organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­methyl-5,5′-dipropan-2-yl-4,4′-(phenyl­methyl­ene)diphenol

aLaboratoire des Substances Naturelles & Synthèse et Dynamique Moléculaire, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco, bLaboratoire de Chimie Physique des Matériaux, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco, and cLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France
*Correspondence e-mail: mohamedazrour@yahoo.fr

(Received 9 August 2010; accepted 19 August 2010; online 25 August 2010)

In the title mol­ecule, C27H32O2, the aromatic rings are in a propeller configuration. In the crystal, mol­ecules are linked through O—H⋯O hydrogen bonds forming a two-dimensional network which develops parallel to (010). Futhermore, weak C—H⋯π inter­actions involving the two substituted rings build up a three-dimensional network.

Related literature

R-(−)-Carvone, p-mentha-6,8-dien-2-on, is the major constituent of spearmint essential oil of Menthe spicata (Gershenzon et al., 1989[Gershenzon, J., Maffei, M. & Croteau, R., (1989). Plant Phisiol. 89, 1351-11357.]) and is an important chiron for the synthesis of complex natural products (Wang et al., 2001[Wang, J., Froeyen, M., Hendrix, C., Andrei, C., Snoeck, R., Lescrinier, E., De Clereq, E. & Herdewijn, P. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 727-730.]) and anti­viral agents. We have reported an efficient method which affords direct access to p-cymene derivatives from R-(−)-carvone, see: Majidi & Fihi (2004[Majidi, L. & Fihi, R. (2004). Phys. Chem. News, 15, 83-85.]). For our inter­est in the development of strategies for the synthesis of natural product derivatives, see: Majidi et al., 2005[Majidi, L., Fihi, R., El Idrissi, M. & Kharchouf, S. (2005). Phys. Chem. News, 25, 127-129.]). For related structures, see; Guo et al. (2005[Guo, W.-S., Guo, F., Xu, H.-N., Yuan, L., Wang, Z.-H. & Tong, J. (2005). J. Mol. Struct. 733, 143-149.]); Sarma & Baruah (2004[Sarma, R. J. & Baruah, J. B. (2004). Dyes Pigm. 61, 39-47.], 2005[Sarma, R. J. & Baruah, J. B. (2005). CrystEngComm, 7, 706-710.]); Veldman et al. (1996[Veldman, N., Spek, A. L., Schlotter, J. J. H., Zwikker, J. W. & Jenneskens, L. W. (1996). Acta Cryst. C52, 174-177.]); Yang et al. (2005[Yang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907-6912.]).

[Scheme 1]

Experimental

Crystal data
  • C27H32O2

  • Mr = 388.53

  • Monoclinic, C c

  • a = 11.3775 (7) Å

  • b = 24.6369 (11) Å

  • c = 8.8687 (6) Å

  • β = 112.913 (8)°

  • V = 2289.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 180 K

  • 0.55 × 0.35 × 0.11 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.723, Tmax = 1.000

  • 10216 measured reflections

  • 2838 independent reflections

  • 1792 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.103

  • S = 0.95

  • 2838 reflections

  • 269 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C21–C26 and C31–C36 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O24—H24⋯O34i 0.84 2.05 2.871 (3) 164
O34—H34⋯O24ii 0.84 2.27 3.051 (3) 154
C23—H23⋯O34i 0.95 2.51 3.259 (3) 135
C13—H13⋯Cg3iii 0.95 2.92 3.658 (4) 135
C15—H15⋯Cg2iv 0.95 2.86 3.790 (5) 167
Symmetry codes: (i) x-1, y, z; (ii) [x+1, -y+1, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

R-(-)-Carvone, p-mentha-6,8-dien-2-on, is the major constituent of spearmint essential oil of Menthe spicata (Gershenzon et al., 1989). This monoterpene ketone is used as a fragrance component and flavouring agent. R-(-)-Carvone is also an important chiron for the synthesis of complex natural products (Wang et al., 2001) and antiviral agents. Recently, we reported an efficient method which affords direct access to p-cymene derivatives from R-(-)-carvone (Majidi & Fihi, 2004). In our continuing interest (Majidi et al., 2005) in the development of strategies for the synthesis of natural products derivatives, we report herein the synthesis of carvacrol derivatives from R-(-)-carvone.

The condensation of arylaldehydes (2a-c) to (R)-(-)-carvone (1) in acid media at reflux in toluene leads to carvacrol derivatives (3a-c), respectively. Products (3a-c) were obtained by a condensation followed by a rearrangement (Fig. 1). Since the 1H and 13C NMR studies did not provide unambiguous information on the structure of (3), a single-crystal X-ray study was carried out for the product (3a).

In the molecule of the title compound the phenyl rings are in a propeller configuration with roughly identical dihedral angles between the rings: 88.27 (8)° between the C11-C16 and C21-C26 rings, 85.79 (6) between the C21-C26 and C31-C36 rings and 82.52 (8)° between C31-C36 and C11-C16 rings (Fig. 2). Propeller like arrangement has been observed in several related compounds, e.g., CH(C6H5)3 (Veldman et al., 1996), CH(C6H5)2[C6H2(OH)2CH(C6H5)2](C6H5CHO) (Guo et al., 2005), CH(C6H5)(C6H4OH)2,0.17(H2O) (Sarma & Baruah, 2005), CH(C6H5)[C6H2(CH3)2OH]2 (Sarma & Baruah, 2004), CH(C6H5)[C6H2(OH)2Cl]2,C2H6O,H2O and CH(C6H5)[C6H2(OCH3)2Cl]2(Yang et al., 2005). The bond distances and angles in the title molecule agree with the corresponding distances and angles reported in the structures quoted above.

In the crystal, the molecules are linked through O—H···O hydrogen bonds involving the donor oxygen atom O24 and the acceptor O34 forming infinite chains. These chains are further connected through weak O—H···O hydrogen bonds involving as donor atom O34 and as acceptor O24 (Table 1) resulting in the formation of a two dimensionnal network developping parallel to the (0 1 0) plane (Fig. 3; Table 1).

Futhermore, weak C—H···π interactions involving the C13 and C15 atoms and the centroids Cg2 and Cg3 of the C21-C26 and C31-C36 rings, respectively, build up a three dimensionnal network (Table 1).

Related literature top

R-(-)-Carvone, p-mentha-6,8-dien-2-on, is the major constituent of spearmint essential oil of Menthe spicata (Gershenzon et al., 1989) and is an important chiron for the synthesis of complex natural products (Wang et al., 2001) and antiviral agents. We have reported an efficient method which affords direct access to p-cymene derivatives from R-(-)-carvone, see: Majidi & Fihi (2004). For our interest in the development of strategies for the synthesis of natural products derivatives, see: Majidi et al., 2005). For related structures, see; Guo et al. (2005); Sarma & Baruah (2004, 2005); Veldman et al. (1996); Yang et al. (2005).

Experimental top

(R)-(-) Carvone (1) is a commercial product. A mixture of carvone (3 g, 2 mmol), corresponding aromatic aldehyde (1.06 g, 10 mmol) in toluene (50 ml) and TsOH.H2O (p-toluene sulphonic acid hydrate) (0.28 g) was heated under reflux using a Dean-stark trap for 24 h. The reaction mixture was poured into cold water (100 ml), and extracted. The organic phase was washed with water (4 x 30 ml), dried (Na2SO4), and evaporated in vacuo. The crude products were purified by column chromatography on silica gel. Eluant: hexane/dichloromethane (60/40). The compound was finally recrystallized from ethanol.

Refinement top

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 1.0Å (methine), 0.98 Å (methyl) or 0.95 Å (aromatic) and O—H = 0.84 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H)= 1.5Ueq(O, C-methyl).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Structure description top

R-(-)-Carvone, p-mentha-6,8-dien-2-on, is the major constituent of spearmint essential oil of Menthe spicata (Gershenzon et al., 1989). This monoterpene ketone is used as a fragrance component and flavouring agent. R-(-)-Carvone is also an important chiron for the synthesis of complex natural products (Wang et al., 2001) and antiviral agents. Recently, we reported an efficient method which affords direct access to p-cymene derivatives from R-(-)-carvone (Majidi & Fihi, 2004). In our continuing interest (Majidi et al., 2005) in the development of strategies for the synthesis of natural products derivatives, we report herein the synthesis of carvacrol derivatives from R-(-)-carvone.

The condensation of arylaldehydes (2a-c) to (R)-(-)-carvone (1) in acid media at reflux in toluene leads to carvacrol derivatives (3a-c), respectively. Products (3a-c) were obtained by a condensation followed by a rearrangement (Fig. 1). Since the 1H and 13C NMR studies did not provide unambiguous information on the structure of (3), a single-crystal X-ray study was carried out for the product (3a).

In the molecule of the title compound the phenyl rings are in a propeller configuration with roughly identical dihedral angles between the rings: 88.27 (8)° between the C11-C16 and C21-C26 rings, 85.79 (6) between the C21-C26 and C31-C36 rings and 82.52 (8)° between C31-C36 and C11-C16 rings (Fig. 2). Propeller like arrangement has been observed in several related compounds, e.g., CH(C6H5)3 (Veldman et al., 1996), CH(C6H5)2[C6H2(OH)2CH(C6H5)2](C6H5CHO) (Guo et al., 2005), CH(C6H5)(C6H4OH)2,0.17(H2O) (Sarma & Baruah, 2005), CH(C6H5)[C6H2(CH3)2OH]2 (Sarma & Baruah, 2004), CH(C6H5)[C6H2(OH)2Cl]2,C2H6O,H2O and CH(C6H5)[C6H2(OCH3)2Cl]2(Yang et al., 2005). The bond distances and angles in the title molecule agree with the corresponding distances and angles reported in the structures quoted above.

In the crystal, the molecules are linked through O—H···O hydrogen bonds involving the donor oxygen atom O24 and the acceptor O34 forming infinite chains. These chains are further connected through weak O—H···O hydrogen bonds involving as donor atom O34 and as acceptor O24 (Table 1) resulting in the formation of a two dimensionnal network developping parallel to the (0 1 0) plane (Fig. 3; Table 1).

Futhermore, weak C—H···π interactions involving the C13 and C15 atoms and the centroids Cg2 and Cg3 of the C21-C26 and C31-C36 rings, respectively, build up a three dimensionnal network (Table 1).

R-(-)-Carvone, p-mentha-6,8-dien-2-on, is the major constituent of spearmint essential oil of Menthe spicata (Gershenzon et al., 1989) and is an important chiron for the synthesis of complex natural products (Wang et al., 2001) and antiviral agents. We have reported an efficient method which affords direct access to p-cymene derivatives from R-(-)-carvone, see: Majidi & Fihi (2004). For our interest in the development of strategies for the synthesis of natural products derivatives, see: Majidi et al., 2005). For related structures, see; Guo et al. (2005); Sarma & Baruah (2004, 2005); Veldman et al. (1996); Yang et al. (2005).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Schematic diagram of the synthetic pathway.
[Figure 2] Fig. 2. The asymmetric unit of the title molecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as spheres of arbitrary radii.
[Figure 3] Fig. 3. Partial packing view of the title compound, showing the formation of layers parallel to the (0 1 0) plane built from O—H···O hydrogen; H atoms not involved in hydrogen bonding have been omitted for clarity,. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, -y + 1, z + 1/2]
2,2'-Dimethyl-5,5'-dipropan-2-yl-4,4'-(phenylmethylene)diphenol top
Crystal data top
C27H32O2F(000) = 840
Mr = 388.53Dx = 1.127 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1555 reflections
a = 11.3775 (7) Åθ = 2.6–32.0°
b = 24.6369 (11) ŵ = 0.07 mm1
c = 8.8687 (6) ÅT = 180 K
β = 112.913 (8)°Plate, colourless
V = 2289.8 (2) Å30.55 × 0.35 × 0.11 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2838 independent reflections
Radiation source: fine-focus sealed tube1792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.2632 pixels mm-1θmax = 28.3°, θmin = 2.6°
ω and φ scansh = 1513
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 3232
Tmin = 0.723, Tmax = 1.000l = 811
10216 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0562P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.007
2838 reflectionsΔρmax = 0.32 e Å3
269 parametersΔρmin = 0.36 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0197 (15)
Crystal data top
C27H32O2V = 2289.8 (2) Å3
Mr = 388.53Z = 4
Monoclinic, CcMo Kα radiation
a = 11.3775 (7) ŵ = 0.07 mm1
b = 24.6369 (11) ÅT = 180 K
c = 8.8687 (6) Å0.55 × 0.35 × 0.11 mm
β = 112.913 (8)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2838 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1792 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 1.000Rint = 0.048
10216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 0.95Δρmax = 0.32 e Å3
2838 reflectionsΔρmin = 0.36 e Å3
269 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, CrysAlis RED (Oxford Diffraction, 2006).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3749 (2)0.33943 (10)0.0751 (3)0.0236 (6)
H10.39480.33720.19510.028*
C110.3659 (3)0.28073 (10)0.0172 (4)0.0282 (6)
C120.2878 (3)0.26471 (12)0.1384 (4)0.0457 (9)
H120.23780.29100.21510.055*
C130.2813 (4)0.21076 (15)0.1844 (6)0.0651 (12)
H130.22760.20030.29250.078*
C140.3516 (4)0.17237 (14)0.0751 (6)0.0681 (12)
H140.34590.13530.10630.082*
C150.4296 (4)0.18779 (13)0.0784 (6)0.0636 (11)
H150.47950.16140.15440.076*
C160.4370 (3)0.24118 (12)0.1246 (4)0.0460 (8)
H160.49200.25120.23250.055*
C210.2487 (3)0.36963 (10)0.0021 (3)0.0256 (6)
C220.1565 (3)0.36542 (11)0.0696 (3)0.0286 (7)
C230.0465 (3)0.39639 (11)0.0018 (3)0.0287 (7)
H230.01630.39420.04740.034*
C240.0257 (2)0.43028 (10)0.1300 (3)0.0252 (6)
C250.1125 (3)0.43357 (10)0.2028 (3)0.0258 (6)
C260.2232 (3)0.40303 (10)0.1329 (3)0.0248 (6)
H260.28500.40510.18020.030*
C310.4858 (2)0.37081 (10)0.0609 (3)0.0242 (6)
C320.5345 (2)0.41658 (10)0.1601 (3)0.0247 (6)
C330.6394 (2)0.44281 (11)0.1522 (3)0.0252 (6)
H330.67340.47360.21970.030*
C340.6959 (2)0.42541 (11)0.0491 (3)0.0261 (6)
C350.6492 (2)0.38059 (11)0.0521 (3)0.0265 (6)
C360.5436 (2)0.35466 (11)0.0424 (3)0.0244 (6)
H360.50950.32410.11080.029*
C2210.1706 (3)0.32907 (14)0.2133 (4)0.0450 (8)
H2210.25120.30780.24090.054*
C2220.1828 (5)0.36190 (19)0.3634 (5)0.0802 (14)
H22A0.25170.38850.38670.120*
H22B0.20220.33750.45740.120*
H22C0.10230.38090.34310.120*
C2230.0613 (4)0.28885 (15)0.1724 (5)0.0693 (12)
H22D0.07770.26420.26520.104*
H22E0.05430.26780.07540.104*
H22F0.01850.30860.15030.104*
C2510.0870 (3)0.46852 (13)0.3500 (4)0.0427 (8)
H25A0.00600.45770.43680.064*
H25B0.15630.46420.38860.064*
H25C0.08190.50660.32100.064*
C3210.4791 (3)0.43655 (11)0.2792 (3)0.0307 (7)
H3210.39790.41620.25660.037*
C3220.5693 (3)0.42314 (13)0.4530 (4)0.0475 (9)
H32A0.58450.38390.46310.071*
H32B0.53120.43470.52960.071*
H32C0.65050.44210.47830.071*
C3230.4463 (3)0.49670 (11)0.2585 (4)0.0391 (7)
H32D0.52420.51780.27980.059*
H32E0.40830.50750.33600.059*
H32F0.38540.50360.14650.059*
C3510.7107 (3)0.35959 (12)0.1625 (4)0.0357 (7)
H35A0.72870.39000.22160.054*
H35B0.65300.33390.24120.054*
H35C0.79070.34110.09690.054*
O240.08390 (16)0.46191 (7)0.1939 (2)0.0328 (5)
H240.12950.45640.14030.049*
O340.80030 (17)0.45253 (7)0.0405 (2)0.0346 (5)
H340.81130.48190.09220.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0212 (14)0.0255 (14)0.0257 (15)0.0017 (11)0.0109 (12)0.0019 (11)
C110.0210 (13)0.0262 (14)0.0406 (17)0.0019 (11)0.0154 (13)0.0019 (13)
C120.0331 (17)0.0398 (19)0.054 (2)0.0041 (14)0.0065 (15)0.0117 (16)
C130.0379 (19)0.058 (2)0.089 (3)0.0044 (18)0.013 (2)0.038 (2)
C140.059 (2)0.0273 (18)0.132 (4)0.0099 (18)0.052 (3)0.021 (2)
C150.073 (3)0.0267 (18)0.099 (3)0.0060 (18)0.041 (3)0.010 (2)
C160.050 (2)0.0331 (17)0.057 (2)0.0036 (15)0.0232 (17)0.0079 (16)
C210.0251 (14)0.0213 (13)0.0322 (16)0.0013 (11)0.0131 (13)0.0015 (12)
C220.0257 (15)0.0297 (16)0.0341 (17)0.0005 (12)0.0154 (14)0.0022 (13)
C230.0241 (15)0.0315 (15)0.0356 (17)0.0016 (12)0.0173 (13)0.0015 (13)
C240.0165 (13)0.0247 (14)0.0325 (16)0.0010 (11)0.0074 (12)0.0016 (13)
C250.0255 (14)0.0239 (14)0.0291 (15)0.0013 (11)0.0120 (12)0.0020 (12)
C260.0232 (14)0.0256 (14)0.0286 (16)0.0004 (11)0.0133 (12)0.0019 (12)
C310.0202 (13)0.0240 (14)0.0289 (16)0.0015 (11)0.0100 (12)0.0029 (12)
C320.0227 (14)0.0255 (14)0.0262 (15)0.0017 (11)0.0097 (12)0.0014 (12)
C330.0197 (13)0.0247 (13)0.0301 (16)0.0014 (11)0.0083 (12)0.0039 (12)
C340.0184 (14)0.0294 (15)0.0312 (16)0.0028 (11)0.0104 (12)0.0066 (12)
C350.0248 (15)0.0286 (15)0.0285 (16)0.0053 (12)0.0128 (13)0.0032 (13)
C360.0220 (14)0.0245 (14)0.0259 (15)0.0001 (11)0.0084 (12)0.0012 (12)
C2210.0374 (19)0.056 (2)0.052 (2)0.0172 (16)0.0280 (16)0.0237 (18)
C2220.097 (3)0.105 (4)0.045 (3)0.021 (3)0.034 (2)0.013 (2)
C2230.083 (3)0.049 (2)0.087 (3)0.004 (2)0.046 (2)0.026 (2)
C2510.0353 (17)0.051 (2)0.045 (2)0.0133 (15)0.0193 (15)0.0196 (16)
C3210.0289 (16)0.0335 (16)0.0344 (18)0.0023 (12)0.0174 (14)0.0064 (13)
C3220.064 (2)0.048 (2)0.0372 (19)0.0086 (17)0.0274 (17)0.0017 (16)
C3230.0398 (17)0.0411 (17)0.0404 (19)0.0043 (14)0.0201 (14)0.0082 (15)
C3510.0346 (17)0.0420 (18)0.0348 (18)0.0014 (14)0.0181 (14)0.0056 (14)
O240.0235 (11)0.0363 (11)0.0433 (13)0.0058 (9)0.0183 (9)0.0051 (9)
O340.0268 (11)0.0357 (10)0.0472 (13)0.0063 (9)0.0209 (10)0.0060 (10)
Geometric parameters (Å, º) top
C1—C211.520 (4)C34—C351.391 (4)
C1—C111.524 (4)C34—O341.390 (3)
C1—C311.526 (4)C35—C361.392 (4)
C1—H11.0000C35—C3511.501 (4)
C11—C121.377 (4)C36—H360.9500
C11—C161.382 (4)C221—C2221.518 (5)
C12—C131.384 (4)C221—C2231.519 (5)
C12—H120.9500C221—H2211.0000
C13—C141.367 (6)C222—H22A0.9800
C13—H130.9500C222—H22B0.9800
C14—C151.359 (6)C222—H22C0.9800
C14—H140.9500C223—H22D0.9800
C15—C161.370 (5)C223—H22E0.9800
C15—H150.9500C223—H22F0.9800
C16—H160.9500C251—H25A0.9800
C21—C261.387 (4)C251—H25B0.9800
C21—C221.399 (4)C251—H25C0.9800
C22—C231.387 (4)C321—C3221.518 (4)
C22—C2211.514 (4)C321—C3231.522 (4)
C23—C241.380 (4)C321—H3211.0000
C23—H230.9500C322—H32A0.9800
C24—C251.377 (4)C322—H32B0.9800
C24—O241.391 (3)C322—H32C0.9800
C25—C261.389 (4)C323—H32D0.9800
C25—C2511.495 (4)C323—H32E0.9800
C26—H260.9500C323—H32F0.9800
C31—C361.377 (4)C351—H35A0.9800
C31—C321.404 (3)C351—H35B0.9800
C32—C331.383 (4)C351—H35C0.9800
C32—C3211.508 (4)O24—H240.8400
C33—C341.375 (4)O34—H340.8400
C33—H330.9500
C21—C1—C11113.1 (2)C34—C35—C351122.4 (2)
C21—C1—C31113.04 (19)C36—C35—C351121.0 (2)
C11—C1—C31113.8 (2)C31—C36—C35123.7 (2)
C21—C1—H1105.3C31—C36—H36118.1
C11—C1—H1105.3C35—C36—H36118.1
C31—C1—H1105.3C22—C221—C222111.5 (3)
C12—C11—C16117.7 (3)C22—C221—C223112.1 (3)
C12—C11—C1122.8 (3)C222—C221—C223110.1 (3)
C16—C11—C1119.5 (3)C22—C221—H221107.7
C11—C12—C13120.7 (3)C222—C221—H221107.7
C11—C12—H12119.7C223—C221—H221107.7
C13—C12—H12119.7C221—C222—H22A109.5
C14—C13—C12120.4 (4)C221—C222—H22B109.5
C14—C13—H13119.8H22A—C222—H22B109.5
C12—C13—H13119.8C221—C222—H22C109.5
C15—C14—C13119.4 (3)H22A—C222—H22C109.5
C15—C14—H14120.3H22B—C222—H22C109.5
C13—C14—H14120.3C221—C223—H22D109.5
C14—C15—C16120.5 (4)C221—C223—H22E109.5
C14—C15—H15119.7H22D—C223—H22E109.5
C16—C15—H15119.7C221—C223—H22F109.5
C15—C16—C11121.3 (4)H22D—C223—H22F109.5
C15—C16—H16119.4H22E—C223—H22F109.5
C11—C16—H16119.4C25—C251—H25A109.5
C26—C21—C22118.2 (2)C25—C251—H25B109.5
C26—C21—C1120.2 (2)H25A—C251—H25B109.5
C22—C21—C1121.5 (2)C25—C251—H25C109.5
C23—C22—C21118.3 (2)H25A—C251—H25C109.5
C23—C22—C221118.2 (3)H25B—C251—H25C109.5
C21—C22—C221123.5 (2)C32—C321—C322109.7 (2)
C24—C23—C22121.9 (3)C32—C321—C323112.5 (2)
C24—C23—H23119.1C322—C321—C323111.8 (2)
C22—C23—H23119.1C32—C321—H321107.5
C25—C24—C23121.0 (2)C322—C321—H321107.5
C25—C24—O24118.0 (2)C323—C321—H321107.5
C23—C24—O24121.0 (2)C321—C322—H32A109.5
C24—C25—C26116.7 (2)C321—C322—H32B109.5
C24—C25—C251120.8 (2)H32A—C322—H32B109.5
C26—C25—C251122.4 (3)C321—C322—H32C109.5
C25—C26—C21123.7 (3)H32A—C322—H32C109.5
C25—C26—H26118.1H32B—C322—H32C109.5
C21—C26—H26118.1C321—C323—H32D109.5
C36—C31—C32118.4 (2)C321—C323—H32E109.5
C36—C31—C1122.1 (2)H32D—C323—H32E109.5
C32—C31—C1119.5 (2)C321—C323—H32F109.5
C33—C32—C31118.7 (2)H32D—C323—H32F109.5
C33—C32—C321119.2 (2)H32E—C323—H32F109.5
C31—C32—C321122.1 (2)C35—C351—H35A109.5
C34—C33—C32121.6 (2)C35—C351—H35B109.5
C34—C33—H33119.2H35A—C351—H35B109.5
C32—C33—H33119.2C35—C351—H35C109.5
C33—C34—C35121.1 (2)H35A—C351—H35C109.5
C33—C34—O34121.1 (2)H35B—C351—H35C109.5
C35—C34—O34117.8 (2)C24—O24—H24109.5
C34—C35—C36116.5 (2)C34—O34—H34109.5
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C21–C26 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O24—H24···O34i0.842.052.871 (3)164
O34—H34···O24ii0.842.273.051 (3)154
C23—H23···O34i0.952.513.259 (3)135
C13—H13···Cg3iii0.952.923.658 (4)135
C15—H15···Cg2iv0.952.863.790 (5)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H32O2
Mr388.53
Crystal system, space groupMonoclinic, Cc
Temperature (K)180
a, b, c (Å)11.3775 (7), 24.6369 (11), 8.8687 (6)
β (°) 112.913 (8)
V3)2289.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.55 × 0.35 × 0.11
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.723, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10216, 2838, 1792
Rint0.048
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.103, 0.95
No. of reflections2838
No. of parameters269
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C21–C26 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O24—H24···O34i0.842.052.871 (3)164
O34—H34···O24ii0.842.273.051 (3)154
C23—H23···O34i0.952.513.259 (3)135
C13—H13···Cg3iii0.952.923.658 (4)135
C15—H15···Cg2iv0.952.863.790 (5)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGershenzon, J., Maffei, M. & Croteau, R., (1989). Plant Phisiol. 89, 1351–11357.  Google Scholar
First citationGuo, W.-S., Guo, F., Xu, H.-N., Yuan, L., Wang, Z.-H. & Tong, J. (2005). J. Mol. Struct. 733, 143–149.  Web of Science CrossRef CAS Google Scholar
First citationMajidi, L. & Fihi, R. (2004). Phys. Chem. News, 15, 83–85.  CAS Google Scholar
First citationMajidi, L., Fihi, R., El Idrissi, M. & Kharchouf, S. (2005). Phys. Chem. News, 25, 127–129.  CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSarma, R. J. & Baruah, J. B. (2004). Dyes Pigm. 61, 39–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarma, R. J. & Baruah, J. B. (2005). CrystEngComm, 7, 706–710.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeldman, N., Spek, A. L., Schlotter, J. J. H., Zwikker, J. W. & Jenneskens, L. W. (1996). Acta Cryst. C52, 174–177.  CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Froeyen, M., Hendrix, C., Andrei, C., Snoeck, R., Lescrinier, E., De Clereq, E. & Herdewijn, P. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 727–730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907–6912.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds