metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-(2-eth­­oxy­phen­yl)-3-(4-nitro­phen­yl)triazenido]mercury(II)

aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, bYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Universita di Messina 98166 Messina, Italy
*Correspondence e-mail: rofouei_mk@yahoo.com

(Received 27 July 2010; accepted 4 August 2010; online 11 August 2010)

In the title compound, [Hg(C14H13N4O3)2], the central Hg atom (site symmetry 2) is six-coordinated by two tridentate 1-(2-eth­oxy­phen­yl)-3-(4-nitro­phen­yl)triazenide ligands through two N and one O atoms. The mononuclear complex mol­ecules are connected into two parallel chains by inter­molecular C—H⋯O hydrogen-bonding inter­actions. These chains are connected to each other by face-to-edge C—H⋯π inter­actions between the CH of the ethoxy groups and the aromatic rings, resulting in a two-dimensional architecture in the ac plane.

Related literature

For related structures, see: Melardi et al. (2007[Melardi, M. R., Rofouei, M. K. & Massomi, J. (2007). Anal. Sci. 23, x67-x68.], 2009[Melardi, M. R., Salemi, Y., Razi Kazemi, S. & Rofouei, M. K. (2009). Acta Cryst. E65, m302.]); Rofouei et al. (2009[Rofouei, M. K., Hematyar, M., Ghoulipour, V. & Attar Gharamaleki, J. (2009). Inorg. Chim. Acta. 362, 3777-3784.]). For a similar complex with the same ligand, see: Melardi et al. (2010[Melardi, M. R., Roohi, Z., Heidari, N. & Rofouei, M. K. (2010). Acta Cryst. E66, m975.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C14H13N4O3)2]

  • Mr = 771.1

  • Orthorhombic, A b a 2

  • a = 15.4637 (3) Å

  • b = 18.6594 (4) Å

  • c = 9.8008 (2) Å

  • V = 2827.96 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.50 mm−1

  • T = 296 K

  • 0.50 × 0.45 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (SADABS; Bruker, 2005[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.129, Tmax = 0.280

  • 51881 measured reflections

  • 3358 independent reflections

  • 2629 reflections with I > 2σ(I)

  • Rint = 0.122

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.15

  • 3358 reflections

  • 196 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 2.28 e Å−3

  • Δρmin = −2.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1575 Friedel pairs

  • Flack parameter: −0.08 (2)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.52 3.446 (9) 177
C13—H13ACg1ii 0.97 2.86 3.764 (8) 155
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-1]; (ii) [-x+2, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2005). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The study of transition-metal complexes containing 1,3-diaryltriazene ligands has greatly increased in the past few years because of the versatility of their coordination forms, yielding a variety of coordination compounds with large structural diversity. The crystal structures of a few complexes related to the title compound have been reported recently from our laboratory (Melardi et al., 2007, 2009, 2010; Rofouei et al., 2009).

In the title complex (Fig. 1), two [1-(2-ethoxyphenyl)3-(4-nitrophenyl)triazenido] ligands are coordinated to the central atom Hg(II), each through two N atoms [Hg1—N1 = 2.7873 (1) Å and Hg1—N3 = 2.0836 (1) Å] and one O atom [Hg1—O1 = 2.6562 (1) Å]. The Hg1—N1 is significantly longer than the Hg1—N3 bond. In the lattice of the title compound, the monomeric Hg(C14H13N4O3)2 moieties are linked into chains through non-classical C8—H8···O1 hydrogen bonds, as well as C—H···π stacking interactions. Moreover, the mono-nuclear complexe molceules are connected to form two parallel chains by distinct intermolecular non-classical C—H···O hydrogen bonds. Consequently, 1-D chains are connected with one another by C—H···π stacking interactions, resulting in a 2-D architecture. These C—H···π edge-to-face interactions are present between CH group of ethoxy with aromatic rings with H···π distance of 2.86 Å for C13—H12A···Cg1 (2 - x,3/2 - y, z-1/2) [Cg1= C1—C6 (Tab. 1, Figs. 2 and 3). Also, the sum of the weak non-covalent interactions seems to play an important role in the crystal packing and the formation of a formed framework. The unit cell packing diagram of the title compound is shown in Fig. 4.

Related literature top

For related structures, see: Melardi et al. (2007, 2009); Rofouei et al. (2009). For a similar complex with the same ligand, see: Melardi et al. (2010).

Experimental top

The title complex was prepared by dissolving [1-(2-ethoxyphenyl)3- (4-nitrophenyl)]triazene (0.58 g, 2 mmol) in 20 ml anhydrous methanol. A solution of mercury acetate (0.32 g, 1 mmol) in 20 ml anhydrous methanol was added to the ligand solution. After 1 h, a red-orange solid was readily precipitated out. After two weeks beautiful red-orange and air-stable crystals of the title complex were obtained by slow evaporation of the solvent.

Refinement top

An absolute structure was established using Flack (1983) method. The H-atoms were placed in calculated positions with C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene type H-atoms, respectively, and included in the refinement in riding mode with isotropic displacement parameters Uiso(H) = 1.5 and 1.2 × Ueq(C) for the CH3 and other groups, respectively. The final difference map showed electron density within 1.0 Å from Hg1 atom and may be attributed to absorption effects.

Structure description top

The study of transition-metal complexes containing 1,3-diaryltriazene ligands has greatly increased in the past few years because of the versatility of their coordination forms, yielding a variety of coordination compounds with large structural diversity. The crystal structures of a few complexes related to the title compound have been reported recently from our laboratory (Melardi et al., 2007, 2009, 2010; Rofouei et al., 2009).

In the title complex (Fig. 1), two [1-(2-ethoxyphenyl)3-(4-nitrophenyl)triazenido] ligands are coordinated to the central atom Hg(II), each through two N atoms [Hg1—N1 = 2.7873 (1) Å and Hg1—N3 = 2.0836 (1) Å] and one O atom [Hg1—O1 = 2.6562 (1) Å]. The Hg1—N1 is significantly longer than the Hg1—N3 bond. In the lattice of the title compound, the monomeric Hg(C14H13N4O3)2 moieties are linked into chains through non-classical C8—H8···O1 hydrogen bonds, as well as C—H···π stacking interactions. Moreover, the mono-nuclear complexe molceules are connected to form two parallel chains by distinct intermolecular non-classical C—H···O hydrogen bonds. Consequently, 1-D chains are connected with one another by C—H···π stacking interactions, resulting in a 2-D architecture. These C—H···π edge-to-face interactions are present between CH group of ethoxy with aromatic rings with H···π distance of 2.86 Å for C13—H12A···Cg1 (2 - x,3/2 - y, z-1/2) [Cg1= C1—C6 (Tab. 1, Figs. 2 and 3). Also, the sum of the weak non-covalent interactions seems to play an important role in the crystal packing and the formation of a formed framework. The unit cell packing diagram of the title compound is shown in Fig. 4.

For related structures, see: Melardi et al. (2007, 2009); Rofouei et al. (2009). For a similar complex with the same ligand, see: Melardi et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. C8—H8···O1 Non-classical hydrogen bonds between Hg(C14H13N4O3)2 moieties.
[Figure 3] Fig. 3. C—H···π stacking interactions between two Hg(C14H13N4O3)2 moieties.
[Figure 4] Fig. 4. The unit cell packing diagram of the title compound along the c axis. Hydrogen atoms not involving in the hydrogen bonds are omitted for clarity.
Bis[1-(2-ethoxyphenyl)-3-(4-nitrophenyl)triazenido]mercury(II) top
Crystal data top
[Hg(C14H13N4O3)2]F(000) = 1512
Mr = 771.1Dx = 1.811 Mg m3
Dm = 1.8 Mg m3
Dm measured by not measured
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 9751 reflections
a = 15.4637 (3) Åθ = 2.6–27.8°
b = 18.6594 (4) ŵ = 5.50 mm1
c = 9.8008 (2) ÅT = 296 K
V = 2827.96 (10) Å3Irregular, red
Z = 40.50 × 0.45 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3358 independent reflections
Radiation source: fine-focus sealed tube2629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.122
φ and ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: integration
(SADABS; Bruker, 2005)
h = 2020
Tmin = 0.129, Tmax = 0.280k = 2424
51881 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0655P)2 + 3.2492P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.15Δρmax = 2.28 e Å3
3358 reflectionsΔρmin = 2.52 e Å3
196 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00070 (17)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1575 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.08 (2)
Crystal data top
[Hg(C14H13N4O3)2]V = 2827.96 (10) Å3
Mr = 771.1Z = 4
Orthorhombic, Aba2Mo Kα radiation
a = 15.4637 (3) ŵ = 5.50 mm1
b = 18.6594 (4) ÅT = 296 K
c = 9.8008 (2) Å0.50 × 0.45 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3358 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2005)
2629 reflections with I > 2σ(I)
Tmin = 0.129, Tmax = 0.280Rint = 0.122
51881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.110Δρmax = 2.28 e Å3
S = 1.15Δρmin = 2.52 e Å3
3358 reflectionsAbsolute structure: Flack (1983), 1575 Friedel pairs
196 parametersAbsolute structure parameter: 0.08 (2)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg11.00001.00000.7679 (3)0.03974 (13)
C71.1773 (4)0.9517 (3)0.5961 (6)0.0546 (14)
C20.9670 (4)0.8059 (3)1.0850 (7)0.0545 (14)
H21.02360.81781.06240.065*
O10.7000 (3)0.7116 (3)1.2795 (6)0.0925 (17)
O31.0915 (3)0.9353 (2)0.5744 (5)0.0615 (11)
N10.9199 (3)0.8912 (2)0.9162 (5)0.0554 (11)
C30.9533 (5)0.7573 (3)1.1860 (7)0.0627 (16)
H30.99990.73711.23190.075*
C140.9689 (8)0.8927 (5)0.4560 (11)0.080 (3)
H14A0.94970.86390.38060.120*
H14B0.94880.94100.44440.120*
H14C0.94620.87340.53940.120*
C81.2429 (5)0.9181 (3)0.5204 (8)0.0659 (15)
H81.22970.88410.45430.079*
N30.8716 (3)0.9660 (2)0.7669 (6)0.0492 (9)
N20.8539 (3)0.9140 (3)0.8513 (5)0.0536 (11)
C10.8989 (3)0.8390 (3)1.0133 (6)0.0505 (12)
C40.8678 (5)0.7375 (3)1.2210 (7)0.0586 (15)
H40.85680.70481.29050.070*
C50.8026 (5)0.7683 (4)1.1489 (8)0.0528 (16)
N40.7125 (5)0.7478 (4)1.1825 (7)0.0661 (18)
O20.6572 (3)0.7650 (4)1.1014 (9)0.116 (3)
C60.8148 (3)0.8168 (3)1.0484 (7)0.0526 (13)
H60.76750.83571.00220.063*
C131.0658 (5)0.8922 (4)0.4614 (8)0.0605 (18)
H13A1.08690.84360.47280.073*
H13B1.08950.91150.37740.073*
C91.3285 (5)0.9371 (4)0.5470 (9)0.080 (2)
H91.37280.91540.49790.096*
C121.1960 (5)1.0019 (2)0.6943 (9)0.0420 (15)
C111.2818 (5)1.0216 (5)0.7181 (9)0.0652 (17)
H111.29501.05690.78180.078*
C101.3485 (7)0.9873 (5)0.6443 (13)0.075 (3)
H101.40600.99880.66160.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03350 (17)0.04451 (17)0.04121 (18)0.00398 (7)0.0000.000
C70.047 (3)0.053 (3)0.064 (4)0.002 (2)0.000 (3)0.013 (3)
C20.033 (3)0.063 (3)0.068 (4)0.002 (2)0.001 (3)0.005 (3)
O10.080 (3)0.101 (4)0.097 (4)0.019 (3)0.029 (3)0.012 (3)
O30.045 (2)0.068 (2)0.071 (3)0.0021 (18)0.0040 (18)0.016 (2)
N10.047 (2)0.059 (3)0.061 (3)0.006 (2)0.009 (2)0.000 (3)
C30.052 (4)0.069 (4)0.067 (4)0.003 (3)0.000 (3)0.001 (3)
C140.081 (6)0.073 (5)0.086 (6)0.008 (5)0.014 (6)0.029 (4)
C80.061 (4)0.065 (3)0.071 (3)0.008 (3)0.009 (3)0.017 (4)
N30.037 (2)0.053 (2)0.058 (3)0.0038 (17)0.002 (2)0.006 (3)
N20.048 (3)0.057 (3)0.056 (3)0.008 (2)0.008 (2)0.004 (2)
C10.042 (3)0.053 (3)0.057 (3)0.010 (2)0.007 (2)0.009 (3)
C40.061 (4)0.058 (3)0.057 (4)0.009 (3)0.005 (3)0.002 (3)
C50.042 (3)0.054 (3)0.062 (4)0.004 (2)0.013 (3)0.012 (3)
N40.047 (4)0.070 (4)0.081 (5)0.011 (2)0.020 (3)0.012 (3)
O20.040 (3)0.148 (5)0.159 (6)0.005 (3)0.012 (4)0.066 (5)
C60.035 (2)0.056 (3)0.067 (4)0.006 (2)0.007 (2)0.004 (3)
C130.075 (5)0.044 (3)0.062 (4)0.001 (3)0.009 (4)0.009 (3)
C90.061 (4)0.082 (5)0.096 (6)0.020 (4)0.023 (4)0.036 (5)
C120.039 (4)0.046 (3)0.041 (4)0.0032 (18)0.000 (3)0.0117 (19)
C110.043 (4)0.081 (4)0.071 (5)0.008 (4)0.000 (3)0.012 (4)
C100.040 (4)0.103 (6)0.082 (7)0.005 (4)0.002 (4)0.032 (5)
Geometric parameters (Å, º) top
Hg1—N3i2.084 (4)C8—C91.394 (11)
Hg1—N32.084 (4)C8—H80.9300
Hg1—O32.656 (5)N3—N21.304 (6)
Hg1—O3i2.656 (5)N3—C12i1.400 (9)
C7—C121.374 (9)C1—C61.407 (6)
C7—O31.378 (7)C4—C51.359 (11)
C7—C81.406 (9)C4—H40.9300
C2—C31.359 (9)C5—C61.351 (10)
C2—C11.409 (8)C5—N41.481 (10)
C2—H20.9300N4—O21.211 (10)
O1—N41.182 (9)C6—H60.9300
O3—C131.425 (8)C13—H13A0.9700
N1—N21.275 (6)C13—H13B0.9700
N1—C11.400 (7)C9—C101.372 (14)
C3—C41.414 (9)C9—H90.9300
C3—H30.9300C12—C111.396 (11)
C14—C131.500 (13)C12—N3i1.400 (9)
C14—H14A0.9600C11—C101.412 (15)
C14—H14B0.9600C11—H110.9300
C14—H14C0.9600C10—H100.9300
N3i—Hg1—N3179.4 (4)N1—C1—C2118.1 (5)
N3i—Hg1—O368.12 (18)C6—C1—C2116.1 (6)
N3—Hg1—O3111.46 (18)C5—C4—C3117.2 (6)
N3i—Hg1—O3i111.46 (18)C5—C4—H4121.4
N3—Hg1—O3i68.12 (18)C3—C4—H4121.4
O3—Hg1—O3i88.9 (2)C6—C5—C4123.9 (6)
C12—C7—O3117.6 (6)C6—C5—N4117.8 (7)
C12—C7—C8121.5 (6)C4—C5—N4118.2 (7)
O3—C7—C8121.0 (6)O1—N4—O2124.3 (7)
C3—C2—C1122.6 (6)O1—N4—C5118.7 (7)
C3—C2—H2118.7O2—N4—C5116.8 (6)
C1—C2—H2118.7C5—C6—C1120.3 (6)
C7—O3—C13120.9 (5)C5—C6—H6119.8
C7—O3—Hg1107.5 (4)C1—C6—H6119.8
C13—O3—Hg1131.5 (4)O3—C13—C14107.6 (5)
N2—N1—C1112.7 (4)O3—C13—H13A110.2
C2—C3—C4119.8 (6)C14—C13—H13A110.2
C2—C3—H3120.1O3—C13—H13B110.2
C4—C3—H3120.1C14—C13—H13B110.2
C13—C14—H14A109.5H13A—C13—H13B108.5
C13—C14—H14B109.5C10—C9—C8121.2 (8)
H14A—C14—H14B109.5C10—C9—H9119.4
C13—C14—H14C109.5C8—C9—H9119.4
H14A—C14—H14C109.5C7—C12—C11119.8 (8)
H14B—C14—H14C109.5C7—C12—N3i119.3 (6)
C9—C8—C7118.2 (7)C11—C12—N3i120.9 (7)
C9—C8—H8120.9C12—C11—C10119.2 (9)
C7—C8—H8120.9C12—C11—H11120.4
N2—N3—C12i118.9 (5)C10—C11—H11120.4
N2—N3—Hg1115.1 (4)C9—C10—C11120.1 (9)
C12i—N3—Hg1125.8 (4)C9—C10—H10120.0
N1—N2—N3113.4 (4)C11—C10—H10120.0
N1—C1—C6125.8 (5)
C12—C7—O3—C13170.6 (6)C3—C2—C1—C62.4 (9)
C8—C7—O3—C139.5 (8)C2—C3—C4—C50.8 (10)
C12—C7—O3—Hg18.0 (6)C3—C4—C5—C61.0 (11)
C8—C7—O3—Hg1172.0 (4)C3—C4—C5—N4179.2 (6)
N3i—Hg1—O3—C710.0 (3)C6—C5—N4—O1171.7 (7)
N3—Hg1—O3—C7170.4 (3)C4—C5—N4—O18.0 (10)
O3i—Hg1—O3—C7123.7 (4)C6—C5—N4—O213.8 (11)
N3i—Hg1—O3—C13168.4 (6)C4—C5—N4—O2166.5 (7)
N3—Hg1—O3—C1311.3 (6)C4—C5—C6—C10.5 (10)
O3i—Hg1—O3—C1354.6 (5)N4—C5—C6—C1179.2 (6)
C1—C2—C3—C40.9 (9)N1—C1—C6—C5176.8 (6)
C12—C7—C8—C90.2 (9)C2—C1—C6—C52.2 (8)
O3—C7—C8—C9179.8 (5)C7—O3—C13—C14172.6 (6)
O3—Hg1—N3—N294.9 (4)Hg1—O3—C13—C145.6 (8)
O3i—Hg1—N3—N2174.5 (4)C7—C8—C9—C100.1 (10)
O3—Hg1—N3—C12i91.2 (5)O3—C7—C12—C11178.5 (6)
O3i—Hg1—N3—C12i11.6 (5)C8—C7—C12—C111.5 (9)
C1—N1—N2—N3175.7 (4)O3—C7—C12—N3i0.1 (8)
C12i—N3—N2—N1177.0 (5)C8—C7—C12—N3i179.9 (6)
Hg1—N3—N2—N12.6 (6)C7—C12—C11—C102.5 (11)
N2—N1—C1—C65.5 (7)N3i—C12—C11—C10179.1 (7)
N2—N1—C1—C2175.6 (5)C8—C9—C10—C111.0 (12)
C3—C2—C1—N1176.6 (5)C12—C11—C10—C92.3 (13)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1ii0.932.523.446 (9)177
C13—H13A···Cg1iii0.972.863.764 (8)155
Symmetry codes: (ii) x+1/2, y+3/2, z1; (iii) x+2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Hg(C14H13N4O3)2]
Mr771.1
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)296
a, b, c (Å)15.4637 (3), 18.6594 (4), 9.8008 (2)
V3)2827.96 (10)
Z4
Radiation typeMo Kα
µ (mm1)5.50
Crystal size (mm)0.50 × 0.45 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionIntegration
(SADABS; Bruker, 2005)
Tmin, Tmax0.129, 0.280
No. of measured, independent and
observed [I > 2σ(I)] reflections
51881, 3358, 2629
Rint0.122
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.15
No. of reflections3358
No. of parameters196
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.28, 2.52
Absolute structureFlack (1983), 1575 Friedel pairs
Absolute structure parameter0.08 (2)

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.523.446 (9)177
C13—H13A···Cg1ii0.972.863.764 (8)155
Symmetry codes: (i) x+1/2, y+3/2, z1; (ii) x+2, y+3/2, z+1/2.
 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMelardi, M. R., Roohi, Z., Heidari, N. & Rofouei, M. K. (2010). Acta Cryst. E66, m975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMelardi, M. R., Rofouei, M. K. & Massomi, J. (2007). Anal. Sci. 23, x67–x68.  CAS Google Scholar
First citationMelardi, M. R., Salemi, Y., Razi Kazemi, S. & Rofouei, M. K. (2009). Acta Cryst. E65, m302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRofouei, M. K., Hematyar, M., Ghoulipour, V. & Attar Gharamaleki, J. (2009). Inorg. Chim. Acta. 362, 3777–3784.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds