7—H7B0.9800C19—H190.9500
C7—H7C0.9800C20—C211.360 (2)
C8—C91.470 (2)C20—H200.9500
C8—H80.9500C21—C221.435 (2)
C9—C221.418 (2)C21—H210.9500
O1—S1—O2119.35 (8)C9—C10—C11123.88 (16)
O1—S1—N1107.68 (8)C9—C10—C15118.93 (16)
O2—S1—N1104.33 (8)C11—C10—C15117.07 (16)
O1—S1—C1107.65 (8)C12—C11—C10121.50 (18)
O2—S1—C1110.62 (8)C12—C11—H11119.3
N1—S1—C1106.45 (8)C10—C11—H11119.3
N2—N1—S1112.79 (11)C11—C12—C13120.98 (18)
N2—N1—H1117.7 (15)C11—C12—H12119.5
S1—N1—H1111.8 (14)C13—C12—H12119.5
C8—N2—N1114.84 (15)C14—C13—C12119.71 (17)
C6—C1—C2121.41 (17)C14—C13—H13120.1
C6—C1—S1118.58 (14)C12—C13—H13120.1
C2—C1—S1120.00 (15)C13—C14—C15121.36 (18)
C3—C2—C1118.52 (19)C13—C14—H14119.3
C3—C2—H2120.7C15—C14—H14119.3
C1—C2—H2120.7C16—C15—C10119.80 (16)
C4—C3—C2121.3 (2)C16—C15—C14120.89 (17)
C4—C3—H3119.3C10—C15—C14119.26 (17)
C2—C3—H3119.3C17—C16—C15122.00 (17)
C3—C4—C5118.72 (18)C17—C16—H16119.0
C3—C4—C7120.4 (2)C15—C16—H16119.0
C5—C4—C7120.9 (2)C16—C17—C18121.19 (17)
C6—C5—C4121.3 (2)C16—C17—C22119.28 (17)
C6—C5—H5119.4C18—C17—C22119.52 (16)
C4—C5—H5119.4C19—C18—C17121.39 (17)
C5—C6—C1118.73 (19)C19—C18—H18119.3
C5—C6—H6120.6C17—C18—H18119.3
C1—C6—H6120.6C18—C19—C20119.38 (17)
C4—C7—H7A109.5C18—C19—H19120.3
C4—C7—H7B109.5C20—C19—H19120.3
H7A—C7—H7B109.5C21—C20—C19121.31 (17)
C4—C7—H7C109.5C21—C20—H20119.3
H7A—C7—H7C109.5C19—C20—H20119.3
H7B—C7—H7C109.5C20—C21—C22121.52 (17)
N2—C8—C9123.06 (16)C20—C21—H21119.2
N2—C8—H8118.5C22—C21—H21119.2
C9—C8—H8118.5C9—C22—C21123.60 (16)
C22—C9—C10120.31 (16)C9—C22—C17119.55 (16)
C22—C9—C8117.56 (15)C21—C22—C17116.85 (16)
C10—C9—C8122.09 (16)
O1—S1—N1—N262.00 (13)C10—C11—C12—C132.3 (3)
O2—S1—N1—N2170.23 (11)C11—C12—C13—C142.1 (3)
C1—S1—N1—N253.21 (14)C12—C13—C14—C150.9 (3)
S1—N1—N2—C8149.39 (13)C9—C10—C15—C162.1 (3)
O1—S1—C1—C6175.60 (14)C11—C10—C15—C16174.03 (17)
O2—S1—C1—C643.59 (17)C9—C10—C15—C14179.46 (17)
N1—S1—C1—C669.17 (16)C11—C10—C15—C143.4 (3)
O1—S1—C1—C25.81 (18)C13—C14—C15—C16173.73 (19)
O2—S1—C1—C2137.82 (15)C13—C14—C15—C103.6 (3)
N1—S1—C1—C2109.42 (16)C10—C15—C16—C171.3 (3)
C6—C1—C2—C31.2 (3)C14—C15—C16—C17176.08 (18)
S1—C1—C2—C3179.71 (15)C15—C16—C17—C18176.73 (18)
C1—C2—C3—C40.3 (3)C15—C16—C17—C222.6 (3)
C2—C3—C4—C51.4 (3)C16—C17—C18—C19179.93 (18)
C2—C3—C4—C7179.28 (18)C22—C17—C18—C190.8 (3)
C3—C4—C5—C61.0 (3)C17—C18—C19—C200.6 (3)
C7—C4—C5—C6179.68 (18)C18—C19—C20—C210.7 (3)
C4—C5—C6—C10.4 (3)C19—C20—C21—C220.6 (3)
C2—C1—C6—C51.6 (3)C10—C9—C22—C21177.99 (16)
S1—C1—C6—C5179.88 (14)C8—C9—C22—C210.2 (3)
N1—N2—C8—C9178.04 (15)C10—C9—C22—C172.8 (3)
N2—C8—C9—C22149.92 (17)C8—C9—C22—C17179.43 (15)
N2—C8—C9—C1032.4 (3)C20—C21—C22—C9178.91 (17)
C22—C9—C10—C11171.73 (17)C20—C21—C22—C171.9 (3)
C8—C9—C10—C115.9 (3)C16—C17—C22—C90.5 (3)
C22—C9—C10—C154.1 (3)C18—C17—C22—C9178.81 (17)
C8—C9—C10—C15178.27 (16)C16—C17—C22—C21178.75 (17)
C9—C10—C11—C12176.38 (18)C18—C17—C22—C211.9 (2)
C15—C10—C11—C120.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.07 (1)2.911 (2)169 (2)
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC22H18N2O2S
Mr374.44
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)17.3634 (15), 9.2438 (8), 22.882 (2)
V3)3672.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.926, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
22220, 4209, 3158
Rint0.055
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.02
No. of reflections4209
No. of parameters249
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.07 (1)2.911 (2)169 (2)
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds