organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­amino-4-oxo-3,4-di­hydropyrim­idin-1-ium chloride dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 1 August 2010; accepted 5 August 2010; online 11 August 2010)

In the crystal structure of the title compound, C4H7N4O+·Cl·2H2O, adjacent cations are connected to one another through N—H⋯O hydrogen bonds, forming infinite chains along the b axis. These chains are further hydrogen bonded to the chloride anions and water mol­ecules, resulting in a three-dimensional network. The pyrimidine rings of adjacent mol­ecules are arranged in an anti­parallel manner above each other with centroid–centroid distances of 3.435 (1) Å, indicative of ππ inter­actions.

Related literature

For related structures, see: Wijaya et al. (2004[Wijaya, K., Moers, O., Blaschette, A. & Jones, P. G. (2004). Z. Naturforsch. Teil B, 59, 17-26.]); Muthiah et al. (2004[Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. E60, o2038-o2040.]).

[Scheme 1]

Experimental

Crystal data
  • C4H7N4O+·Cl·2H2O

  • Mr = 198.62

  • Monoclinic, C 2/c

  • a = 20.4162 (4) Å

  • b = 6.6030 (1) Å

  • c = 12.8876 (2) Å

  • β = 107.903 (1)°

  • V = 1653.23 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 100 K

  • 0.35 × 0.19 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.862, Tmax = 0.966

  • 4405 measured reflections

  • 1488 independent reflections

  • 1352 reflections with (I) > 2.0σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.066

  • S = 1.05

  • 1488 reflections

  • 139 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H8⋯O3 0.82 (2) 1.97 (2) 2.7503 (17) 161 (2)
O2—H9⋯Cl1i 0.81 (2) 2.51 (2) 3.2802 (11) 159 (2)
O3—H10⋯Cl1ii 0.83 (2) 2.39 (2) 3.2158 (12) 173 (2)
O3—H11⋯Cl1iii 0.84 (2) 2.35 (2) 3.1831 (13) 173 (2)
N4—H5⋯Cl1iv 0.85 (1) 2.45 (1) 3.2805 (13) 166 (2)
N4—H6⋯O1i 0.87 (1) 2.11 (2) 2.8310 (16) 141 (2)
N3—H4⋯O1i 0.87 (1) 1.88 (2) 2.6806 (15) 151 (2)
N2—H3⋯O2 0.88 (1) 2.05 (1) 2.9151 (17) 167 (2)
N2—H2⋯Cl1 0.87 (1) 2.38 (2) 3.2112 (13) 161 (2)
N1—H1⋯O2v 0.85 (1) 1.93 (1) 2.7727 (16) 174 (2)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is a chloride salt of 2,4-diamino-6-hydroxypyrimidine, cocrystallized with two molecules of water (Fig. 1). The structures of dimesylamide salt (Wijaya et al., 2004) and sulfate salt (Muthiah et al., 2004) of this cation have been reported previously. In the crystal structure of the title compound, adjacent diaminopyridinium cations are linked together via N—H···O hydrogen bonding into infinite chains along the b-axis. The pyrimidine rings of the adjacent molecules (related by symmetry: –x+3/2, -y + 1/2, -z + 1) are arranged in an antiparallel manner above each other with centroid-centroid distance of 3.435 (1) Å, indicative of a π-π interactions. The cation chains are hydrogen bonded to chloride anions and water molecules to form a three-dimensional hydrogen bonded network, involving O—H···O, O—H···Cl, N—H···Cl and N—H···O type hydrogen bonds (Tab. 1 & Fig. 2).

Related literature top

For related structures, see: Wijaya et al. (2004); Muthiah et al. (2004).

Experimental top

The pale yellow crystals of the title compound were obtained by slow evaporation of an aqueous ethanol (50%) solution of 2,4-diamino-6-hydroxypyrimidine in the presence of a few drops of hydrochloric acid.

Refinement top

The C-bound hydrogen atom was placed in idealized location (C—H = 0.95 Å) and refined as riding on its parent carbon atom. The nitrogen- and oxygen-bound hydrogen atoms were located in a difference Fourier map and were refined with distance restraints of N—H 0.88 (2) and O—H 0.84 (2) Å. Uiso(H) were set to 1.2–1.5 × Ueq (parent atom).

Structure description top

The title compound is a chloride salt of 2,4-diamino-6-hydroxypyrimidine, cocrystallized with two molecules of water (Fig. 1). The structures of dimesylamide salt (Wijaya et al., 2004) and sulfate salt (Muthiah et al., 2004) of this cation have been reported previously. In the crystal structure of the title compound, adjacent diaminopyridinium cations are linked together via N—H···O hydrogen bonding into infinite chains along the b-axis. The pyrimidine rings of the adjacent molecules (related by symmetry: –x+3/2, -y + 1/2, -z + 1) are arranged in an antiparallel manner above each other with centroid-centroid distance of 3.435 (1) Å, indicative of a π-π interactions. The cation chains are hydrogen bonded to chloride anions and water molecules to form a three-dimensional hydrogen bonded network, involving O—H···O, O—H···Cl, N—H···Cl and N—H···O type hydrogen bonds (Tab. 1 & Fig. 2).

For related structures, see: Wijaya et al. (2004); Muthiah et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing view of the crystal structure, looking down the b-axis.
2,6-Diamino-4-oxo-3,4-dihydropyrimidin-1-ium chloride dihydrate top
Crystal data top
C4H7N4O+·Cl·2H2OF(000) = 832
Mr = 198.62Dx = 1.596 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2897 reflections
a = 20.4162 (4) Åθ = 3.3–30.5°
b = 6.6030 (1) ŵ = 0.44 mm1
c = 12.8876 (2) ÅT = 100 K
β = 107.903 (1)°Block, yellow
V = 1653.23 (5) Å30.35 × 0.19 × 0.08 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
1488 independent reflections
Radiation source: fine-focus sealed tube1352 reflections with (I) > 2.0σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.862, Tmax = 0.966k = 77
4405 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0327P)2 + 1.7645P]
where P = (Fo2 + 2Fc2)/3
1488 reflections(Δ/σ)max = 0.001
139 parametersΔρmax = 0.22 e Å3
10 restraintsΔρmin = 0.25 e Å3
Crystal data top
C4H7N4O+·Cl·2H2OV = 1653.23 (5) Å3
Mr = 198.62Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.4162 (4) ŵ = 0.44 mm1
b = 6.6030 (1) ÅT = 100 K
c = 12.8876 (2) Å0.35 × 0.19 × 0.08 mm
β = 107.903 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1488 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1352 reflections with (I) > 2.0σ(I)
Tmin = 0.862, Tmax = 0.966Rint = 0.022
4405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02410 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
1488 reflectionsΔρmin = 0.25 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.485357 (17)0.19327 (5)0.09794 (3)0.01545 (13)
O20.58753 (5)0.85326 (16)0.25118 (9)0.0160 (2)
H80.5728 (9)0.823 (3)0.3011 (14)0.024*
H90.5575 (8)0.910 (3)0.2042 (14)0.024*
O30.55365 (6)0.66656 (18)0.41849 (10)0.0223 (3)
H100.5424 (10)0.545 (2)0.4079 (16)0.033*
H110.5331 (10)0.709 (3)0.4617 (15)0.033*
O10.75583 (5)0.12955 (15)0.37901 (8)0.0148 (2)
N10.68878 (6)0.14677 (19)0.31998 (10)0.0116 (3)
H10.6566 (8)0.062 (2)0.2953 (13)0.014*
N20.61850 (6)0.4221 (2)0.25253 (10)0.0140 (3)
H20.5846 (8)0.340 (2)0.2242 (14)0.017*
H30.6124 (8)0.554 (2)0.2445 (13)0.017*
N30.73174 (6)0.47140 (18)0.35528 (10)0.0113 (3)
H40.7246 (8)0.601 (2)0.3510 (13)0.014*
N40.84541 (6)0.53639 (19)0.44953 (10)0.0145 (3)
H50.8853 (8)0.496 (3)0.4852 (13)0.017*
H60.8359 (9)0.665 (2)0.4492 (14)0.017*
C10.75285 (7)0.0589 (2)0.37417 (11)0.0118 (3)
C20.67858 (7)0.3467 (2)0.30834 (11)0.0111 (3)
C30.79694 (7)0.3985 (2)0.40909 (11)0.0113 (3)
C40.80775 (7)0.1923 (2)0.41736 (12)0.0125 (3)
H70.85250.14070.45240.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0137 (2)0.0141 (2)0.0164 (2)0.00100 (13)0.00153 (14)0.00102 (13)
O20.0125 (5)0.0165 (6)0.0180 (6)0.0001 (4)0.0033 (4)0.0016 (4)
O30.0300 (7)0.0152 (6)0.0253 (6)0.0055 (5)0.0137 (5)0.0032 (5)
O10.0153 (5)0.0082 (5)0.0191 (6)0.0004 (4)0.0027 (4)0.0006 (4)
N10.0094 (6)0.0100 (6)0.0137 (6)0.0021 (5)0.0012 (5)0.0012 (5)
N20.0106 (6)0.0100 (6)0.0192 (7)0.0012 (5)0.0016 (5)0.0003 (5)
N30.0117 (6)0.0077 (6)0.0134 (6)0.0006 (5)0.0025 (5)0.0004 (5)
N40.0114 (6)0.0099 (6)0.0190 (7)0.0000 (5)0.0003 (5)0.0007 (5)
C10.0143 (7)0.0125 (7)0.0095 (7)0.0016 (6)0.0049 (5)0.0002 (6)
C20.0128 (7)0.0119 (7)0.0097 (7)0.0009 (5)0.0050 (6)0.0007 (5)
C30.0117 (7)0.0136 (7)0.0087 (7)0.0003 (6)0.0034 (5)0.0001 (5)
C40.0107 (7)0.0127 (7)0.0128 (7)0.0016 (6)0.0014 (6)0.0005 (6)
Geometric parameters (Å, º) top
O2—H80.815 (15)N2—H30.882 (14)
O2—H90.809 (15)N3—C21.3484 (18)
O3—H100.832 (16)N3—C31.3845 (18)
O3—H110.841 (15)N3—H40.870 (14)
O1—C11.2467 (18)N4—C31.3279 (19)
N1—C21.3379 (19)N4—H50.846 (14)
N1—C11.4048 (18)N4—H60.868 (14)
N1—H10.846 (14)C1—C41.399 (2)
N2—C21.3142 (18)C3—C41.378 (2)
N2—H20.867 (14)C4—H70.9500
H8—O2—H9108.9 (19)H5—N4—H6119.3 (17)
H10—O3—H11105.1 (19)O1—C1—C4125.98 (13)
C2—N1—C1123.52 (12)O1—C1—N1117.43 (13)
C2—N1—H1122.2 (11)C4—C1—N1116.59 (13)
C1—N1—H1114.3 (11)N2—C2—N1121.48 (13)
C2—N2—H2118.8 (11)N2—C2—N3120.10 (13)
C2—N2—H3120.8 (11)N1—C2—N3118.43 (12)
H2—N2—H3120.4 (16)N4—C3—C4124.39 (13)
C2—N3—C3121.99 (12)N4—C3—N3116.34 (13)
C2—N3—H4118.6 (11)C4—C3—N3119.27 (13)
C3—N3—H4119.4 (11)C3—C4—C1120.08 (13)
C3—N4—H5118.1 (12)C3—C4—H7120.0
C3—N4—H6121.9 (12)C1—C4—H7120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H8···O30.82 (2)1.97 (2)2.7503 (17)161 (2)
O2—H9···Cl1i0.81 (2)2.51 (2)3.2802 (11)159 (2)
O3—H10···Cl1ii0.83 (2)2.39 (2)3.2158 (12)173 (2)
O3—H11···Cl1iii0.84 (2)2.35 (2)3.1831 (13)173 (2)
N4—H5···Cl1iv0.85 (1)2.45 (1)3.2805 (13)166 (2)
N4—H6···O1i0.87 (1)2.11 (2)2.8310 (16)141 (2)
N3—H4···O1i0.87 (1)1.88 (2)2.6806 (15)151 (2)
N2—H3···O20.88 (1)2.05 (1)2.9151 (17)167 (2)
N2—H2···Cl10.87 (1)2.38 (2)3.2112 (13)161 (2)
N1—H1···O2v0.85 (1)1.93 (1)2.7727 (16)174 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1/2; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC4H7N4O+·Cl·2H2O
Mr198.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)20.4162 (4), 6.6030 (1), 12.8876 (2)
β (°) 107.903 (1)
V3)1653.23 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.35 × 0.19 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.862, 0.966
No. of measured, independent and
observed [(I) > 2.0σ(I)] reflections
4405, 1488, 1352
Rint0.022
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.05
No. of reflections1488
No. of parameters139
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H8···O30.815 (15)1.967 (15)2.7503 (17)160.9 (18)
O2—H9···Cl1i0.809 (15)2.511 (16)3.2802 (11)159.3 (18)
O3—H10···Cl1ii0.832 (16)2.389 (16)3.2158 (12)172.7 (18)
O3—H11···Cl1iii0.841 (15)2.346 (16)3.1831 (13)173.4 (19)
N4—H5···Cl1iv0.846 (14)2.453 (14)3.2805 (13)166.0 (16)
N4—H6···O1i0.868 (14)2.105 (16)2.8310 (16)140.8 (15)
N3—H4···O1i0.870 (14)1.884 (15)2.6806 (15)151.4 (15)
N2—H3···O20.882 (14)2.049 (14)2.9151 (17)167.4 (16)
N2—H2···Cl10.867 (14)2.380 (15)3.2112 (13)160.7 (15)
N1—H1···O2v0.846 (14)1.929 (14)2.7727 (16)174.4 (16)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1/2; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y1, z.
 

Acknowledgements

The authors thank University of Malaya for funding this study (FRGS grant FP009/2008 C).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMuthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. E60, o2038–o2040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWijaya, K., Moers, O., Blaschette, A. & Jones, P. G. (2004). Z. Naturforsch. Teil B, 59, 17–26.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds