organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Oxo-3,4-di­hydro-2H-1,3-benzoxazin-4-yl)urea monohydrate

aBaku State University, Z. Khalilov Street 23, Baku, AZ-1148, Azerbaijan
*Correspondence e-mail: mkurbanova72@mail.ru

(Received 2 August 2010; accepted 11 August 2010; online 18 August 2010)

The organic molecule in the title hydrate, C9H9N3O3·H2O, was obtained by the condenstation of salicylic aldehyde with urea in acetonitrile. The oxazine ring adopts a slightly distorted sofa conformation, with the N atom deviating from the plane passing through the other atoms of the ring by 0.267 (2) Å. The crystal structure displays inter­molecular N—H⋯O and O—H⋯O hydrogen bonding.

Related literature

For details of the condensation of salicyl aldehyde with urea, see: Pandey et al. (2008[Pandey, V. K., Mukesh, A. K. & Noopur, T. (2008). Indian J. Chem. Sect. B, 47, 1910-1914.]); El-Hamouly et al. (2007[El-Hamouly, W. S., Tawfeek, H. A. & Abbas, M. H. (2007). Egypt. J. Chem. 50, 97-104.]); Bobowski & Shavel (1967[Bobowski, G. & Shavel, J. (1967). J. Org. Chem. 32, 953-959.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O3·H2O

  • Mr = 225.21

  • Monoclinic, P 21 /n

  • a = 5.3393 (10) Å

  • b = 8.5465 (16) Å

  • c = 21.846 (4) Å

  • β = 95.472 (4)°

  • V = 992.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.965

  • 10468 measured reflections

  • 2448 independent reflections

  • 1942 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.00

  • 2448 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.90 2.05 2.946 (2) 174
N2—H2A⋯O3ii 0.90 2.41 3.088 (2) 132
N3—H3A⋯O4iii 0.93 2.14 3.054 (2) 169
N3—H3B⋯O4 0.96 1.99 2.923 (2) 166
O4—H4A⋯O2iv 0.94 1.91 2.774 (2) 153
O4—H4B⋯O3v 0.94 1.94 2.842 (2) 161
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z; (iii) x+1, y, z; (iv) x-1, y-1, z; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3,4-Dihydro-3-alkyl-2H-1,3-benzoxazin-2-ones, 4,4'-oxobis(3,4-dihydro-3-alkyl-2H-benzoxazin-2-ones), and 1-(3,4-dihydro-3-alkyl-2-oxo-2H-1,3-benzoxazin-4-yl-1,3-dialkylureas were obtained by the condensation of o-hydroxyaromatic aldehydes with alkylisocyanates (Bobowski & Shavel, 1967). The formation 1,1'-[(2-hydroxyphenyl)methylene]diurea by the condensation of salicyl aldehyde with two molecules of carbamide is well known from the literature (El-Hamouly et al., 2007; Pandey et al., 2008).

The title molecule contains a fused bicycle system containing two six-membered rings (benzene and oxazin) (Fig. 1). The oxazin cycle adopts a slightly distorted sofa conformation, with the nitrogen N1 atom deviating from plane passed through the other atoms of the cycle by 0.267 (2)Å. Such disposion of the nitrogen atom is defined by the intermolecular N1–H1···O2i hydrogen bonding (Table 1). Symmetry code: (i) -x+1, -y+2, -z+1. The nitrogen N1 atom has a pyramidalized configuration (sum of bond angles at the nitrogen N1 atom is 352.7°, the C2–N1–O1–C1 torsion angle is 22.4 (2)°). The carbamide substituent of the oxazin cycle is in axial position (the C9–N2–C2–N1 torsion angle is -64.31 (15)°).

Compound I possesses one asymmetric center at the C2, but the crystal of I is racemate.

In crystal of I, the organic molecules and solvate water molecules are bound into complex two-tier layers parallel to (0 0 1) by the hydrogen bonds (Fig. 2, Table 1).

Related literature top

For details of the condensation of salicyl aldehyde with urea, see: Pandey et al. (2008); El-Hamouly et al. (2007); Bobowski & Shavel (1967).

Experimental top

The solution of salicylic aldehyde (0.02 mol), urea (0.03 mol), 1 ml trichloroacetic acid, 3 ml AcOH in 15 ml acetonitril was mixed for 3-4 h (Fig. 3). Of a reaction course observed using thin layer chromatography (TLC) method. After cooling the product was filtered and washed out by ethanol. The target product was obtained by re-crystallization of a water solution of ethanol (1:3) as white crystals. M.p. = 498-500 K. IR, ν/cm-1: 1456-1541 (CC), 1646 (NH–C(O)–NH2), 1710 (C(O)–O), 3349 (NH(lactam), associated), 3346 (C(O)–NH2). Mass spectrum, m/z: 230 [M+Na]+. 1H NMR ((CD3)2SO, 293 K): 8.5 (S, 1H, NH), 7.3(m, 2H, H6, H7), 7.15 (m, 2H, H3, H5),7.05 (d, 1H, H8, 3J = 7.2), 6.2 (d, 1H, H4, 3J = 7.5), 5.65 (S, 2H, NH2). 13C NMR ((CD3)2SO, 293 K): δ = 164 (S, NH–C(O)–NH2), 158 (S, C(O)–O), 150 (S, C9), 130 (S, C8), 127 (S, C5), 124.5 (S, C7), 121 (S, C10), 116 (S, C6), 58 (S, C4).

Refinement top

The amino-H atoms as well as H-atoms of the water solvate molecule were localized in the difference Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O)]. The other hydrogen atoms were placed in calculated positions with C–H = 0.93-0.98Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Structure description top

3,4-Dihydro-3-alkyl-2H-1,3-benzoxazin-2-ones, 4,4'-oxobis(3,4-dihydro-3-alkyl-2H-benzoxazin-2-ones), and 1-(3,4-dihydro-3-alkyl-2-oxo-2H-1,3-benzoxazin-4-yl-1,3-dialkylureas were obtained by the condensation of o-hydroxyaromatic aldehydes with alkylisocyanates (Bobowski & Shavel, 1967). The formation 1,1'-[(2-hydroxyphenyl)methylene]diurea by the condensation of salicyl aldehyde with two molecules of carbamide is well known from the literature (El-Hamouly et al., 2007; Pandey et al., 2008).

The title molecule contains a fused bicycle system containing two six-membered rings (benzene and oxazin) (Fig. 1). The oxazin cycle adopts a slightly distorted sofa conformation, with the nitrogen N1 atom deviating from plane passed through the other atoms of the cycle by 0.267 (2)Å. Such disposion of the nitrogen atom is defined by the intermolecular N1–H1···O2i hydrogen bonding (Table 1). Symmetry code: (i) -x+1, -y+2, -z+1. The nitrogen N1 atom has a pyramidalized configuration (sum of bond angles at the nitrogen N1 atom is 352.7°, the C2–N1–O1–C1 torsion angle is 22.4 (2)°). The carbamide substituent of the oxazin cycle is in axial position (the C9–N2–C2–N1 torsion angle is -64.31 (15)°).

Compound I possesses one asymmetric center at the C2, but the crystal of I is racemate.

In crystal of I, the organic molecules and solvate water molecules are bound into complex two-tier layers parallel to (0 0 1) by the hydrogen bonds (Fig. 2, Table 1).

For details of the condensation of salicyl aldehyde with urea, see: Pandey et al. (2008); El-Hamouly et al. (2007); Bobowski & Shavel (1967).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% proabbility level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the molecules of I viewed down the a axis. Dashed lines show intermolecular hydrogen bonds.
[Figure 3] Fig. 3. Condensation of salicyl aldehyde with two molecules of urea with reception benzoxazin.
1-(2-Oxo-3,4-dihydro-2H-1,3-benzoxazin-4-yl)urea monohydrate top
Crystal data top
C9H9N3O3·H2OF(000) = 472
Mr = 225.21Dx = 1.508 Mg m3
Monoclinic, P21/nMelting point: 499 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.3393 (10) ÅCell parameters from 3341 reflections
b = 8.5465 (16) Åθ = 2.6–28.2°
c = 21.846 (4) ŵ = 0.12 mm1
β = 95.472 (4)°T = 296 K
V = 992.3 (3) Å3Prism, colourless
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
2448 independent reflections
Radiation source: fine-focus sealed tube1942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 77
Tmin = 0.965, Tmax = 0.965k = 1111
10468 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.117H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.12P]
where P = (Fo2 + 2Fc2)/3
2448 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C9H9N3O3·H2OV = 992.3 (3) Å3
Mr = 225.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.3393 (10) ŵ = 0.12 mm1
b = 8.5465 (16) ÅT = 296 K
c = 21.846 (4) Å0.30 × 0.30 × 0.30 mm
β = 95.472 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2448 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1942 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.965Rint = 0.058
10468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
2448 reflectionsΔρmin = 0.29 e Å3
145 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72114 (16)0.97940 (12)0.35888 (4)0.0372 (2)
O20.7419 (2)1.05038 (14)0.45587 (5)0.0500 (3)
O30.74592 (16)0.64789 (12)0.40776 (4)0.0377 (3)
N10.3995 (2)0.91465 (14)0.41776 (5)0.0360 (3)
H10.35480.91790.45650.043*
N20.32112 (19)0.63842 (14)0.40155 (5)0.0348 (3)
H2A0.18390.58020.40650.042*
N30.5568 (2)0.42106 (15)0.43002 (6)0.0420 (3)
H3A0.70980.37940.44660.050*
H3B0.40770.36520.43780.050*
C10.6227 (2)0.98097 (16)0.41376 (6)0.0337 (3)
C20.2868 (2)0.79512 (16)0.37637 (6)0.0322 (3)
H20.10540.81540.37090.039*
C30.3850 (2)0.81370 (15)0.31454 (6)0.0316 (3)
C40.2696 (3)0.74090 (18)0.26224 (7)0.0418 (3)
H40.12740.67960.26520.050*
C50.3641 (3)0.7586 (2)0.20596 (7)0.0495 (4)
H50.28520.70980.17130.059*
C60.5756 (3)0.8489 (2)0.20131 (7)0.0483 (4)
H60.63980.86000.16340.058*
C70.6926 (3)0.92281 (19)0.25240 (7)0.0418 (3)
H70.83470.98420.24930.050*
C80.5943 (2)0.90387 (16)0.30837 (6)0.0316 (3)
C90.5510 (2)0.57119 (16)0.41307 (5)0.0306 (3)
O40.08489 (19)0.29496 (14)0.46692 (5)0.0499 (3)
H4A0.00700.19950.45550.075*
H4B0.11160.29880.50990.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0276 (4)0.0451 (6)0.0392 (5)0.0083 (4)0.0049 (4)0.0007 (4)
O20.0477 (6)0.0588 (7)0.0432 (6)0.0203 (5)0.0027 (5)0.0081 (5)
O30.0229 (4)0.0452 (6)0.0455 (5)0.0048 (4)0.0059 (4)0.0060 (4)
N10.0293 (5)0.0432 (7)0.0368 (6)0.0030 (5)0.0093 (4)0.0067 (5)
N20.0218 (5)0.0415 (6)0.0419 (6)0.0091 (4)0.0066 (4)0.0025 (5)
N30.0385 (6)0.0410 (7)0.0477 (7)0.0032 (5)0.0101 (5)0.0076 (5)
C10.0295 (6)0.0344 (7)0.0371 (7)0.0026 (5)0.0024 (5)0.0001 (5)
C20.0177 (5)0.0416 (7)0.0375 (7)0.0009 (5)0.0041 (5)0.0021 (5)
C30.0240 (5)0.0363 (7)0.0343 (6)0.0033 (5)0.0019 (5)0.0020 (5)
C40.0352 (7)0.0466 (8)0.0423 (8)0.0025 (6)0.0023 (6)0.0008 (6)
C50.0556 (9)0.0565 (10)0.0349 (7)0.0027 (7)0.0032 (6)0.0035 (7)
C60.0578 (9)0.0539 (9)0.0346 (7)0.0087 (7)0.0121 (6)0.0041 (7)
C70.0385 (7)0.0448 (8)0.0437 (8)0.0023 (6)0.0125 (6)0.0086 (6)
C80.0248 (5)0.0350 (7)0.0350 (6)0.0040 (5)0.0025 (5)0.0023 (5)
C90.0269 (6)0.0396 (7)0.0260 (6)0.0056 (5)0.0062 (4)0.0013 (5)
O40.0416 (6)0.0568 (7)0.0506 (6)0.0155 (5)0.0009 (5)0.0044 (5)
Geometric parameters (Å, º) top
O1—C11.3541 (16)C2—H20.9800
O1—C81.3965 (16)C3—C81.3746 (18)
O2—C11.2213 (17)C3—C41.3919 (19)
O3—C91.2449 (15)C4—C51.381 (2)
N1—C11.3300 (16)C4—H40.9300
N1—C21.4558 (17)C5—C61.380 (2)
N1—H10.9026C5—H50.9300
N2—C91.3567 (17)C6—C71.379 (2)
N2—C21.4527 (18)C6—H60.9300
N2—H2A0.9010C7—C81.3853 (19)
N3—C91.3350 (19)C7—H70.9300
N3—H3A0.9321O4—H4A0.9390
N3—H3B0.9572O4—H4B0.9361
C2—C31.5032 (18)
C1—O1—C8120.28 (10)C4—C3—C2121.70 (12)
C1—N1—C2125.32 (11)C5—C4—C3120.75 (14)
C1—N1—H1111.6C5—C4—H4119.6
C2—N1—H1118.3C3—C4—H4119.6
C9—N2—C2122.67 (10)C6—C5—C4119.86 (14)
C9—N2—H2A118.4C6—C5—H5120.1
C2—N2—H2A118.7C4—C5—H5120.1
C9—N3—H3A118.1C7—C6—C5120.49 (14)
C9—N3—H3B122.1C7—C6—H6119.8
H3A—N3—H3B117.0C5—C6—H6119.8
O2—C1—N1124.29 (12)C6—C7—C8118.70 (14)
O2—C1—O1116.96 (12)C6—C7—H7120.7
N1—C1—O1118.66 (11)C8—C7—H7120.6
N2—C2—N1112.46 (11)C3—C8—C7122.14 (13)
N2—C2—C3113.30 (11)C3—C8—O1121.28 (11)
N1—C2—C3108.97 (10)C7—C8—O1116.57 (12)
N2—C2—H2107.3O3—C9—N3122.31 (12)
N1—C2—H2107.3O3—C9—N2120.61 (12)
C3—C2—H2107.3N3—C9—N2117.07 (11)
C8—C3—C4118.06 (12)H4A—O4—H4B108.6
C8—C3—C2120.24 (11)
C2—N1—C1—O2161.10 (14)C3—C4—C5—C60.2 (2)
C2—N1—C1—O122.4 (2)C4—C5—C6—C70.5 (3)
C8—O1—C1—O2179.29 (12)C5—C6—C7—C80.3 (2)
C8—O1—C1—N12.56 (18)C4—C3—C8—C70.5 (2)
C9—N2—C2—N164.31 (15)C2—C3—C8—C7179.31 (12)
C9—N2—C2—C359.82 (15)C4—C3—C8—O1179.47 (12)
C1—N1—C2—N298.81 (15)C2—C3—C8—O10.31 (19)
C1—N1—C2—C327.67 (17)C6—C7—C8—C30.2 (2)
N2—C2—C3—C8110.70 (13)C6—C7—C8—O1179.23 (13)
N1—C2—C3—C815.31 (16)C1—O1—C8—C38.08 (18)
N2—C2—C3—C469.07 (15)C1—O1—C8—C7172.86 (12)
N1—C2—C3—C4164.92 (12)C2—N2—C9—O36.81 (19)
C8—C3—C4—C50.3 (2)C2—N2—C9—N3173.09 (11)
C2—C3—C4—C5179.52 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.902.052.946 (2)174
N2—H2A···O3ii0.902.413.088 (2)132
N3—H3A···O4iii0.932.143.054 (2)169
N3—H3B···O40.961.992.923 (2)166
O4—H4A···O2iv0.941.912.774 (2)153
O4—H4B···O3v0.941.942.842 (2)161
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x1, y1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H9N3O3·H2O
Mr225.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.3393 (10), 8.5465 (16), 21.846 (4)
β (°) 95.472 (4)
V3)992.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.965, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
10468, 2448, 1942
Rint0.058
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.00
No. of reflections2448
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.902.052.946 (2)174
N2—H2A···O3ii0.902.413.088 (2)132
N3—H3A···O4iii0.932.143.054 (2)169
N3—H3B···O40.961.992.923 (2)166
O4—H4A···O2iv0.941.912.774 (2)153
O4—H4B···O3v0.941.942.842 (2)161
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x1, y1, z; (v) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Dr Victor N. Khrustalev for fruitful discussions and help with this work.

References

First citationBobowski, G. & Shavel, J. (1967). J. Org. Chem. 32, 953–959.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Hamouly, W. S., Tawfeek, H. A. & Abbas, M. H. (2007). Egypt. J. Chem. 50, 97–104.  CAS Google Scholar
First citationPandey, V. K., Mukesh, A. K. & Noopur, T. (2008). Indian J. Chem. Sect. B, 47, 1910–1914.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds