metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[bis­­[μ2-N,N′-bis­­(2-pyridyl­meth­yl)oxalamide-κ4N,O:N′,O′][μ2-N,N′-bis­­(2-pyridyl­meth­yl)oxalamide-κ2N:N′]disilver(I)] bis­­(tri­fluoro­methane­sulfonate)]

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio, 43202, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 August 2010; accepted 20 August 2010; online 28 August 2010)

The asymmetric unit of the title salt, [Ag(C14H14N4O2)1.5](CF3SO3), comprises a Ag+ cation, three half-mol­ecules of N,N′-bis­(2-pyridyl­meth­yl)oxalamide (each of which is dis­posed about a centre of inversion) and a trifluoro­methane­sulfonate anion. Distinct coordination modes are found for the bridging ligands, i.e., a μ2,κ2-bridging mode involving pyridine N atoms for one ligand, and a μ2,κ4-bridging mode, employing both pyridine N and amide O atoms for the remaining ligands. The Ag+ cations, which are in a distorted square-pyramidal coordination, and the ligands combine to form a two-dimensional array parallel to (101); these arrays are connected into a three-dimensional structure by trifluoro­methane­sulfonate anions via N—H⋯O, C—H⋯O, and C—F⋯O inter­actions.

Related literature

For structural diversity in the structures of silver salts, see: Kundu et al. (2010[Kundu, N., Audhya, A., Towsif Abtab, Sk Md, Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269-1282.]). For crystal engineering studies on isomeric N,N′-bis­(3-pyridyl­meth­yl)oxalamides, see: Poplaukhin & Tiekink (2010[Poplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302-1306.]). For the structure of the BF4 salt, see: Schauer et al. (1998[Schauer, C. L., Matwey, E., Fowler, F. W. & Lauher, J. W. (1998). Cryst. Eng. 1, 213-223.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C14H14N4O2)1.5](CF3SO3)

  • Mr = 662.38

  • Triclinic, [P \overline 1]

  • a = 8.7242 (14) Å

  • b = 11.1762 (17) Å

  • c = 14.210 (2) Å

  • α = 95.977 (1)°

  • β = 105.948 (2)°

  • γ = 107.017 (3)°

  • V = 1247.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 98 K

  • 0.36 × 0.32 × 0.18 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.868, Tmax = 1.000

  • 10177 measured reflections

  • 5688 independent reflections

  • 5438 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.079

  • S = 1.05

  • 5688 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Selected bond lengths (Å)

Ag—N1 2.378 (2)
Ag—N3 2.210 (2)
Ag—N5 2.250 (2)
Ag—O1 2.9665 (19)
Ag—O2 2.7299 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O4i 0.88 2.17 2.992 (4) 156
N4—H4n⋯O3ii 0.88 2.19 2.980 (3) 149
N6—H6n⋯O6iii 0.88 2.22 2.936 (3) 139
C1—H1⋯O5iv 0.95 2.36 3.197 (3) 146
C17—H17⋯O4 0.95 2.43 3.334 (4) 158
C18—H18⋯F1 0.95 2.45 3.261 (4) 144
N2—H2n⋯O1v 0.88 2.32 2.697 (3) 106
N4—H4n⋯O2ii 0.88 2.32 2.692 (3) 105
N6—H6n⋯O3vi 0.88 2.34 2.709 (3) 106
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) x, y+1, z; (v) -x, -y+1, -z; (vi) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

For silver salts, the dependence of crystal structure upon counter anions and the presence of solvent is notorious and has ramifications for photoluminescence (Kundu et al., 2010). In connection with crystal engineering studies on the isomeric N,N'-bis(n-pyridylmethyl)oxalamides (Poplaukhin & Tiekink, 2010), the 3:2 reaction between Ag(trifluoromethanesulfonate) and N,N'-bis(2-pyridylmethyl)oxalamide in an ethanol/chloroform solution was investigated, which led to the characterization of the title compound, (I).

