metal-organic compounds
Bis[1-(2-ethoxyphenyl)-3-(4-nitrophenyl)triazenido]mercury(II)
aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, bYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Universita di Messina 98166 Messina, Italy
*Correspondence e-mail: rofouei_mk@yahoo.com
In the title compound, [Hg(C14H13N4O3)2], the central Hg atom (site symmetry 2) is six-coordinated by two tridentate 1-(2-ethoxyphenyl)-3-(4-nitrophenyl)triazenide ligands through two N and one O atoms. The mononuclear complex molecules are connected into two parallel chains by intermolecular C—H⋯O hydrogen-bonding interactions. These chains are connected to each other by face-to-edge C—H⋯π interactions between the CH of the ethoxy groups and the aromatic rings, resulting in a two-dimensional architecture in the ac plane.
Related literature
For related structures, see: Melardi et al. (2007, 2009); Rofouei et al. (2009). For a similar complex with the same ligand, see: Melardi et al. (2010).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810031326/pv2312sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810031326/pv2312Isup2.hkl
The title complex was prepared by dissolving [1-(2-ethoxyphenyl)3- (4-nitrophenyl)]triazene (0.58 g, 2 mmol) in 20 ml anhydrous methanol. A solution of mercury acetate (0.32 g, 1 mmol) in 20 ml anhydrous methanol was added to the ligand solution. After 1 h, a red-orange solid was readily precipitated out. After two weeks beautiful red-orange and air-stable crystals of the title complex were obtained by slow evaporation of the solvent.
An
was established using Flack (1983) method. The H-atoms were placed in calculated positions with C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene type H-atoms, respectively, and included in the in riding mode with isotropic displacement parameters Uiso(H) = 1.5 and 1.2 × Ueq(C) for the CH3 and other groups, respectively. The final difference map showed electron density within 1.0 Å from Hg1 atom and may be attributed to absorption effects.The study of transition-metal complexes containing 1,3-diaryltriazene ligands has greatly increased in the past few years because of the versatility of their coordination forms, yielding a variety of coordination compounds with large structural diversity. The crystal structures of a few complexes related to the title compound have been reported recently from our laboratory (Melardi et al., 2007, 2009, 2010; Rofouei et al., 2009).
In the title complex (Fig. 1), two [1-(2-ethoxyphenyl)3-(4-nitrophenyl)triazenido] ligands are coordinated to the central atom Hg(II), each through two N atoms [Hg1—N1 = 2.7873 (1) Å and Hg1—N3 = 2.0836 (1) Å] and one O atom [Hg1—O1 = 2.6562 (1) Å]. The Hg1—N1 is significantly longer than the Hg1—N3 bond. In the lattice of the title compound, the monomeric Hg(C14H13N4O3)2 moieties are linked into chains through non-classical C8—H8···O1 hydrogen bonds, as well as C—H···π stacking interactions. Moreover, the mono-nuclear complexe molceules are connected to form two parallel chains by distinct intermolecular non-classical C—H···O hydrogen bonds. Consequently, 1-D chains are connected with one another by C—H···π stacking interactions, resulting in a 2-D architecture. These C—H···π edge-to-face interactions are present between CH group of ethoxy with aromatic rings with H···π distance of 2.86 Å for C13—H12A···Cg1 (2 - x,3/2 - y, z-1/2) [Cg1= C1—C6 (Tab. 1, Figs. 2 and 3). Also, the sum of the weak non-covalent interactions seems to play an important role in the crystal packing and the formation of a formed framework. The packing diagram of the title compound is shown in Fig. 4.
For related structures, see: Melardi et al. (2007, 2009); Rofouei et al. (2009). For a similar complex with the same ligand, see: Melardi et al. (2010).
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Hg(C14H13N4O3)2] | F(000) = 1512 |
Mr = 771.1 | Dx = 1.811 Mg m−3 Dm = 1.8 Mg m−3 Dm measured by not measured |
Orthorhombic, Aba2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: A 2 -2ac | Cell parameters from 9751 reflections |
a = 15.4637 (3) Å | θ = 2.6–27.8° |
b = 18.6594 (4) Å | µ = 5.50 mm−1 |
c = 9.8008 (2) Å | T = 296 K |
V = 2827.96 (10) Å3 | Irregular, red |
Z = 4 | 0.50 × 0.45 × 0.20 mm |
Bruker APEXII CCD diffractometer | 3358 independent reflections |
Radiation source: fine-focus sealed tube | 2629 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.122 |
φ and ω scans | θmax = 27.9°, θmin = 2.6° |
Absorption correction: integration (SADABS; Bruker, 2005) | h = −20→20 |
Tmin = 0.129, Tmax = 0.280 | k = −24→24 |
51881 measured reflections | l = −12→12 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0655P)2 + 3.2492P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.110 | (Δ/σ)max < 0.001 |
S = 1.15 | Δρmax = 2.28 e Å−3 |
3358 reflections | Δρmin = −2.52 e Å−3 |
196 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.00070 (17) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1575 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.08 (2) |
[Hg(C14H13N4O3)2] | V = 2827.96 (10) Å3 |
Mr = 771.1 | Z = 4 |
Orthorhombic, Aba2 | Mo Kα radiation |
a = 15.4637 (3) Å | µ = 5.50 mm−1 |
b = 18.6594 (4) Å | T = 296 K |
c = 9.8008 (2) Å | 0.50 × 0.45 × 0.20 mm |
Bruker APEXII CCD diffractometer | 3358 independent reflections |
Absorption correction: integration (SADABS; Bruker, 2005) | 2629 reflections with I > 2σ(I) |
Tmin = 0.129, Tmax = 0.280 | Rint = 0.122 |
51881 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.110 | Δρmax = 2.28 e Å−3 |
S = 1.15 | Δρmin = −2.52 e Å−3 |
3358 reflections | Absolute structure: Flack (1983), 1575 Friedel pairs |
196 parameters | Absolute structure parameter: −0.08 (2) |
1 restraint |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 1.0000 | 1.0000 | 0.7679 (3) | 0.03974 (13) | |
C7 | 1.1773 (4) | 0.9517 (3) | 0.5961 (6) | 0.0546 (14) | |
C2 | 0.9670 (4) | 0.8059 (3) | 1.0850 (7) | 0.0545 (14) | |
H2 | 1.0236 | 0.8178 | 1.0624 | 0.065* | |
O1 | 0.7000 (3) | 0.7116 (3) | 1.2795 (6) | 0.0925 (17) | |
O3 | 1.0915 (3) | 0.9353 (2) | 0.5744 (5) | 0.0615 (11) | |
N1 | 0.9199 (3) | 0.8912 (2) | 0.9162 (5) | 0.0554 (11) | |
C3 | 0.9533 (5) | 0.7573 (3) | 1.1860 (7) | 0.0627 (16) | |
H3 | 0.9999 | 0.7371 | 1.2319 | 0.075* | |
C14 | 0.9689 (8) | 0.8927 (5) | 0.4560 (11) | 0.080 (3) | |
H14A | 0.9497 | 0.8639 | 0.3806 | 0.120* | |
H14B | 0.9488 | 0.9410 | 0.4444 | 0.120* | |
H14C | 0.9462 | 0.8734 | 0.5394 | 0.120* | |
C8 | 1.2429 (5) | 0.9181 (3) | 0.5204 (8) | 0.0659 (15) | |
H8 | 1.2297 | 0.8841 | 0.4543 | 0.079* | |
N3 | 0.8716 (3) | 0.9660 (2) | 0.7669 (6) | 0.0492 (9) | |
N2 | 0.8539 (3) | 0.9140 (3) | 0.8513 (5) | 0.0536 (11) | |
C1 | 0.8989 (3) | 0.8390 (3) | 1.0133 (6) | 0.0505 (12) | |
C4 | 0.8678 (5) | 0.7375 (3) | 1.2210 (7) | 0.0586 (15) | |
H4 | 0.8568 | 0.7048 | 1.2905 | 0.070* | |
C5 | 0.8026 (5) | 0.7683 (4) | 1.1489 (8) | 0.0528 (16) | |
N4 | 0.7125 (5) | 0.7478 (4) | 1.1825 (7) | 0.0661 (18) | |
O2 | 0.6572 (3) | 0.7650 (4) | 1.1014 (9) | 0.116 (3) | |
C6 | 0.8148 (3) | 0.8168 (3) | 1.0484 (7) | 0.0526 (13) | |
H6 | 0.7675 | 0.8357 | 1.0022 | 0.063* | |
C13 | 1.0658 (5) | 0.8922 (4) | 0.4614 (8) | 0.0605 (18) | |
H13A | 1.0869 | 0.8436 | 0.4728 | 0.073* | |
H13B | 1.0895 | 0.9115 | 0.3774 | 0.073* | |
C9 | 1.3285 (5) | 0.9371 (4) | 0.5470 (9) | 0.080 (2) | |
H9 | 1.3728 | 0.9154 | 0.4979 | 0.096* | |
C12 | 1.1960 (5) | 1.0019 (2) | 0.6943 (9) | 0.0420 (15) | |
C11 | 1.2818 (5) | 1.0216 (5) | 0.7181 (9) | 0.0652 (17) | |
H11 | 1.2950 | 1.0569 | 0.7818 | 0.078* | |
C10 | 1.3485 (7) | 0.9873 (5) | 0.6443 (13) | 0.075 (3) | |
H10 | 1.4060 | 0.9988 | 0.6616 | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.03350 (17) | 0.04451 (17) | 0.04121 (18) | −0.00398 (7) | 0.000 | 0.000 |
C7 | 0.047 (3) | 0.053 (3) | 0.064 (4) | −0.002 (2) | 0.000 (3) | 0.013 (3) |
C2 | 0.033 (3) | 0.063 (3) | 0.068 (4) | −0.002 (2) | −0.001 (3) | −0.005 (3) |
O1 | 0.080 (3) | 0.101 (4) | 0.097 (4) | −0.019 (3) | 0.029 (3) | 0.012 (3) |
O3 | 0.045 (2) | 0.068 (2) | 0.071 (3) | −0.0021 (18) | 0.0040 (18) | −0.016 (2) |
N1 | 0.047 (2) | 0.059 (3) | 0.061 (3) | −0.006 (2) | 0.009 (2) | 0.000 (3) |
C3 | 0.052 (4) | 0.069 (4) | 0.067 (4) | 0.003 (3) | 0.000 (3) | −0.001 (3) |
C14 | 0.081 (6) | 0.073 (5) | 0.086 (6) | −0.008 (5) | −0.014 (6) | −0.029 (4) |
C8 | 0.061 (4) | 0.065 (3) | 0.071 (3) | 0.008 (3) | 0.009 (3) | 0.017 (4) |
N3 | 0.037 (2) | 0.053 (2) | 0.058 (3) | −0.0038 (17) | 0.002 (2) | −0.006 (3) |
N2 | 0.048 (3) | 0.057 (3) | 0.056 (3) | −0.008 (2) | 0.008 (2) | −0.004 (2) |
C1 | 0.042 (3) | 0.053 (3) | 0.057 (3) | −0.010 (2) | 0.007 (2) | −0.009 (3) |
C4 | 0.061 (4) | 0.058 (3) | 0.057 (4) | −0.009 (3) | 0.005 (3) | −0.002 (3) |
C5 | 0.042 (3) | 0.054 (3) | 0.062 (4) | −0.004 (2) | 0.013 (3) | −0.012 (3) |
N4 | 0.047 (4) | 0.070 (4) | 0.081 (5) | −0.011 (2) | 0.020 (3) | 0.012 (3) |
O2 | 0.040 (3) | 0.148 (5) | 0.159 (6) | −0.005 (3) | 0.012 (4) | 0.066 (5) |
C6 | 0.035 (2) | 0.056 (3) | 0.067 (4) | −0.006 (2) | 0.007 (2) | −0.004 (3) |
C13 | 0.075 (5) | 0.044 (3) | 0.062 (4) | −0.001 (3) | 0.009 (4) | −0.009 (3) |
C9 | 0.061 (4) | 0.082 (5) | 0.096 (6) | 0.020 (4) | 0.023 (4) | 0.036 (5) |
C12 | 0.039 (4) | 0.046 (3) | 0.041 (4) | −0.0032 (18) | 0.000 (3) | 0.0117 (19) |
C11 | 0.043 (4) | 0.081 (4) | 0.071 (5) | −0.008 (4) | 0.000 (3) | 0.012 (4) |
C10 | 0.040 (4) | 0.103 (6) | 0.082 (7) | −0.005 (4) | 0.002 (4) | 0.032 (5) |
Hg1—N3i | 2.084 (4) | C8—C9 | 1.394 (11) |
Hg1—N3 | 2.084 (4) | C8—H8 | 0.9300 |
Hg1—O3 | 2.656 (5) | N3—N2 | 1.304 (6) |
Hg1—O3i | 2.656 (5) | N3—C12i | 1.400 (9) |
C7—C12 | 1.374 (9) | C1—C6 | 1.407 (6) |
C7—O3 | 1.378 (7) | C4—C5 | 1.359 (11) |
C7—C8 | 1.406 (9) | C4—H4 | 0.9300 |
C2—C3 | 1.359 (9) | C5—C6 | 1.351 (10) |
C2—C1 | 1.409 (8) | C5—N4 | 1.481 (10) |
C2—H2 | 0.9300 | N4—O2 | 1.211 (10) |
O1—N4 | 1.182 (9) | C6—H6 | 0.9300 |
O3—C13 | 1.425 (8) | C13—H13A | 0.9700 |
N1—N2 | 1.275 (6) | C13—H13B | 0.9700 |
N1—C1 | 1.400 (7) | C9—C10 | 1.372 (14) |
C3—C4 | 1.414 (9) | C9—H9 | 0.9300 |
C3—H3 | 0.9300 | C12—C11 | 1.396 (11) |
C14—C13 | 1.500 (13) | C12—N3i | 1.400 (9) |
C14—H14A | 0.9600 | C11—C10 | 1.412 (15) |
C14—H14B | 0.9600 | C11—H11 | 0.9300 |
C14—H14C | 0.9600 | C10—H10 | 0.9300 |
N3i—Hg1—N3 | 179.4 (4) | N1—C1—C2 | 118.1 (5) |
N3i—Hg1—O3 | 68.12 (18) | C6—C1—C2 | 116.1 (6) |
N3—Hg1—O3 | 111.46 (18) | C5—C4—C3 | 117.2 (6) |
N3i—Hg1—O3i | 111.46 (18) | C5—C4—H4 | 121.4 |
N3—Hg1—O3i | 68.12 (18) | C3—C4—H4 | 121.4 |
O3—Hg1—O3i | 88.9 (2) | C6—C5—C4 | 123.9 (6) |
C12—C7—O3 | 117.6 (6) | C6—C5—N4 | 117.8 (7) |
C12—C7—C8 | 121.5 (6) | C4—C5—N4 | 118.2 (7) |
O3—C7—C8 | 121.0 (6) | O1—N4—O2 | 124.3 (7) |
C3—C2—C1 | 122.6 (6) | O1—N4—C5 | 118.7 (7) |
C3—C2—H2 | 118.7 | O2—N4—C5 | 116.8 (6) |
C1—C2—H2 | 118.7 | C5—C6—C1 | 120.3 (6) |
C7—O3—C13 | 120.9 (5) | C5—C6—H6 | 119.8 |
C7—O3—Hg1 | 107.5 (4) | C1—C6—H6 | 119.8 |
C13—O3—Hg1 | 131.5 (4) | O3—C13—C14 | 107.6 (5) |
N2—N1—C1 | 112.7 (4) | O3—C13—H13A | 110.2 |
C2—C3—C4 | 119.8 (6) | C14—C13—H13A | 110.2 |
C2—C3—H3 | 120.1 | O3—C13—H13B | 110.2 |
C4—C3—H3 | 120.1 | C14—C13—H13B | 110.2 |
C13—C14—H14A | 109.5 | H13A—C13—H13B | 108.5 |
C13—C14—H14B | 109.5 | C10—C9—C8 | 121.2 (8) |
H14A—C14—H14B | 109.5 | C10—C9—H9 | 119.4 |
C13—C14—H14C | 109.5 | C8—C9—H9 | 119.4 |
H14A—C14—H14C | 109.5 | C7—C12—C11 | 119.8 (8) |
H14B—C14—H14C | 109.5 | C7—C12—N3i | 119.3 (6) |
C9—C8—C7 | 118.2 (7) | C11—C12—N3i | 120.9 (7) |
C9—C8—H8 | 120.9 | C12—C11—C10 | 119.2 (9) |
C7—C8—H8 | 120.9 | C12—C11—H11 | 120.4 |
N2—N3—C12i | 118.9 (5) | C10—C11—H11 | 120.4 |
N2—N3—Hg1 | 115.1 (4) | C9—C10—C11 | 120.1 (9) |
C12i—N3—Hg1 | 125.8 (4) | C9—C10—H10 | 120.0 |
N1—N2—N3 | 113.4 (4) | C11—C10—H10 | 120.0 |
N1—C1—C6 | 125.8 (5) | ||
C12—C7—O3—C13 | 170.6 (6) | C3—C2—C1—C6 | −2.4 (9) |
C8—C7—O3—C13 | −9.5 (8) | C2—C3—C4—C5 | 0.8 (10) |
C12—C7—O3—Hg1 | −8.0 (6) | C3—C4—C5—C6 | −1.0 (11) |
C8—C7—O3—Hg1 | 172.0 (4) | C3—C4—C5—N4 | 179.2 (6) |
N3i—Hg1—O3—C7 | 10.0 (3) | C6—C5—N4—O1 | −171.7 (7) |
N3—Hg1—O3—C7 | −170.4 (3) | C4—C5—N4—O1 | 8.0 (10) |
O3i—Hg1—O3—C7 | 123.7 (4) | C6—C5—N4—O2 | 13.8 (11) |
N3i—Hg1—O3—C13 | −168.4 (6) | C4—C5—N4—O2 | −166.5 (7) |
N3—Hg1—O3—C13 | 11.3 (6) | C4—C5—C6—C1 | −0.5 (10) |
O3i—Hg1—O3—C13 | −54.6 (5) | N4—C5—C6—C1 | 179.2 (6) |
C1—C2—C3—C4 | 0.9 (9) | N1—C1—C6—C5 | −176.8 (6) |
C12—C7—C8—C9 | −0.2 (9) | C2—C1—C6—C5 | 2.2 (8) |
O3—C7—C8—C9 | 179.8 (5) | C7—O3—C13—C14 | −172.6 (6) |
O3—Hg1—N3—N2 | 94.9 (4) | Hg1—O3—C13—C14 | 5.6 (8) |
O3i—Hg1—N3—N2 | 174.5 (4) | C7—C8—C9—C10 | −0.1 (10) |
O3—Hg1—N3—C12i | −91.2 (5) | O3—C7—C12—C11 | −178.5 (6) |
O3i—Hg1—N3—C12i | −11.6 (5) | C8—C7—C12—C11 | 1.5 (9) |
C1—N1—N2—N3 | 175.7 (4) | O3—C7—C12—N3i | −0.1 (8) |
C12i—N3—N2—N1 | −177.0 (5) | C8—C7—C12—N3i | 179.9 (6) |
Hg1—N3—N2—N1 | −2.6 (6) | C7—C12—C11—C10 | −2.5 (11) |
N2—N1—C1—C6 | −5.5 (7) | N3i—C12—C11—C10 | 179.1 (7) |
N2—N1—C1—C2 | 175.6 (5) | C8—C9—C10—C11 | −1.0 (12) |
C3—C2—C1—N1 | 176.6 (5) | C12—C11—C10—C9 | 2.3 (13) |
Symmetry code: (i) −x+2, −y+2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1ii | 0.93 | 2.52 | 3.446 (9) | 177 |
C13—H13A···Cg1iii | 0.97 | 2.86 | 3.764 (8) | 155 |
Symmetry codes: (ii) x+1/2, −y+3/2, z−1; (iii) −x+2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Hg(C14H13N4O3)2] |
Mr | 771.1 |
Crystal system, space group | Orthorhombic, Aba2 |
Temperature (K) | 296 |
a, b, c (Å) | 15.4637 (3), 18.6594 (4), 9.8008 (2) |
V (Å3) | 2827.96 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.50 |
Crystal size (mm) | 0.50 × 0.45 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Integration (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.129, 0.280 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 51881, 3358, 2629 |
Rint | 0.122 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.110, 1.15 |
No. of reflections | 3358 |
No. of parameters | 196 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.28, −2.52 |
Absolute structure | Flack (1983), 1575 Friedel pairs |
Absolute structure parameter | −0.08 (2) |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.93 | 2.52 | 3.446 (9) | 177 |
C13—H13A···Cg1ii | 0.97 | 2.86 | 3.764 (8) | 155 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1; (ii) −x+2, −y+3/2, z+1/2. |
References
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Melardi, M. R., Roohi, Z., Heidari, N. & Rofouei, M. K. (2010). Acta Cryst. E66, m975. Web of Science CSD CrossRef IUCr Journals Google Scholar
Melardi, M. R., Rofouei, M. K. & Massomi, J. (2007). Anal. Sci. 23, x67–x68. CAS Google Scholar
Melardi, M. R., Salemi, Y., Razi Kazemi, S. & Rofouei, M. K. (2009). Acta Cryst. E65, m302. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rofouei, M. K., Hematyar, M., Ghoulipour, V. & Attar Gharamaleki, J. (2009). Inorg. Chim. Acta. 362, 3777–3784. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The study of transition-metal complexes containing 1,3-diaryltriazene ligands has greatly increased in the past few years because of the versatility of their coordination forms, yielding a variety of coordination compounds with large structural diversity. The crystal structures of a few complexes related to the title compound have been reported recently from our laboratory (Melardi et al., 2007, 2009, 2010; Rofouei et al., 2009).
In the title complex (Fig. 1), two [1-(2-ethoxyphenyl)3-(4-nitrophenyl)triazenido] ligands are coordinated to the central atom Hg(II), each through two N atoms [Hg1—N1 = 2.7873 (1) Å and Hg1—N3 = 2.0836 (1) Å] and one O atom [Hg1—O1 = 2.6562 (1) Å]. The Hg1—N1 is significantly longer than the Hg1—N3 bond. In the lattice of the title compound, the monomeric Hg(C14H13N4O3)2 moieties are linked into chains through non-classical C8—H8···O1 hydrogen bonds, as well as C—H···π stacking interactions. Moreover, the mono-nuclear complexe molceules are connected to form two parallel chains by distinct intermolecular non-classical C—H···O hydrogen bonds. Consequently, 1-D chains are connected with one another by C—H···π stacking interactions, resulting in a 2-D architecture. These C—H···π edge-to-face interactions are present between CH group of ethoxy with aromatic rings with H···π distance of 2.86 Å for C13—H12A···Cg1 (2 - x,3/2 - y, z-1/2) [Cg1= C1—C6 (Tab. 1, Figs. 2 and 3). Also, the sum of the weak non-covalent interactions seems to play an important role in the crystal packing and the formation of a formed framework. The unit cell packing diagram of the title compound is shown in Fig. 4.