organic compounds
2,2′-Dimethyl-5,5′-dipropan-2-yl-4,4′-(phenylmethylene)diphenol
aLaboratoire des Substances Naturelles & Synthèse et Dynamique Moléculaire, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco, bLaboratoire de Chimie Physique des Matériaux, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco, and cLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France
*Correspondence e-mail: mohamedazrour@yahoo.fr
In the title molecule, C27H32O2, the aromatic rings are in a propeller configuration. In the crystal, molecules are linked through O—H⋯O hydrogen bonds forming a two-dimensional network which develops parallel to (010). Futhermore, weak C—H⋯π interactions involving the two substituted rings build up a three-dimensional network.
Related literature
R-(−)-Carvone, p-mentha-6,8-dien-2-on, is the major constituent of spearmint essential oil of Menthe spicata (Gershenzon et al., 1989) and is an important chiron for the synthesis of complex natural products (Wang et al., 2001) and antiviral agents. We have reported an efficient method which affords direct access to p-cymene derivatives from R-(−)-carvone, see: Majidi & Fihi (2004). For our interest in the development of strategies for the synthesis of natural product derivatives, see: Majidi et al., 2005). For related structures, see; Guo et al. (2005); Sarma & Baruah (2004, 2005); Veldman et al. (1996); Yang et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810033441/pv2319sup1.cif
contains datablocks I, global, azrour7. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810033441/pv2319Isup2.hkl
(R)-(-) Carvone (1) is a commercial product. A mixture of carvone (3 g, 2 mmol), corresponding aromatic aldehyde (1.06 g, 10 mmol) in toluene (50 ml) and TsOH.H2O (p-toluene sulphonic acid hydrate) (0.28 g) was heated under reflux using a Dean-stark trap for 24 h. The reaction mixture was poured into cold water (100 ml), and extracted. The organic phase was washed with water (4 x 30 ml), dried (Na2SO4), and evaporated in vacuo. The crude products were purified by
on silica gel. Eluant: hexane/dichloromethane (60/40). The compound was finally recrystallized from ethanol.All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 1.0Å (methine), 0.98 Å (methyl) or 0.95 Å (aromatic) and O—H = 0.84 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H)= 1.5Ueq(O, C-methyl).
In the absence of significant
the could not be reliably determined and then the Friedel pairs were merged and any references to the were removed.R-(-)-Carvone, p-mentha-6,8-dien-2-on, is the major constituent of spearmint essential oil of Menthe spicata (Gershenzon et al., 1989). This monoterpene ketone is used as a fragrance component and flavouring agent. R-(-)-Carvone is also an important chiron for the synthesis of complex natural products (Wang et al., 2001) and antiviral agents. Recently, we reported an efficient method which affords direct access to p-cymene derivatives from R-(-)-carvone (Majidi & Fihi, 2004). In our continuing interest (Majidi et al., 2005) in the development of strategies for the synthesis of natural products derivatives, we report herein the synthesis of carvacrol derivatives from R-(-)-carvone.
The condensation of arylaldehydes (2a-c) to (R)-(-)-carvone (1) in acid media at reflux in toluene leads to carvacrol derivatives (3a-c), respectively. Products (3a-c) were obtained by a condensation followed by a rearrangement (Fig. 1). Since the 1H and 13C NMR studies did not provide unambiguous information on the structure of (3), a single-crystal X-ray study was carried out for the product (3a).
In the molecule of the title compound the phenyl rings are in a propeller configuration with roughly identical dihedral angles between the rings: 88.27 (8)° between the C11-C16 and C21-C26 rings, 85.79 (6) between the C21-C26 and C31-C36 rings and 82.52 (8)° between C31-C36 and C11-C16 rings (Fig. 2). Propeller like arrangement has been observed in several related compounds, e.g., CH(C6H5)3 (Veldman et al., 1996), CH(C6H5)2[C6H2(OH)2CH(C6H5)2](C6H5CHO) (Guo et al., 2005), CH(C6H5)(C6H4OH)2,0.17(H2O) (Sarma & Baruah, 2005), CH(C6H5)[C6H2(CH3)2OH]2 (Sarma & Baruah, 2004), CH(C6H5)[C6H2(OH)2Cl]2,C2H6O,H2O and CH(C6H5)[C6H2(OCH3)2Cl]2(Yang et al., 2005). The bond distances and angles in the title molecule agree with the corresponding distances and angles reported in the structures quoted above.
In the crystal, the molecules are linked through O—H···O hydrogen bonds involving the donor oxygen atom O24 and the acceptor O34 forming infinite chains. These chains are further connected through weak O—H···O hydrogen bonds involving as donor atom O34 and as acceptor O24 (Table 1) resulting in the formation of a two dimensionnal network developping parallel to the (0 1 0) plane (Fig. 3; Table 1).
Futhermore, weak C—H···π interactions involving the C13 and C15 atoms and the centroids Cg2 and Cg3 of the C21-C26 and C31-C36 rings, respectively, build up a three dimensionnal network (Table 1).
R-(-)-Carvone, p-mentha-6,8-dien-2-on, is the major constituent of spearmint essential oil of Menthe spicata (Gershenzon et al., 1989) and is an important chiron for the synthesis of complex natural products (Wang et al., 2001) and antiviral agents. We have reported an efficient method which affords direct access to p-cymene derivatives from R-(-)-carvone, see: Majidi & Fihi (2004). For our interest in the development of strategies for the synthesis of natural products derivatives, see: Majidi et al., 2005). For related structures, see; Guo et al. (2005); Sarma & Baruah (2004, 2005); Veldman et al. (1996); Yang et al. (2005).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Schematic diagram of the synthetic pathway. | |
Fig. 2. The asymmetric unit of the title molecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as spheres of arbitrary radii. | |
Fig. 3. Partial packing view of the title compound, showing the formation of layers parallel to the (0 1 0) plane built from O—H···O hydrogen; H atoms not involved in hydrogen bonding have been omitted for clarity,. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, -y + 1, z + 1/2] |
C27H32O2 | F(000) = 840 |
Mr = 388.53 | Dx = 1.127 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1555 reflections |
a = 11.3775 (7) Å | θ = 2.6–32.0° |
b = 24.6369 (11) Å | µ = 0.07 mm−1 |
c = 8.8687 (6) Å | T = 180 K |
β = 112.913 (8)° | Plate, colourless |
V = 2289.8 (2) Å3 | 0.55 × 0.35 × 0.11 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer | 2838 independent reflections |
Radiation source: fine-focus sealed tube | 1792 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 28.3°, θmin = 2.6° |
ω and φ scans | h = −15→13 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −32→32 |
Tmin = 0.723, Tmax = 1.000 | l = −8→11 |
10216 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0562P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max = 0.007 |
2838 reflections | Δρmax = 0.32 e Å−3 |
269 parameters | Δρmin = −0.36 e Å−3 |
2 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0197 (15) |
C27H32O2 | V = 2289.8 (2) Å3 |
Mr = 388.53 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 11.3775 (7) Å | µ = 0.07 mm−1 |
b = 24.6369 (11) Å | T = 180 K |
c = 8.8687 (6) Å | 0.55 × 0.35 × 0.11 mm |
β = 112.913 (8)° |
Oxford Diffraction Xcalibur diffractometer | 2838 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | 1792 reflections with I > 2σ(I) |
Tmin = 0.723, Tmax = 1.000 | Rint = 0.048 |
10216 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 2 restraints |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.32 e Å−3 |
2838 reflections | Δρmin = −0.36 e Å−3 |
269 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, CrysAlis RED (Oxford Diffraction, 2006). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3749 (2) | 0.33943 (10) | 0.0751 (3) | 0.0236 (6) | |
H1 | 0.3948 | 0.3372 | 0.1951 | 0.028* | |
C11 | 0.3659 (3) | 0.28073 (10) | 0.0172 (4) | 0.0282 (6) | |
C12 | 0.2878 (3) | 0.26471 (12) | −0.1384 (4) | 0.0457 (9) | |
H12 | 0.2378 | 0.2910 | −0.2151 | 0.055* | |
C13 | 0.2813 (4) | 0.21076 (15) | −0.1844 (6) | 0.0651 (12) | |
H13 | 0.2276 | 0.2003 | −0.2925 | 0.078* | |
C14 | 0.3516 (4) | 0.17237 (14) | −0.0751 (6) | 0.0681 (12) | |
H14 | 0.3459 | 0.1353 | −0.1063 | 0.082* | |
C15 | 0.4296 (4) | 0.18779 (13) | 0.0784 (6) | 0.0636 (11) | |
H15 | 0.4795 | 0.1614 | 0.1544 | 0.076* | |
C16 | 0.4370 (3) | 0.24118 (12) | 0.1246 (4) | 0.0460 (8) | |
H16 | 0.4920 | 0.2512 | 0.2325 | 0.055* | |
C21 | 0.2487 (3) | 0.36963 (10) | 0.0021 (3) | 0.0256 (6) | |
C22 | 0.1565 (3) | 0.36542 (11) | 0.0696 (3) | 0.0286 (7) | |
C23 | 0.0465 (3) | 0.39639 (11) | 0.0018 (3) | 0.0287 (7) | |
H23 | −0.0163 | 0.3942 | 0.0474 | 0.034* | |
C24 | 0.0257 (2) | 0.43028 (10) | −0.1300 (3) | 0.0252 (6) | |
C25 | 0.1125 (3) | 0.43357 (10) | −0.2028 (3) | 0.0258 (6) | |
C26 | 0.2232 (3) | 0.40303 (10) | −0.1329 (3) | 0.0248 (6) | |
H26 | 0.2850 | 0.4051 | −0.1802 | 0.030* | |
C31 | 0.4858 (2) | 0.37081 (10) | 0.0609 (3) | 0.0242 (6) | |
C32 | 0.5345 (2) | 0.41658 (10) | 0.1601 (3) | 0.0247 (6) | |
C33 | 0.6394 (2) | 0.44281 (11) | 0.1522 (3) | 0.0252 (6) | |
H33 | 0.6734 | 0.4736 | 0.2197 | 0.030* | |
C34 | 0.6959 (2) | 0.42541 (11) | 0.0491 (3) | 0.0261 (6) | |
C35 | 0.6492 (2) | 0.38059 (11) | −0.0521 (3) | 0.0265 (6) | |
C36 | 0.5436 (2) | 0.35466 (11) | −0.0424 (3) | 0.0244 (6) | |
H36 | 0.5095 | 0.3241 | −0.1108 | 0.029* | |
C221 | 0.1706 (3) | 0.32907 (14) | 0.2133 (4) | 0.0450 (8) | |
H221 | 0.2512 | 0.3078 | 0.2409 | 0.054* | |
C222 | 0.1828 (5) | 0.36190 (19) | 0.3634 (5) | 0.0802 (14) | |
H22A | 0.2517 | 0.3885 | 0.3867 | 0.120* | |
H22B | 0.2022 | 0.3375 | 0.4574 | 0.120* | |
H22C | 0.1023 | 0.3809 | 0.3431 | 0.120* | |
C223 | 0.0613 (4) | 0.28885 (15) | 0.1724 (5) | 0.0693 (12) | |
H22D | 0.0777 | 0.2642 | 0.2652 | 0.104* | |
H22E | 0.0543 | 0.2678 | 0.0754 | 0.104* | |
H22F | −0.0185 | 0.3086 | 0.1503 | 0.104* | |
C251 | 0.0870 (3) | 0.46852 (13) | −0.3500 (4) | 0.0427 (8) | |
H25A | 0.0060 | 0.4577 | −0.4368 | 0.064* | |
H25B | 0.1563 | 0.4642 | −0.3886 | 0.064* | |
H25C | 0.0819 | 0.5066 | −0.3210 | 0.064* | |
C321 | 0.4791 (3) | 0.43655 (11) | 0.2792 (3) | 0.0307 (7) | |
H321 | 0.3979 | 0.4162 | 0.2566 | 0.037* | |
C322 | 0.5693 (3) | 0.42314 (13) | 0.4530 (4) | 0.0475 (9) | |
H32A | 0.5845 | 0.3839 | 0.4631 | 0.071* | |
H32B | 0.5312 | 0.4347 | 0.5296 | 0.071* | |
H32C | 0.6505 | 0.4421 | 0.4783 | 0.071* | |
C323 | 0.4463 (3) | 0.49670 (11) | 0.2585 (4) | 0.0391 (7) | |
H32D | 0.5242 | 0.5178 | 0.2798 | 0.059* | |
H32E | 0.4083 | 0.5075 | 0.3360 | 0.059* | |
H32F | 0.3854 | 0.5036 | 0.1465 | 0.059* | |
C351 | 0.7107 (3) | 0.35959 (12) | −0.1625 (4) | 0.0357 (7) | |
H35A | 0.7287 | 0.3900 | −0.2216 | 0.054* | |
H35B | 0.6530 | 0.3339 | −0.2412 | 0.054* | |
H35C | 0.7907 | 0.3411 | −0.0969 | 0.054* | |
O24 | −0.08390 (16) | 0.46191 (7) | −0.1939 (2) | 0.0328 (5) | |
H24 | −0.1295 | 0.4564 | −0.1403 | 0.049* | |
O34 | 0.80030 (17) | 0.45253 (7) | 0.0405 (2) | 0.0346 (5) | |
H34 | 0.8113 | 0.4819 | 0.0922 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0212 (14) | 0.0255 (14) | 0.0257 (15) | 0.0017 (11) | 0.0109 (12) | 0.0019 (11) |
C11 | 0.0210 (13) | 0.0262 (14) | 0.0406 (17) | −0.0019 (11) | 0.0154 (13) | 0.0019 (13) |
C12 | 0.0331 (17) | 0.0398 (19) | 0.054 (2) | 0.0041 (14) | 0.0065 (15) | −0.0117 (16) |
C13 | 0.0379 (19) | 0.058 (2) | 0.089 (3) | −0.0044 (18) | 0.013 (2) | −0.038 (2) |
C14 | 0.059 (2) | 0.0273 (18) | 0.132 (4) | −0.0099 (18) | 0.052 (3) | −0.021 (2) |
C15 | 0.073 (3) | 0.0267 (18) | 0.099 (3) | 0.0060 (18) | 0.041 (3) | 0.010 (2) |
C16 | 0.050 (2) | 0.0331 (17) | 0.057 (2) | 0.0036 (15) | 0.0232 (17) | 0.0079 (16) |
C21 | 0.0251 (14) | 0.0213 (13) | 0.0322 (16) | −0.0013 (11) | 0.0131 (13) | −0.0015 (12) |
C22 | 0.0257 (15) | 0.0297 (16) | 0.0341 (17) | 0.0005 (12) | 0.0154 (14) | 0.0022 (13) |
C23 | 0.0241 (15) | 0.0315 (15) | 0.0356 (17) | 0.0016 (12) | 0.0173 (13) | 0.0015 (13) |
C24 | 0.0165 (13) | 0.0247 (14) | 0.0325 (16) | 0.0010 (11) | 0.0074 (12) | −0.0016 (13) |
C25 | 0.0255 (14) | 0.0239 (14) | 0.0291 (15) | −0.0013 (11) | 0.0120 (12) | 0.0020 (12) |
C26 | 0.0232 (14) | 0.0256 (14) | 0.0286 (16) | −0.0004 (11) | 0.0133 (12) | 0.0019 (12) |
C31 | 0.0202 (13) | 0.0240 (14) | 0.0289 (16) | 0.0015 (11) | 0.0100 (12) | 0.0029 (12) |
C32 | 0.0227 (14) | 0.0255 (14) | 0.0262 (15) | 0.0017 (11) | 0.0097 (12) | 0.0014 (12) |
C33 | 0.0197 (13) | 0.0247 (13) | 0.0301 (16) | −0.0014 (11) | 0.0083 (12) | −0.0039 (12) |
C34 | 0.0184 (14) | 0.0294 (15) | 0.0312 (16) | 0.0028 (11) | 0.0104 (12) | 0.0066 (12) |
C35 | 0.0248 (15) | 0.0286 (15) | 0.0285 (16) | 0.0053 (12) | 0.0128 (13) | 0.0032 (13) |
C36 | 0.0220 (14) | 0.0245 (14) | 0.0259 (15) | −0.0001 (11) | 0.0084 (12) | −0.0012 (12) |
C221 | 0.0374 (19) | 0.056 (2) | 0.052 (2) | 0.0172 (16) | 0.0280 (16) | 0.0237 (18) |
C222 | 0.097 (3) | 0.105 (4) | 0.045 (3) | −0.021 (3) | 0.034 (2) | 0.013 (2) |
C223 | 0.083 (3) | 0.049 (2) | 0.087 (3) | −0.004 (2) | 0.046 (2) | 0.026 (2) |
C251 | 0.0353 (17) | 0.051 (2) | 0.045 (2) | 0.0133 (15) | 0.0193 (15) | 0.0196 (16) |
C321 | 0.0289 (16) | 0.0335 (16) | 0.0344 (18) | −0.0023 (12) | 0.0174 (14) | −0.0064 (13) |
C322 | 0.064 (2) | 0.048 (2) | 0.0372 (19) | 0.0086 (17) | 0.0274 (17) | −0.0017 (16) |
C323 | 0.0398 (17) | 0.0411 (17) | 0.0404 (19) | 0.0043 (14) | 0.0201 (14) | −0.0082 (15) |
C351 | 0.0346 (17) | 0.0420 (18) | 0.0348 (18) | −0.0014 (14) | 0.0181 (14) | −0.0056 (14) |
O24 | 0.0235 (11) | 0.0363 (11) | 0.0433 (13) | 0.0058 (9) | 0.0183 (9) | 0.0051 (9) |
O34 | 0.0268 (11) | 0.0357 (10) | 0.0472 (13) | −0.0063 (9) | 0.0209 (10) | −0.0060 (10) |
C1—C21 | 1.520 (4) | C34—C35 | 1.391 (4) |
C1—C11 | 1.524 (4) | C34—O34 | 1.390 (3) |
C1—C31 | 1.526 (4) | C35—C36 | 1.392 (4) |
C1—H1 | 1.0000 | C35—C351 | 1.501 (4) |
C11—C12 | 1.377 (4) | C36—H36 | 0.9500 |
C11—C16 | 1.382 (4) | C221—C222 | 1.518 (5) |
C12—C13 | 1.384 (4) | C221—C223 | 1.519 (5) |
C12—H12 | 0.9500 | C221—H221 | 1.0000 |
C13—C14 | 1.367 (6) | C222—H22A | 0.9800 |
C13—H13 | 0.9500 | C222—H22B | 0.9800 |
C14—C15 | 1.359 (6) | C222—H22C | 0.9800 |
C14—H14 | 0.9500 | C223—H22D | 0.9800 |
C15—C16 | 1.370 (5) | C223—H22E | 0.9800 |
C15—H15 | 0.9500 | C223—H22F | 0.9800 |
C16—H16 | 0.9500 | C251—H25A | 0.9800 |
C21—C26 | 1.387 (4) | C251—H25B | 0.9800 |
C21—C22 | 1.399 (4) | C251—H25C | 0.9800 |
C22—C23 | 1.387 (4) | C321—C322 | 1.518 (4) |
C22—C221 | 1.514 (4) | C321—C323 | 1.522 (4) |
C23—C24 | 1.380 (4) | C321—H321 | 1.0000 |
C23—H23 | 0.9500 | C322—H32A | 0.9800 |
C24—C25 | 1.377 (4) | C322—H32B | 0.9800 |
C24—O24 | 1.391 (3) | C322—H32C | 0.9800 |
C25—C26 | 1.389 (4) | C323—H32D | 0.9800 |
C25—C251 | 1.495 (4) | C323—H32E | 0.9800 |
C26—H26 | 0.9500 | C323—H32F | 0.9800 |
C31—C36 | 1.377 (4) | C351—H35A | 0.9800 |
C31—C32 | 1.404 (3) | C351—H35B | 0.9800 |
C32—C33 | 1.383 (4) | C351—H35C | 0.9800 |
C32—C321 | 1.508 (4) | O24—H24 | 0.8400 |
C33—C34 | 1.375 (4) | O34—H34 | 0.8400 |
C33—H33 | 0.9500 | ||
C21—C1—C11 | 113.1 (2) | C34—C35—C351 | 122.4 (2) |
C21—C1—C31 | 113.04 (19) | C36—C35—C351 | 121.0 (2) |
C11—C1—C31 | 113.8 (2) | C31—C36—C35 | 123.7 (2) |
C21—C1—H1 | 105.3 | C31—C36—H36 | 118.1 |
C11—C1—H1 | 105.3 | C35—C36—H36 | 118.1 |
C31—C1—H1 | 105.3 | C22—C221—C222 | 111.5 (3) |
C12—C11—C16 | 117.7 (3) | C22—C221—C223 | 112.1 (3) |
C12—C11—C1 | 122.8 (3) | C222—C221—C223 | 110.1 (3) |
C16—C11—C1 | 119.5 (3) | C22—C221—H221 | 107.7 |
C11—C12—C13 | 120.7 (3) | C222—C221—H221 | 107.7 |
C11—C12—H12 | 119.7 | C223—C221—H221 | 107.7 |
C13—C12—H12 | 119.7 | C221—C222—H22A | 109.5 |
C14—C13—C12 | 120.4 (4) | C221—C222—H22B | 109.5 |
C14—C13—H13 | 119.8 | H22A—C222—H22B | 109.5 |
C12—C13—H13 | 119.8 | C221—C222—H22C | 109.5 |
C15—C14—C13 | 119.4 (3) | H22A—C222—H22C | 109.5 |
C15—C14—H14 | 120.3 | H22B—C222—H22C | 109.5 |
C13—C14—H14 | 120.3 | C221—C223—H22D | 109.5 |
C14—C15—C16 | 120.5 (4) | C221—C223—H22E | 109.5 |
C14—C15—H15 | 119.7 | H22D—C223—H22E | 109.5 |
C16—C15—H15 | 119.7 | C221—C223—H22F | 109.5 |
C15—C16—C11 | 121.3 (4) | H22D—C223—H22F | 109.5 |
C15—C16—H16 | 119.4 | H22E—C223—H22F | 109.5 |
C11—C16—H16 | 119.4 | C25—C251—H25A | 109.5 |
C26—C21—C22 | 118.2 (2) | C25—C251—H25B | 109.5 |
C26—C21—C1 | 120.2 (2) | H25A—C251—H25B | 109.5 |
C22—C21—C1 | 121.5 (2) | C25—C251—H25C | 109.5 |
C23—C22—C21 | 118.3 (2) | H25A—C251—H25C | 109.5 |
C23—C22—C221 | 118.2 (3) | H25B—C251—H25C | 109.5 |
C21—C22—C221 | 123.5 (2) | C32—C321—C322 | 109.7 (2) |
C24—C23—C22 | 121.9 (3) | C32—C321—C323 | 112.5 (2) |
C24—C23—H23 | 119.1 | C322—C321—C323 | 111.8 (2) |
C22—C23—H23 | 119.1 | C32—C321—H321 | 107.5 |
C25—C24—C23 | 121.0 (2) | C322—C321—H321 | 107.5 |
C25—C24—O24 | 118.0 (2) | C323—C321—H321 | 107.5 |
C23—C24—O24 | 121.0 (2) | C321—C322—H32A | 109.5 |
C24—C25—C26 | 116.7 (2) | C321—C322—H32B | 109.5 |
C24—C25—C251 | 120.8 (2) | H32A—C322—H32B | 109.5 |
C26—C25—C251 | 122.4 (3) | C321—C322—H32C | 109.5 |
C25—C26—C21 | 123.7 (3) | H32A—C322—H32C | 109.5 |
C25—C26—H26 | 118.1 | H32B—C322—H32C | 109.5 |
C21—C26—H26 | 118.1 | C321—C323—H32D | 109.5 |
C36—C31—C32 | 118.4 (2) | C321—C323—H32E | 109.5 |
C36—C31—C1 | 122.1 (2) | H32D—C323—H32E | 109.5 |
C32—C31—C1 | 119.5 (2) | C321—C323—H32F | 109.5 |
C33—C32—C31 | 118.7 (2) | H32D—C323—H32F | 109.5 |
C33—C32—C321 | 119.2 (2) | H32E—C323—H32F | 109.5 |
C31—C32—C321 | 122.1 (2) | C35—C351—H35A | 109.5 |
C34—C33—C32 | 121.6 (2) | C35—C351—H35B | 109.5 |
C34—C33—H33 | 119.2 | H35A—C351—H35B | 109.5 |
C32—C33—H33 | 119.2 | C35—C351—H35C | 109.5 |
C33—C34—C35 | 121.1 (2) | H35A—C351—H35C | 109.5 |
C33—C34—O34 | 121.1 (2) | H35B—C351—H35C | 109.5 |
C35—C34—O34 | 117.8 (2) | C24—O24—H24 | 109.5 |
C34—C35—C36 | 116.5 (2) | C34—O34—H34 | 109.5 |
Cg2 and Cg3 are the centroids of the C21–C26 and C31–C36 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O24—H24···O34i | 0.84 | 2.05 | 2.871 (3) | 164 |
O34—H34···O24ii | 0.84 | 2.27 | 3.051 (3) | 154 |
C23—H23···O34i | 0.95 | 2.51 | 3.259 (3) | 135 |
C13—H13···Cg3iii | 0.95 | 2.92 | 3.658 (4) | 135 |
C15—H15···Cg2iv | 0.95 | 2.86 | 3.790 (5) | 167 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, −y+1, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C27H32O2 |
Mr | 388.53 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 180 |
a, b, c (Å) | 11.3775 (7), 24.6369 (11), 8.8687 (6) |
β (°) | 112.913 (8) |
V (Å3) | 2289.8 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.55 × 0.35 × 0.11 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.723, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10216, 2838, 1792 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.103, 0.95 |
No. of reflections | 2838 |
No. of parameters | 269 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.36 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
Cg2 and Cg3 are the centroids of the C21–C26 and C31–C36 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O24—H24···O34i | 0.84 | 2.05 | 2.871 (3) | 164 |
O34—H34···O24ii | 0.84 | 2.27 | 3.051 (3) | 154 |
C23—H23···O34i | 0.95 | 2.51 | 3.259 (3) | 135 |
C13—H13···Cg3iii | 0.95 | 2.92 | 3.658 (4) | 135 |
C15—H15···Cg2iv | 0.95 | 2.86 | 3.790 (5) | 167 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, −y+1, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) x+1/2, −y+1/2, z+1/2. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gershenzon, J., Maffei, M. & Croteau, R., (1989). Plant Phisiol. 89, 1351–11357. Google Scholar
Guo, W.-S., Guo, F., Xu, H.-N., Yuan, L., Wang, Z.-H. & Tong, J. (2005). J. Mol. Struct. 733, 143–149. Web of Science CrossRef CAS Google Scholar
Majidi, L. & Fihi, R. (2004). Phys. Chem. News, 15, 83–85. CAS Google Scholar
Majidi, L., Fihi, R., El Idrissi, M. & Kharchouf, S. (2005). Phys. Chem. News, 25, 127–129. CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sarma, R. J. & Baruah, J. B. (2004). Dyes Pigm. 61, 39–47. Web of Science CSD CrossRef CAS Google Scholar
Sarma, R. J. & Baruah, J. B. (2005). CrystEngComm, 7, 706–710. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Veldman, N., Spek, A. L., Schlotter, J. J. H., Zwikker, J. W. & Jenneskens, L. W. (1996). Acta Cryst. C52, 174–177. CrossRef CAS IUCr Journals Google Scholar
Wang, J., Froeyen, M., Hendrix, C., Andrei, C., Snoeck, R., Lescrinier, E., De Clereq, E. & Herdewijn, P. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 727–730. Web of Science CrossRef PubMed CAS Google Scholar
Yang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907–6912. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
R-(-)-Carvone, p-mentha-6,8-dien-2-on, is the major constituent of spearmint essential oil of Menthe spicata (Gershenzon et al., 1989). This monoterpene ketone is used as a fragrance component and flavouring agent. R-(-)-Carvone is also an important chiron for the synthesis of complex natural products (Wang et al., 2001) and antiviral agents. Recently, we reported an efficient method which affords direct access to p-cymene derivatives from R-(-)-carvone (Majidi & Fihi, 2004). In our continuing interest (Majidi et al., 2005) in the development of strategies for the synthesis of natural products derivatives, we report herein the synthesis of carvacrol derivatives from R-(-)-carvone.
The condensation of arylaldehydes (2a-c) to (R)-(-)-carvone (1) in acid media at reflux in toluene leads to carvacrol derivatives (3a-c), respectively. Products (3a-c) were obtained by a condensation followed by a rearrangement (Fig. 1). Since the 1H and 13C NMR studies did not provide unambiguous information on the structure of (3), a single-crystal X-ray study was carried out for the product (3a).
In the molecule of the title compound the phenyl rings are in a propeller configuration with roughly identical dihedral angles between the rings: 88.27 (8)° between the C11-C16 and C21-C26 rings, 85.79 (6) between the C21-C26 and C31-C36 rings and 82.52 (8)° between C31-C36 and C11-C16 rings (Fig. 2). Propeller like arrangement has been observed in several related compounds, e.g., CH(C6H5)3 (Veldman et al., 1996), CH(C6H5)2[C6H2(OH)2CH(C6H5)2](C6H5CHO) (Guo et al., 2005), CH(C6H5)(C6H4OH)2,0.17(H2O) (Sarma & Baruah, 2005), CH(C6H5)[C6H2(CH3)2OH]2 (Sarma & Baruah, 2004), CH(C6H5)[C6H2(OH)2Cl]2,C2H6O,H2O and CH(C6H5)[C6H2(OCH3)2Cl]2(Yang et al., 2005). The bond distances and angles in the title molecule agree with the corresponding distances and angles reported in the structures quoted above.
In the crystal, the molecules are linked through O—H···O hydrogen bonds involving the donor oxygen atom O24 and the acceptor O34 forming infinite chains. These chains are further connected through weak O—H···O hydrogen bonds involving as donor atom O34 and as acceptor O24 (Table 1) resulting in the formation of a two dimensionnal network developping parallel to the (0 1 0) plane (Fig. 3; Table 1).
Futhermore, weak C—H···π interactions involving the C13 and C15 atoms and the centroids Cg2 and Cg3 of the C21-C26 and C31-C36 rings, respectively, build up a three dimensionnal network (Table 1).