The asymmetric unit of (I) comprises a Ag cation, three half molecules of N,N'-bis(2-pyridylmethyl)oxalamide (each of which is disposed about a centre of inversion) and a trifluoromethanesulfonate anion. Each of the ligands coordinates to a Ag atom, one employing the pyridine-N atoms exclusively while the others are µ2,κ4-bridging, employing both pyridine-N and amide-O atoms, leading to non-planar seven-membered chelate rings, Fig. 2. It is noted that the Ag–O bond distances are significantly longer than the Ag–N bond distances, Table 1. The resulting N3O2 coordination geometry is distorted square pyramidal based on the value for τ in (I) of 0.02 compared to the ideal values for τ of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Addison et al., 1984). In this description, the Ag atoms lies 0.7272 (10) Å out of the plane defined by the O1,O2,N3 and N5 atoms (r.m.s. deviation = 0.0805 Å) in the direction of the N1 atom.

The 2-D structure observed for (I) contrasts the helical coordination polymer observed in the structure of the silver tetrafluoroborate salt containing the same ligand, isolated as a hydrate (Schauer et al., 1998). The N,N'-bis(2-pyridylmethyl)oxalamide ligand acts as a bidentate donor employing both pyridine-N atoms in coordination (Schauer et al., 1998).

The crystal packing in (I) can be envisaged as chains of Ag atoms bridged by the µ2,κ4-ligands linked by the µ2,κ2-ligands leading to 2-D arrays parallel to (1 0 1), Fig. 3. The layers are connected by contacts involving the trifluoromethanesulfonate anions. Thus, the trifluoromethanesulfonate anions participate in N–H···O hydrogen bonds formed to one layer, and C–H···O and C–H···F interactions to the other, Fig. 4 and Table 2. In addition to the intermolecular interactions, intramolecular N–H···O hydrogen bonds are also noted, Table 2.

Related literature top

For structural diversity in the structures of silver salts, see: Kundu et al. (2010). For crystal engineering studies on isomeric N,N'-bis(3-pyridylmethyl)oxalamides, see: Poplaukhin & Tiekink (2010). For the structure of the BF4- salt, see: Schauer et al. (1998). For additional structural analysis, see: Addison et al. (1984).

Experimental top

Colourless crystals of (I) were isolated from the 3:2 reaction of Ag(trifluoromethanesulfonate) (Sigma-Aldrich, 0.06 mmol) and N,N'-bis(2-pyridylmethyl)oxalamide (0.04 mmol) in a warm ethanol/chloroform solution (8 ml).

Refinement top

C-bound H-atoms were placed in calculated positions (N–H = 0.88 Å and C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The maximum and minimum residual electron density peaks of 0.67 and -1.05 e Å-3, respectively, were located 0.85 Å and 0.79 Å from the S1 and Ag atoms, respectively.

Structure description top

For silver salts, the dependence of crystal structure upon counter anions and the presence of solvent is notorious and has ramifications for photoluminescence (Kundu et al., 2010). In connection with crystal engineering studies on the isomeric N,N'-bis(n-pyridylmethyl)oxalamides (Poplaukhin & Tiekink, 2010), the 3:2 reaction between Ag(trifluoromethanesulfonate) and N,N'-bis(2-pyridylmethyl)oxalamide in an ethanol/chloroform solution was investigated, which led to the characterization of the title compound, (I).

The asymmetric unit of (I) comprises a Ag cation, three half molecules of N,N'-bis(2-pyridylmethyl)oxalamide (each of which is disposed about a centre of inversion) and a trifluoromethanesulfonate anion. Each of the ligands coordinates to a Ag atom, one employing the pyridine-N atoms exclusively while the others are µ2,κ4-bridging, employing both pyridine-N and amide-O atoms, leading to non-planar seven-membered chelate rings, Fig. 2. It is noted that the Ag–O bond distances are significantly longer than the Ag–N bond distances, Table 1. The resulting N3O2 coordination geometry is distorted square pyramidal based on the value for τ in (I) of 0.02 compared to the ideal values for τ of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Addison et al., 1984). In this description, the Ag atoms lies 0.7272 (10) Å out of the plane defined by the O1,O2,N3 and N5 atoms (r.m.s. deviation = 0.0805 Å) in the direction of the N1 atom.

The 2-D structure observed for (I) contrasts the helical coordination polymer observed in the structure of the silver tetrafluoroborate salt containing the same ligand, isolated as a hydrate (Schauer et al., 1998). The N,N'-bis(2-pyridylmethyl)oxalamide ligand acts as a bidentate donor employing both pyridine-N atoms in coordination (Schauer et al., 1998).

The crystal packing in (I) can be envisaged as chains of Ag atoms bridged by the µ2,κ4-ligands linked by the µ2,κ2-ligands leading to 2-D arrays parallel to (1 0 1), Fig. 3. The layers are connected by contacts involving the trifluoromethanesulfonate anions. Thus, the trifluoromethanesulfonate anions participate in N–H···O hydrogen bonds formed to one layer, and C–H···O and C–H···F interactions to the other, Fig. 4 and Table 2. In addition to the intermolecular interactions, intramolecular N–H···O hydrogen bonds are also noted, Table 2.

For structural diversity in the structures of silver salts, see: Kundu et al. (2010). For crystal engineering studies on isomeric N,N'-bis(3-pyridylmethyl)oxalamides, see: Poplaukhin & Tiekink (2010). For the structure of the BF4- salt, see: Schauer et al. (1998). For additional structural analysis, see: Addison et al. (1984).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Each of the N,N'-bis(2-pyridylmethyl)oxalamide molecules is situated about a centre of inversion.
[Figure 2] Fig. 2. A part of the 2-D grid in (I) showing the µ2 and µ4– (twice) modes of coordination of the N,N'-bis(2-pyridylmethyl)oxalamide ligands. The N–H···O hydrogen bonds are shown as orange dashed lines. The trifluoromethanesulfonate anions and the C-bound hydrogen atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view in projection down the a axis of the 2-D grid in (I). The trifluoromethanesulfonate anions have been omitted for clarity.
[Figure 4] Fig. 4. A view in projection down the b axis of the crystal packing in (I). The layers shown in Fig. 3 are interspersed by the trifluoromethanesulfonate anions which are connected by N–H···O hydrogen bonds (orange dashed lines) to one layer, and C–H···O and C–H···F interactions (shown as purple and blue dashed lines, respectively) to the other.
Poly[[bis[µ2-N,N'-bis(2-pyridylmethyl)oxalamide- κ4N,O:N',O'][µ2-N,N'- bis(2-pyridylmethyl)oxalamide-κ2N:N']disilver(I)] bis(trifluoromethanesulfonate)] top
Crystal data top
[Ag(C14H14N4O2)1.5](CF3SO3)Z = 2
Mr = 662.38F(000) = 666
Triclinic, P1Dx = 1.763 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.7242 (14) ÅCell parameters from 5470 reflections
b = 11.1762 (17) Åθ = 2.7–40.5°
c = 14.210 (2) ŵ = 0.97 mm1
α = 95.977 (1)°T = 98 K
β = 105.948 (2)°Plate, colourless
γ = 107.017 (3)°0.36 × 0.32 × 0.18 mm
V = 1247.9 (3) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5688 independent reflections
Radiation source: fine-focus sealed tube5438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.868, Tmax = 1.000k = 1414
10177 measured reflectionsl = 1810
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0295P)2 + 1.3977P]
where P = (Fo2 + 2Fc2)/3
5688 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Ag(C14H14N4O2)1.5](CF3SO3)γ = 107.017 (3)°
Mr = 662.38V = 1247.9 (3) Å3
Triclinic, P1Z = 2
a = 8.7242 (14) ÅMo Kα radiation
b = 11.1762 (17) ŵ = 0.97 mm1
c = 14.210 (2) ÅT = 98 K
α = 95.977 (1)°0.36 × 0.32 × 0.18 mm
β = 105.948 (2)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5688 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5438 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 1.000Rint = 0.029
10177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.05Δρmax = 0.67 e Å3
5688 reflectionsΔρmin = 1.05 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.18992 (2)0.789941 (17)0.198313 (13)0.01680 (6)
S10.83484 (8)0.26442 (7)0.26813 (5)0.02348 (14)
F10.6446 (3)0.3310 (3)0.36252 (17)0.0586 (6)
F20.8906 (4)0.4736 (2)0.39309 (18)0.0663 (7)
F30.8647 (3)0.3038 (2)0.45763 (14)0.0527 (6)
O10.1034 (2)0.56970 (17)0.06781 (14)0.0230 (4)
O20.4189 (2)0.89384 (17)0.38477 (13)0.0210 (4)
O30.5809 (2)0.65495 (16)0.47965 (13)0.0180 (3)
O40.7817 (3)0.3298 (2)0.18909 (16)0.0330 (5)
O50.7255 (2)0.1362 (2)0.25641 (17)0.0346 (5)
O61.0141 (2)0.28246 (18)0.29925 (16)0.0284 (4)
N10.2257 (3)0.8994 (2)0.06692 (15)0.0171 (4)
N20.0110 (3)0.63965 (19)0.05116 (15)0.0183 (4)
H2N0.06950.62470.08980.022*
N30.0373 (3)0.8513 (2)0.28181 (15)0.0178 (4)
N40.3734 (3)1.07931 (19)0.42923 (15)0.0162 (4)
H4N0.40581.14750.47650.019*
N50.3388 (2)0.65910 (18)0.18415 (15)0.0148 (4)
N60.3291 (3)0.49849 (19)0.39599 (15)0.0166 (4)
H6N0.26270.42140.39420.020*
C10.3585 (3)1.0079 (2)0.09336 (19)0.0203 (5)
H10.44191.02460.15680.024*
C20.3804 (3)1.0972 (2)0.0328 (2)0.0229 (5)
H20.47571.17350.05450.028*
C30.2598 (4)1.0721 (3)0.0599 (2)0.0257 (6)
H30.27071.13080.10350.031*
C40.1235 (3)0.9603 (2)0.08807 (19)0.0219 (5)
H40.03940.94140.15160.026*
C50.1091 (3)0.8756 (2)0.02376 (18)0.0177 (5)
C60.0395 (3)0.7529 (2)0.0529 (2)0.0210 (5)
H6A0.10560.75480.00660.025*
H6B0.11400.74730.12100.025*
C70.0292 (3)0.5578 (2)0.00759 (18)0.0168 (5)
C80.1050 (3)0.7645 (3)0.2844 (2)0.0240 (5)
H80.13250.67810.25320.029*
C90.2128 (3)0.7952 (3)0.3302 (2)0.0292 (6)
H90.31110.73100.33140.035*
C100.1752 (3)0.9210 (3)0.3744 (2)0.0286 (6)
H100.24940.94520.40420.034*
C110.0268 (3)1.0114 (3)0.37424 (19)0.0224 (5)
H110.00281.09830.40490.027*
C120.0774 (3)0.9732 (2)0.32879 (17)0.0159 (4)
C130.2458 (3)1.0686 (2)0.33435 (17)0.0173 (5)
H13A0.28201.04020.27830.021*
H13B0.23351.15310.32860.021*
C140.4416 (3)0.9886 (2)0.44598 (17)0.0155 (4)
C150.4180 (3)0.6709 (2)0.11494 (17)0.0180 (5)
H150.40530.73180.07410.022*
C160.5166 (3)0.5990 (2)0.10053 (18)0.0203 (5)
H160.57520.61320.05320.024*
C170.5288 (3)0.5057 (3)0.15634 (19)0.0237 (5)
H170.59210.45220.14620.028*
C180.4466 (3)0.4921 (2)0.22738 (19)0.0207 (5)
H180.45240.42840.26630.025*
C190.3555 (3)0.5721 (2)0.24127 (17)0.0147 (4)
C200.2721 (3)0.5694 (2)0.32159 (17)0.0167 (5)
H20A0.29640.65820.35520.020*
H20B0.14800.53040.29000.020*
C210.4798 (3)0.5475 (2)0.46690 (17)0.0152 (4)
C220.8089 (5)0.3483 (3)0.3762 (2)0.0387 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.01925 (10)0.01673 (10)0.01533 (10)0.00778 (7)0.00530 (7)0.00263 (7)
S10.0203 (3)0.0251 (3)0.0249 (3)0.0084 (3)0.0054 (3)0.0072 (3)
F10.0680 (15)0.0967 (19)0.0516 (13)0.0604 (15)0.0387 (12)0.0368 (13)
F20.108 (2)0.0355 (12)0.0527 (14)0.0256 (13)0.0241 (14)0.0027 (10)
F30.0741 (15)0.0691 (15)0.0260 (9)0.0405 (13)0.0131 (10)0.0164 (10)
O10.0281 (9)0.0181 (9)0.0243 (9)0.0069 (7)0.0121 (8)0.0028 (7)
O20.0221 (9)0.0180 (9)0.0183 (8)0.0072 (7)0.0015 (7)0.0030 (7)
O30.0194 (8)0.0137 (8)0.0183 (8)0.0030 (7)0.0046 (7)0.0043 (7)
O40.0376 (11)0.0423 (12)0.0318 (11)0.0238 (10)0.0157 (9)0.0182 (10)
O50.0208 (9)0.0291 (11)0.0438 (12)0.0022 (8)0.0010 (9)0.0082 (10)
O60.0176 (9)0.0223 (10)0.0402 (11)0.0034 (7)0.0049 (8)0.0058 (9)
N10.0180 (10)0.0182 (10)0.0151 (9)0.0065 (8)0.0046 (8)0.0040 (8)
N20.0201 (10)0.0135 (9)0.0195 (10)0.0045 (8)0.0050 (8)0.0033 (8)
N30.0151 (9)0.0199 (10)0.0169 (10)0.0047 (8)0.0042 (8)0.0032 (8)
N40.0167 (9)0.0143 (9)0.0140 (9)0.0046 (8)0.0014 (8)0.0005 (8)
N50.0152 (9)0.0131 (9)0.0156 (9)0.0043 (7)0.0047 (8)0.0022 (7)
N60.0174 (9)0.0128 (9)0.0171 (9)0.0024 (8)0.0032 (8)0.0064 (8)
C10.0179 (11)0.0223 (12)0.0186 (11)0.0054 (10)0.0054 (10)0.0008 (10)
C20.0238 (13)0.0166 (12)0.0259 (13)0.0015 (10)0.0108 (11)0.0017 (10)
C30.0358 (15)0.0180 (12)0.0259 (13)0.0079 (11)0.0132 (12)0.0100 (10)
C40.0273 (13)0.0203 (12)0.0176 (12)0.0095 (10)0.0040 (10)0.0058 (10)
C50.0193 (11)0.0152 (11)0.0183 (11)0.0063 (9)0.0053 (9)0.0025 (9)
C60.0193 (12)0.0157 (12)0.0244 (12)0.0062 (10)0.0014 (10)0.0039 (10)
C70.0148 (10)0.0133 (11)0.0160 (11)0.0020 (9)0.0005 (9)0.0006 (9)
C80.0180 (12)0.0254 (13)0.0216 (12)0.0010 (10)0.0031 (10)0.0031 (10)
C90.0160 (12)0.0426 (17)0.0222 (13)0.0006 (11)0.0061 (10)0.0052 (12)
C100.0214 (13)0.0506 (18)0.0181 (12)0.0169 (13)0.0080 (11)0.0062 (12)
C110.0231 (12)0.0309 (14)0.0174 (11)0.0156 (11)0.0059 (10)0.0050 (10)
C120.0168 (11)0.0197 (12)0.0108 (10)0.0079 (9)0.0015 (9)0.0038 (9)
C130.0194 (11)0.0176 (11)0.0156 (11)0.0078 (9)0.0043 (9)0.0054 (9)
C140.0127 (10)0.0153 (11)0.0166 (11)0.0025 (8)0.0048 (9)0.0013 (9)
C150.0203 (11)0.0176 (11)0.0131 (10)0.0041 (9)0.0034 (9)0.0025 (9)
C160.0195 (11)0.0222 (12)0.0162 (11)0.0056 (10)0.0053 (9)0.0027 (9)
C170.0256 (13)0.0245 (13)0.0201 (12)0.0127 (11)0.0039 (10)0.0025 (10)
C180.0249 (12)0.0183 (12)0.0191 (12)0.0119 (10)0.0027 (10)0.0035 (10)
C190.0129 (10)0.0132 (10)0.0133 (10)0.0020 (8)0.0000 (8)0.0010 (8)
C200.0176 (11)0.0164 (11)0.0153 (11)0.0061 (9)0.0031 (9)0.0052 (9)
C210.0190 (11)0.0151 (11)0.0135 (10)0.0071 (9)0.0065 (9)0.0038 (9)
C220.0490 (19)0.0446 (19)0.0307 (16)0.0252 (16)0.0144 (15)0.0101 (14)
Geometric parameters (Å, º) top
Ag—N12.378 (2)C2—H20.9500
Ag—N32.210 (2)C3—C41.378 (4)
Ag—N52.250 (2)C3—H30.9500
Ag—O12.9665 (19)C4—C51.386 (3)
Ag—O22.7299 (17)C4—H40.9500
S1—O51.433 (2)C5—C61.510 (3)
S1—O41.447 (2)C6—H6A0.9900
S1—O61.4487 (19)C6—H6B0.9900
S1—C221.818 (3)C7—C7i1.537 (5)
F1—C221.344 (4)C8—C91.381 (4)
F2—C221.333 (4)C8—H80.9500
F3—C221.333 (4)C9—C101.382 (4)
O1—C71.225 (3)C9—H90.9500
O2—C141.228 (3)C10—C111.391 (4)
O3—C211.225 (3)C10—H100.9500
N1—C11.341 (3)C11—C121.385 (3)
N1—C51.347 (3)C11—H110.9500
N2—C71.337 (3)C12—C131.518 (3)
N2—C61.457 (3)C13—H13A0.9900
N2—H2N0.8800C13—H13B0.9900
N3—C81.346 (3)C14—C14ii1.538 (5)
N3—C121.352 (3)C15—C161.376 (4)
N4—C141.329 (3)C15—H150.9500
N4—C131.461 (3)C16—C171.386 (4)
N4—H4N0.8800C16—H160.9500
N5—C191.344 (3)C17—C181.387 (4)
N5—C151.345 (3)C17—H170.9500
N6—C211.334 (3)C18—C191.392 (3)
N6—C201.452 (3)C18—H180.9500
N6—H6N0.8800C19—C201.511 (3)
C1—C21.390 (4)C20—H20A0.9900
C1—H10.9500C20—H20B0.9900
C2—C31.382 (4)C21—C21iii1.543 (4)
N3—Ag—N5145.64 (8)O1—C7—N2125.9 (2)
N3—Ag—N1114.52 (7)O1—C7—C7i121.7 (3)
N5—Ag—N199.84 (7)N2—C7—C7i112.3 (3)
N3—Ag—O277.39 (7)N3—C8—C9123.0 (3)
N5—Ag—O286.55 (6)N3—C8—H8118.5
N1—Ag—O2117.91 (6)C9—C8—H8118.5
N3—Ag—O192.93 (6)C8—C9—C10118.9 (3)
N5—Ag—O184.19 (6)C8—C9—H9120.5
N1—Ag—O194.90 (6)C10—C9—H9120.5
O2—Ag—O1146.99 (5)C9—C10—C11118.8 (2)
O5—S1—O4115.07 (13)C9—C10—H10120.6
O5—S1—O6115.22 (12)C11—C10—H10120.6
O4—S1—O6114.01 (13)C12—C11—C10119.1 (3)
O5—S1—C22102.86 (16)C12—C11—H11120.4
O4—S1—C22104.09 (14)C10—C11—H11120.4
O6—S1—C22103.39 (15)N3—C12—C11122.2 (2)
C7—O1—Ag91.70 (14)N3—C12—C13118.0 (2)
C14—O2—Ag131.58 (16)C11—C12—C13119.8 (2)
C1—N1—C5117.9 (2)N4—C13—C12109.80 (19)
C1—N1—Ag115.41 (16)N4—C13—H13A109.7
C5—N1—Ag125.33 (16)C12—C13—H13A109.7
C7—N2—C6121.8 (2)N4—C13—H13B109.7
C7—N2—H2N119.1C12—C13—H13B109.7
C6—N2—H2N119.1H13A—C13—H13B108.2
C8—N3—C12117.9 (2)O2—C14—N4126.2 (2)
C8—N3—Ag118.87 (18)O2—C14—C14ii120.5 (3)
C12—N3—Ag123.19 (16)N4—C14—C14ii113.3 (3)
C14—N4—C13121.6 (2)N5—C15—C16123.1 (2)
C14—N4—H4N119.2N5—C15—H15118.5
C13—N4—H4N119.2C16—C15—H15118.5
C19—N5—C15118.4 (2)C15—C16—C17118.8 (2)
C19—N5—Ag124.21 (15)C15—C16—H16120.6
C15—N5—Ag117.34 (16)C17—C16—H16120.6
C21—N6—C20121.6 (2)C16—C17—C18118.5 (2)
C21—N6—H6N119.2C16—C17—H17120.7
C20—N6—H6N119.2C18—C17—H17120.7
N1—C1—C2123.4 (2)C17—C18—C19119.6 (2)
N1—C1—H1118.3C17—C18—H18120.2
C2—C1—H1118.3C19—C18—H18120.2
C3—C2—C1118.2 (2)N5—C19—C18121.4 (2)
C3—C2—H2120.9N5—C19—C20115.7 (2)
C1—C2—H2120.9C18—C19—C20122.9 (2)
C4—C3—C2118.8 (2)N6—C20—C19113.0 (2)
C4—C3—H3120.6N6—C20—H20A109.0
C2—C3—H3120.6C19—C20—H20A109.0
C3—C4—C5120.0 (2)N6—C20—H20B109.0
C3—C4—H4120.0C19—C20—H20B109.0
C5—C4—H4120.0H20A—C20—H20B107.8
N1—C5—C4121.7 (2)O3—C21—N6125.6 (2)
N1—C5—C6117.5 (2)O3—C21—C21iii121.4 (3)
C4—C5—C6120.9 (2)N6—C21—C21iii113.0 (2)
N2—C6—C5113.0 (2)F3—C22—F2109.1 (3)
N2—C6—H6A109.0F3—C22—F1106.6 (3)
C5—C6—H6A109.0F2—C22—F1107.8 (3)
N2—C6—H6B109.0F3—C22—S1111.0 (2)
C5—C6—H6B109.0F2—C22—S1111.4 (2)
H6A—C6—H6B107.8F1—C22—S1110.8 (2)
N3—Ag—O1—C7163.63 (15)Ag—O1—C7—C7i111.3 (3)
N5—Ag—O1—C750.71 (15)C6—N2—C7—O13.3 (4)
N1—Ag—O1—C748.71 (15)C6—N2—C7—C7i176.9 (2)
O2—Ag—O1—C7125.18 (15)C12—N3—C8—C91.8 (4)
N3—Ag—O2—C1439.2 (2)Ag—N3—C8—C9176.6 (2)
N5—Ag—O2—C14171.4 (2)N3—C8—C9—C101.0 (4)
N1—Ag—O2—C1472.1 (2)C8—C9—C10—C112.4 (4)
O1—Ag—O2—C14114.8 (2)C9—C10—C11—C120.9 (4)
N3—Ag—N1—C187.98 (19)C8—N3—C12—C113.3 (3)
N5—Ag—N1—C191.61 (18)Ag—N3—C12—C11175.01 (18)
O2—Ag—N1—C10.3 (2)C8—N3—C12—C13174.4 (2)
O1—Ag—N1—C1176.54 (17)Ag—N3—C12—C137.3 (3)
N3—Ag—N1—C578.4 (2)C10—C11—C12—N32.0 (4)
N5—Ag—N1—C5102.0 (2)C10—C11—C12—C13175.7 (2)
O2—Ag—N1—C5166.73 (18)C14—N4—C13—C1274.8 (3)
O1—Ag—N1—C517.0 (2)N3—C12—C13—N495.2 (2)
N5—Ag—N3—C860.0 (2)C11—C12—C13—N482.5 (3)
N1—Ag—N3—C8120.70 (19)Ag—O2—C14—N411.8 (4)
O2—Ag—N3—C8124.1 (2)Ag—O2—C14—C14ii168.21 (18)
O1—Ag—N3—C823.97 (19)C13—N4—C14—O26.2 (4)
N5—Ag—N3—C12121.69 (19)C13—N4—C14—C14ii173.8 (2)
N1—Ag—N3—C1257.6 (2)C19—N5—C15—C160.6 (3)
O2—Ag—N3—C1257.57 (18)Ag—N5—C15—C16178.29 (18)
O1—Ag—N3—C12154.33 (18)N5—C15—C16—C173.2 (4)
N3—Ag—N5—C192.5 (3)C15—C16—C17—C182.6 (4)
N1—Ag—N5—C19178.21 (18)C16—C17—C18—C190.4 (4)
O2—Ag—N5—C1964.05 (18)C15—N5—C19—C182.5 (3)
O1—Ag—N5—C1984.22 (18)Ag—N5—C19—C18178.64 (17)
N3—Ag—N5—C15176.41 (15)C15—N5—C19—C20176.4 (2)
N1—Ag—N5—C152.93 (18)Ag—N5—C19—C202.4 (3)
O2—Ag—N5—C15114.81 (17)C17—C18—C19—N53.0 (4)
O1—Ag—N5—C1596.91 (17)C17—C18—C19—C20175.8 (2)
C5—N1—C1—C20.9 (4)C21—N6—C20—C1976.1 (3)
Ag—N1—C1—C2166.6 (2)N5—C19—C20—N6165.2 (2)
N1—C1—C2—C30.7 (4)C18—C19—C20—N613.7 (3)
C1—C2—C3—C40.2 (4)C20—N6—C21—O32.8 (4)
C2—C3—C4—C50.1 (4)C20—N6—C21—C21iii175.8 (2)
C1—N1—C5—C40.6 (4)O5—S1—C22—F364.0 (3)
Ag—N1—C5—C4165.49 (18)O4—S1—C22—F3175.7 (2)
C1—N1—C5—C6179.8 (2)O6—S1—C22—F356.3 (3)
Ag—N1—C5—C614.1 (3)O5—S1—C22—F2174.2 (2)
C3—C4—C5—N10.2 (4)O4—S1—C22—F253.9 (3)
C3—C4—C5—C6179.8 (2)O6—S1—C22—F265.5 (3)
C7—N2—C6—C5120.3 (2)O5—S1—C22—F154.3 (3)
N1—C5—C6—N258.2 (3)O4—S1—C22—F166.1 (3)
C4—C5—C6—N2122.2 (3)O6—S1—C22—F1174.5 (2)
Ag—O1—C7—N268.5 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O4iv0.882.172.992 (4)156
N4—H4n···O3ii0.882.192.980 (3)149
N6—H6n···O6v0.882.222.936 (3)139
C1—H1···O5vi0.952.363.197 (3)146
C17—H17···O40.952.433.334 (4)158
C18—H18···F10.952.453.261 (4)144
N2—H2n···O1i0.882.322.697 (3)106
N4—H4n···O2ii0.882.322.692 (3)105
N6—H6n···O3iii0.882.342.709 (3)106
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x1, y, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C14H14N4O2)1.5](CF3SO3)
Mr662.38
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)8.7242 (14), 11.1762 (17), 14.210 (2)
α, β, γ (°)95.977 (1), 105.948 (2), 107.017 (3)
V3)1247.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.36 × 0.32 × 0.18
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.868, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10177, 5688, 5438
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.079, 1.05
No. of reflections5688
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 1.05

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ag—N12.378 (2)Ag—O12.9665 (19)
Ag—N32.210 (2)Ag—O22.7299 (17)
Ag—N52.250 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O4i0.882.172.992 (4)156
N4—H4n···O3ii0.882.192.980 (3)149
N6—H6n···O6iii0.882.222.936 (3)139
C1—H1···O5iv0.952.363.197 (3)146
C17—H17···O40.952.433.334 (4)158
C18—H18···F10.952.453.261 (4)144
N2—H2n···O1v0.882.322.697 (3)106
N4—H4n···O2ii0.882.322.692 (3)105
N6—H6n···O3vi0.882.342.709 (3)106
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z+1.
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKundu, N., Audhya, A., Towsif Abtab, Sk Md, Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269–1282.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPoplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302–1306.  Web of Science CSD CrossRef Google Scholar
First citationSchauer, C. L., Matwey, E., Fowler, F. W. & Lauher, J. W. (1998). Cryst. Eng. 1, 213–223.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds