metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(pyrimidine-2-carb­­oxy­lic acid)iron(II)]-μ-oxalato]

aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com

(Received 12 June 2010; accepted 28 July 2010; online 4 August 2010)

In the title complex, [Fe(C2O4)(C5H4N2O4)]n, the FeII ion is coordinated by two oxalate anions and a pyrimidine-2-carb­oxy­lic acid ligand in a slightly distorted octa­hedral geometry. Each oxalate anion chelates to two FeII ions, forming chains along the a axis. The chains are further connected by O—H⋯O and C—H⋯O hydrogen bonds, stabilizing the structure. An intra­molecular O—H⋯N inter­action results in a five-membered ring.

Related literature

For related structures, see: Zhang et al. (2008[Zhang, J.-Y., Yue, Q., Jia, Q.-X., Cheng, A.-L. & Gao, E.-Q. (2008). CrystEngComm, 10 1443-1449.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C2O4)(C5H4N2O4)]

  • Mr = 267.97

  • Orthorhombic, P n a 21

  • a = 9.0524 (18) Å

  • b = 9.1578 (18) Å

  • c = 11.329 (2) Å

  • V = 939.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.780, Tmax = 1

  • 7603 measured reflections

  • 1658 independent reflections

  • 1503 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.083

  • S = 1.11

  • 1658 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 783 Friedel pairs

  • Flack parameter: 0.05 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O3i 0.93 2.48 3.279 (6) 145
O6—H6⋯O1ii 0.85 2.17 2.988 (5) 161
O6—H6⋯N2 0.85 2.40 2.743 (6) 105
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Pyrimidine-2-carboxylic acid (HL) and oxalate anion have similar coordination mode, acting as bidentate ligands, and some Cd complexes have been reported containing both ligands (Zhang et al., 2008). Here we report the synthesis and crystal structure of a new iron complex with pyrimidine-2-carboxylic acid and oxalate as co-ligands.

In the title complex, the FeII ions are coordinated by one HL ligand and two oxalate anions in a slightly distorted octahedral geometry (Fig. 1). Each oxalate anion chelates to two FeII ions resulting a chain along the a-axis. There is an intramolecular interaction O6—H6···N2 resulting in a five membererd ring. The O—H···O and C—H···O type hydrogen bonds between the oxalate and HL ligands impart stability to the structure (Fig. 2).

Related literature top

For related structures, see: Zhang et al. (2008).

Experimental top

A mixture of Fe(III) chloride (2 mmol), oxalate acid (2 mmol)and pyrimidine-2-carbonitrile (1 mmol), in 10 ml dimethyl formamate (DMF) solvent was sealed in a Teflon-lined stainless-steel Parr bomb was heated at 413 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature; yield 20%.

Refinement top

The absolute structure of the title complex was determined by the Flack (1983) method. Hydrogen atoms were included in calculated positions and treated as riding on their parent atoms with O—H and C—H = 0.85 and 0.93 Å, respectively and Uiso(H) = 1.2Ueq(O/C).

Structure description top

Pyrimidine-2-carboxylic acid (HL) and oxalate anion have similar coordination mode, acting as bidentate ligands, and some Cd complexes have been reported containing both ligands (Zhang et al., 2008). Here we report the synthesis and crystal structure of a new iron complex with pyrimidine-2-carboxylic acid and oxalate as co-ligands.

In the title complex, the FeII ions are coordinated by one HL ligand and two oxalate anions in a slightly distorted octahedral geometry (Fig. 1). Each oxalate anion chelates to two FeII ions resulting a chain along the a-axis. There is an intramolecular interaction O6—H6···N2 resulting in a five membererd ring. The O—H···O and C—H···O type hydrogen bonds between the oxalate and HL ligands impart stability to the structure (Fig. 2).

For related structures, see: Zhang et al. (2008).

Computing details top

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordinated mode and linkage of the complex. Ellipsoids are drawn at the 30% probability level. Symmetry codes: i = x+1/2,-y-1/2,z ii= x-1/2,-y-1/2,z
[Figure 2] Fig. 2. A partial packing diagram of the unit cell viewed down the c-axis.
catena-Poly[[(pyrimidine-2-carboxylic acid)iron(II)]-µ-oxalato] top
Crystal data top
[Fe(C2O4)(C5H4N2O4)]F(000) = 536
Mr = 267.97Dx = 1.895 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8691 reflections
a = 9.0524 (18) Åθ = 3.2–27.5°
b = 9.1578 (18) ŵ = 1.62 mm1
c = 11.329 (2) ÅT = 293 K
V = 939.2 (3) Å3Block, red
Z = 40.2 × 0.18 × 0.16 mm
Data collection top
Rigaku SCXmini
diffractometer
1658 independent reflections
Radiation source: fine-focus sealed tube1503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.780, Tmax = 1k = 1010
7603 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.7762P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
1658 reflectionsΔρmax = 0.46 e Å3
145 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 783 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
[Fe(C2O4)(C5H4N2O4)]V = 939.2 (3) Å3
Mr = 267.97Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.0524 (18) ŵ = 1.62 mm1
b = 9.1578 (18) ÅT = 293 K
c = 11.329 (2) Å0.2 × 0.18 × 0.16 mm
Data collection top
Rigaku SCXmini
diffractometer
1658 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1503 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 1Rint = 0.074
7603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.46 e Å3
S = 1.11Δρmin = 0.30 e Å3
1658 reflectionsAbsolute structure: Flack (1983), 783 Friedel pairs
145 parametersAbsolute structure parameter: 0.05 (3)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.13566 (6)0.08170 (6)0.71653 (7)0.02969 (18)
C40.1749 (5)0.2409 (5)0.7015 (4)0.0263 (10)
O50.2520 (4)0.0586 (3)0.8376 (3)0.0397 (9)
O10.0702 (3)0.0924 (3)0.8009 (3)0.0293 (7)
N10.0989 (4)0.1349 (4)0.6452 (4)0.0307 (9)
O60.3406 (5)0.2878 (5)0.8630 (4)0.0624 (12)
H60.34560.37460.83690.075*
C30.2601 (5)0.1886 (5)0.8074 (4)0.0325 (11)
O30.2731 (3)0.2329 (4)0.8046 (3)0.0353 (8)
O20.0098 (4)0.2138 (4)0.5963 (3)0.0343 (8)
C70.0149 (5)0.1768 (6)0.5565 (4)0.0349 (12)
H7A0.04050.10720.51630.042*
O40.1781 (4)0.3696 (4)0.6089 (3)0.0368 (9)
C50.0923 (6)0.4168 (6)0.5831 (5)0.0438 (13)
H5A0.09160.51410.55970.053*
C60.0066 (6)0.3211 (6)0.5216 (5)0.0408 (13)
H6A0.05390.35110.45980.049*
N20.1764 (5)0.3806 (4)0.6738 (4)0.0350 (11)
C20.1034 (5)0.2649 (5)0.6452 (4)0.0263 (11)
C10.1539 (5)0.1906 (5)0.7602 (4)0.0256 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0248 (3)0.0246 (3)0.0396 (4)0.0008 (3)0.0015 (4)0.0021 (4)
C40.028 (2)0.028 (2)0.023 (3)0.0011 (17)0.002 (2)0.002 (2)
O50.053 (2)0.0245 (19)0.042 (2)0.0094 (17)0.0203 (18)0.0093 (15)
O10.0252 (17)0.0282 (17)0.0344 (19)0.0003 (15)0.0030 (15)0.0040 (15)
N10.030 (2)0.034 (2)0.029 (2)0.0011 (18)0.0004 (18)0.0003 (18)
O60.076 (3)0.049 (3)0.062 (3)0.010 (2)0.010 (2)0.007 (2)
C30.033 (3)0.035 (3)0.029 (3)0.007 (2)0.006 (2)0.001 (2)
O30.0304 (19)0.0338 (19)0.042 (2)0.0084 (16)0.0102 (17)0.0078 (17)
O20.0298 (18)0.0426 (19)0.0304 (18)0.0060 (16)0.0071 (16)0.0054 (17)
C70.033 (3)0.042 (3)0.030 (3)0.002 (2)0.007 (2)0.003 (2)
O40.0292 (18)0.041 (2)0.040 (2)0.0042 (16)0.0069 (17)0.0142 (17)
C50.053 (3)0.033 (3)0.045 (3)0.010 (3)0.001 (3)0.008 (3)
C60.043 (3)0.043 (3)0.037 (3)0.010 (3)0.008 (3)0.002 (2)
N20.041 (3)0.024 (2)0.039 (3)0.0041 (17)0.0069 (19)0.0036 (16)
C20.023 (2)0.030 (3)0.026 (3)0.007 (2)0.001 (2)0.001 (2)
C10.021 (2)0.024 (2)0.032 (2)0.003 (2)0.0027 (19)0.0036 (18)
Geometric parameters (Å, º) top
Fe1—O12.097 (3)O6—H60.8500
Fe1—O4i2.128 (3)O3—C11.252 (5)
Fe1—O3i2.136 (3)O3—Fe1ii2.136 (3)
Fe1—O22.148 (3)O2—C21.255 (6)
Fe1—O52.154 (3)C7—C61.382 (7)
Fe1—N12.168 (4)C7—H7A0.9300
C4—N21.318 (6)O4—C21.243 (6)
C4—N11.350 (6)O4—Fe1ii2.128 (3)
C4—C31.504 (7)C5—N21.321 (7)
O5—C31.240 (6)C5—C61.362 (8)
O1—C11.263 (6)C5—H5A0.9300
N1—C71.317 (6)C6—H6A0.9300
O6—C31.325 (6)C2—C11.540 (6)
O1—Fe1—O4i162.87 (14)C3—O6—H6120.4
O1—Fe1—O3i95.38 (13)O5—C3—O6124.0 (4)
O4i—Fe1—O3i78.16 (13)O5—C3—C4119.7 (4)
O1—Fe1—O277.96 (12)O6—C3—C4116.3 (4)
O4i—Fe1—O286.49 (14)C1—O3—Fe1ii113.1 (3)
O3i—Fe1—O293.08 (14)C2—O2—Fe1111.3 (3)
O1—Fe1—O599.90 (14)N1—C7—C6121.9 (5)
O4i—Fe1—O595.90 (15)N1—C7—H7A119.1
O3i—Fe1—O589.29 (13)C6—C7—H7A119.1
O2—Fe1—O5176.94 (13)C2—O4—Fe1ii113.7 (3)
O1—Fe1—N194.37 (14)N2—C5—C6124.4 (5)
O4i—Fe1—N195.72 (14)N2—C5—H5A117.8
O3i—Fe1—N1163.96 (15)C6—C5—H5A117.8
O2—Fe1—N1101.40 (14)C5—C6—C7115.9 (5)
O5—Fe1—N176.50 (14)C5—C6—H6A122.0
N2—C4—N1126.2 (5)C7—C6—H6A122.0
N2—C4—C3119.6 (4)C4—N2—C5115.0 (4)
N1—C4—C3114.2 (4)O4—C2—O2125.8 (5)
C3—O5—Fe1115.2 (3)O4—C2—C1117.4 (4)
C1—O1—Fe1113.6 (3)O2—C2—C1116.8 (4)
C7—N1—C4116.5 (4)O3—C1—O1126.2 (4)
C7—N1—Fe1129.7 (4)O3—C1—C2117.3 (4)
C4—N1—Fe1113.8 (3)O1—C1—C2116.5 (4)
O1—Fe1—O5—C399.7 (4)N1—C4—C3—O52.3 (6)
O4i—Fe1—O5—C386.9 (4)N2—C4—C3—O64.2 (7)
O3i—Fe1—O5—C3165.0 (4)N1—C4—C3—O6177.7 (4)
N1—Fe1—O5—C37.5 (4)O1—Fe1—O2—C217.7 (3)
O4i—Fe1—O1—C110.5 (6)O4i—Fe1—O2—C2155.1 (3)
O3i—Fe1—O1—C177.3 (3)O3i—Fe1—O2—C277.2 (3)
O2—Fe1—O1—C114.7 (3)N1—Fe1—O2—C2109.8 (3)
O5—Fe1—O1—C1167.5 (3)C4—N1—C7—C61.0 (7)
N1—Fe1—O1—C1115.5 (3)Fe1—N1—C7—C6178.9 (4)
N2—C4—N1—C72.3 (7)N2—C5—C6—C72.2 (9)
C3—C4—N1—C7175.7 (4)N1—C7—C6—C51.0 (8)
N2—C4—N1—Fe1177.7 (4)N1—C4—N2—C51.2 (7)
C3—C4—N1—Fe14.3 (5)C3—C4—N2—C5176.7 (4)
O1—Fe1—N1—C774.8 (4)C6—C5—N2—C41.2 (8)
O4i—Fe1—N1—C791.3 (4)Fe1ii—O4—C2—O2178.8 (4)
O3i—Fe1—N1—C7157.9 (5)Fe1ii—O4—C2—C11.0 (5)
O2—Fe1—N1—C73.8 (4)Fe1—O2—C2—O4162.4 (4)
O5—Fe1—N1—C7174.0 (4)Fe1—O2—C2—C117.8 (5)
O1—Fe1—N1—C4105.3 (3)Fe1ii—O3—C1—O1173.3 (4)
O4i—Fe1—N1—C488.6 (3)Fe1ii—O3—C1—C26.6 (5)
O3i—Fe1—N1—C422.1 (7)Fe1—O1—C1—O3169.6 (4)
O2—Fe1—N1—C4176.2 (3)Fe1—O1—C1—C210.3 (5)
O5—Fe1—N1—C46.1 (3)O4—C2—C1—O35.4 (6)
Fe1—O5—C3—O6172.2 (4)O2—C2—C1—O3174.4 (4)
Fe1—O5—C3—C47.8 (6)O4—C2—C1—O1174.4 (4)
N2—C4—C3—O5175.8 (5)O2—C2—C1—O15.7 (6)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O3iii0.932.483.279 (6)145
O6—H6···O1iv0.852.172.988 (5)161
O6—H6···N20.852.402.743 (6)105
Symmetry codes: (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Fe(C2O4)(C5H4N2O4)]
Mr267.97
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)9.0524 (18), 9.1578 (18), 11.329 (2)
V3)939.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.2 × 0.18 × 0.16
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.780, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
7603, 1658, 1503
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.083, 1.11
No. of reflections1658
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.30
Absolute structureFlack (1983), 783 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: SCXmini Benchtop Crystallography System Software (Rigaku, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O3i0.932.483.279 (6)145
O6—H6···O1ii0.852.172.988 (5)161
O6—H6···N20.852.402.743 (6)105
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge financial support from Tianjin Municipal Education Commission, Tianjin, People's Republic of China (grant No. 20060503).

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-Y., Yue, Q., Jia, Q.-X., Cheng, A.-L. & Gao, E.-Q. (2008). CrystEngComm, 10 1443–1449.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds