organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro-5-methyl-3-tri­fluoro­meth­yl-1H-pyrazol-1-yl)-6-(prop-2-ynyl­­oxy)pyrimidine

aState Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
*Correspondence e-mail: meixiangdong@gmail.com

(Received 6 January 2010; accepted 7 August 2010; online 18 August 2010)

The molecule of the title compound, C12H8ClF3N4O, is twisted as indicated by the C—O—C—C torsion angle of 76.9 (3)°. Moreover, the trifluoro­methyl group shows rotational disorder of the F atoms, with site-occupancy factors of 0.653 (6) and 0.347 (6). The dihedral angle between the rings is 1.88 (12) Å.

Related literature

For the applications of pyrazole derivatives, see: Hirai et al. (2002[Hirai, K., Uchida, A. & Ohno, R. (2002). Herbicide Classes in Development, edited by P. Boger, K. Hirai & K. Wakabyashi, pp. 279-289. Heidelberg: Springer-Verlag.]); Krishnaiah et al. (2002[Krishnaiah, A. & Narsaiah, B. (2002). J. Fluorine Chem. 115, 9-11.]); Ohno et al. (2004[Ohno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci. 29, 15-26.]); Li et al. (2008[Li, H. B., Zhu, Y. Q., Song, X. W., Hu, F. Z., Liu, B., Li, Y. H., Niu, Z. X., Liu, P., Wang, Z. H., Song, H. B., Zou, X. M. & Yang, H. Z. (2008). J. Agric. Food Chem. 56, 9535-9542.]); Shiga et al. (2003[Shiga, Y., Okada, I., Ikeda, Y., Takizawa, E. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 313-314.]); Vicentini et al. (2007[Vicentini, C. B., Romagnoli, C., Andreotti, E. & Mares, D. (2007). J. Agric. Food. Chem. 55, 10331-10338.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8ClF3N4O

  • Mr = 316.67

  • Monoclinic, P 21 /n

  • a = 7.8331 (13) Å

  • b = 7.7258 (12) Å

  • c = 21.757 (4) Å

  • β = 99.270 (11)°

  • V = 1299.5 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.02 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.583, Tmax = 0.752

  • 8543 measured reflections

  • 2361 independent reflections

  • 2009 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.106

  • S = 1.07

  • 2361 reflections

  • 220 parameters

  • 69 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1998[Siemens (1998). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is much agrochemical interest in pyrazole derivatives because of their excellent bioactivity (Krishnaiah et al., 2002; Ohno et al., 2004; Li et al., 2008 Shiga et al., 2003; Vicentini et al., 2007). Numerous herbicides such as pyrazolate, pyrazoxyfen, benzofenap, pyraflufen-ethyl, fluazolate and pyrazosulfuron-ethyl with pyrazole moieties were commercialized (Hirai et al., 2002). Recently, a novel pyrazole derivative (I) with a trifluoromethyl group was synthesized. The trifluoromethyl group shows rotational disorder of the F atoms, with site occupancy factors of 0.653 (6) and 0.347 (6). This molecule is twisted, prop-2-ynyloxy is out of the pyrimidine ring plane, as indicated by the C(8)—O(1)—C(10)—C(11) torsion angle of 76.9 (3)°. The crystal structure of the title compound is shown in Fig. 1.

Related literature top

For the applications of pyrazole derivatives, see: Hirai et al. (2002); Krishnaiah et al. (2002); Ohno et al. (2004); Li et al. (2008); Shiga et al. (2003); Vicentini et al. (2007).

Experimental top

The title compound (0.15 g) was dissolved in the mixed solvent of ethanol and acetone (25 mL) at room temperature. Colorless single crystals of compound (I) were obtained through slow evaporation after two weeks.

Refinement top

The trifluoromethyl group shows rotational disorder of the F atoms, with site occupancy factors of 0.653 (6) and 0.347 (6).All the hydrogen atoms were placed at their geometrical position with C—H = 0.93-0.98Å and Uiso(H) = 1.2-1.5Ueq(C).

Structure description top

There is much agrochemical interest in pyrazole derivatives because of their excellent bioactivity (Krishnaiah et al., 2002; Ohno et al., 2004; Li et al., 2008 Shiga et al., 2003; Vicentini et al., 2007). Numerous herbicides such as pyrazolate, pyrazoxyfen, benzofenap, pyraflufen-ethyl, fluazolate and pyrazosulfuron-ethyl with pyrazole moieties were commercialized (Hirai et al., 2002). Recently, a novel pyrazole derivative (I) with a trifluoromethyl group was synthesized. The trifluoromethyl group shows rotational disorder of the F atoms, with site occupancy factors of 0.653 (6) and 0.347 (6). This molecule is twisted, prop-2-ynyloxy is out of the pyrimidine ring plane, as indicated by the C(8)—O(1)—C(10)—C(11) torsion angle of 76.9 (3)°. The crystal structure of the title compound is shown in Fig. 1.

For the applications of pyrazole derivatives, see: Hirai et al. (2002); Krishnaiah et al. (2002); Ohno et al. (2004); Li et al. (2008); Shiga et al. (2003); Vicentini et al. (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with labeling scheme; displacement ellipsoids are shown at the 30% probability level and atoms F1', F2' and F3' representing the smaller fraction of the disordered trifluoromethyl group have been excluded.
4-(4-Chloro-5-methyl-3-trifluoromethyl-1H-pyrazol-1-yl)-6-(prop-2- ynyloxy)pyrimidine top
Crystal data top
C12H8ClF3N4OF(000) = 640
Mr = 316.67Dx = 1.619 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54186 Å
a = 7.8331 (13) ÅCell parameters from 564 reflections
b = 7.7258 (12) Åθ = 2.2–68.3°
c = 21.757 (4) ŵ = 3.02 mm1
β = 99.270 (11)°T = 173 K
V = 1299.5 (4) Å3Platelet, colorless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2361 independent reflections
Radiation source: rotating anode2009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scans at fixed χ = 45°θmax = 68.3°, θmin = 4.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.583, Tmax = 0.752k = 96
8543 measured reflectionsl = 2622
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.8523P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.016
2361 reflectionsΔρmax = 0.31 e Å3
220 parametersΔρmin = 0.22 e Å3
69 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0054 (5)
Crystal data top
C12H8ClF3N4OV = 1299.5 (4) Å3
Mr = 316.67Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.8331 (13) ŵ = 3.02 mm1
b = 7.7258 (12) ÅT = 173 K
c = 21.757 (4) Å0.20 × 0.20 × 0.10 mm
β = 99.270 (11)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2361 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2009 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.752Rint = 0.043
8543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04469 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
2361 reflectionsΔρmin = 0.22 e Å3
220 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.05485 (8)0.66461 (9)0.12912 (3)0.0419 (2)
F10.0581 (14)1.0026 (19)0.2067 (6)0.068 (3)0.65 (3)
F20.1586 (17)1.2382 (8)0.1787 (5)0.066 (2)0.65 (3)
F30.3301 (10)1.040 (2)0.2184 (4)0.080 (3)0.65 (3)
F1'0.038 (2)1.038 (4)0.2018 (12)0.062 (4)0.35 (3)
F2'0.229 (4)1.227 (2)0.1908 (8)0.074 (4)0.35 (3)
F3'0.298 (3)0.977 (3)0.2215 (7)0.076 (4)0.35 (3)
O10.4744 (2)1.4528 (2)0.08155 (7)0.0328 (4)
N10.2473 (2)1.0968 (3)0.07612 (9)0.0307 (5)
N20.2397 (2)0.9953 (2)0.02454 (9)0.0273 (4)
N30.2814 (3)0.9661 (3)0.07855 (9)0.0339 (5)
N40.4008 (2)1.1943 (3)0.13275 (9)0.0300 (5)
C10.1864 (3)0.9977 (3)0.11729 (11)0.0298 (5)
C20.1401 (3)0.8333 (3)0.09272 (11)0.0292 (5)
C30.1757 (3)0.8320 (3)0.03301 (11)0.0280 (5)
C40.1845 (3)1.0661 (4)0.18093 (13)0.0407 (6)
C50.1542 (3)0.6869 (3)0.01239 (12)0.0369 (6)
H5A0.26300.66810.02820.055*
H5B0.06260.71550.04710.055*
H5C0.12280.58140.00820.055*
C60.2966 (3)1.0682 (3)0.02856 (10)0.0261 (5)
C70.3362 (3)1.0361 (3)0.12775 (12)0.0349 (6)
H7A0.32840.96480.16370.042*
C80.4111 (3)1.2901 (3)0.08172 (11)0.0271 (5)
C90.3614 (3)1.2338 (3)0.02663 (10)0.0275 (5)
H9A0.37141.30420.00960.033*
C100.5077 (3)1.5223 (3)0.14053 (11)0.0350 (6)
H10A0.56621.43320.16240.042*
H10B0.58611.62310.13250.042*
C110.3481 (3)1.5756 (3)0.18034 (11)0.0355 (6)
C120.2244 (4)1.6239 (4)0.21331 (13)0.0516 (8)
H120.12401.66320.24010.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0394 (4)0.0400 (4)0.0474 (4)0.0066 (3)0.0100 (3)0.0144 (3)
F10.087 (5)0.079 (5)0.049 (3)0.028 (4)0.042 (4)0.006 (3)
F20.111 (5)0.046 (2)0.048 (3)0.007 (3)0.035 (3)0.0082 (17)
F30.055 (2)0.137 (6)0.046 (3)0.014 (3)0.0046 (18)0.036 (3)
F1'0.040 (5)0.092 (9)0.058 (6)0.002 (5)0.021 (4)0.015 (6)
F2'0.128 (9)0.058 (5)0.044 (5)0.048 (6)0.034 (6)0.014 (4)
F3'0.089 (7)0.092 (8)0.038 (4)0.028 (5)0.015 (4)0.006 (5)
O10.0436 (10)0.0302 (9)0.0243 (9)0.0109 (8)0.0043 (7)0.0016 (7)
N10.0350 (11)0.0304 (11)0.0280 (11)0.0009 (9)0.0088 (8)0.0017 (8)
N20.0286 (10)0.0263 (10)0.0275 (10)0.0011 (8)0.0057 (8)0.0002 (8)
N30.0423 (12)0.0294 (11)0.0307 (11)0.0047 (9)0.0079 (9)0.0037 (9)
N40.0310 (10)0.0307 (11)0.0288 (11)0.0015 (9)0.0064 (8)0.0027 (8)
C10.0274 (12)0.0326 (13)0.0302 (13)0.0023 (10)0.0070 (9)0.0035 (10)
C20.0239 (11)0.0312 (13)0.0329 (13)0.0002 (10)0.0058 (9)0.0075 (10)
C30.0220 (11)0.0263 (12)0.0350 (13)0.0006 (9)0.0023 (9)0.0026 (10)
C40.0404 (14)0.0476 (17)0.0370 (15)0.0060 (13)0.0149 (12)0.0012 (12)
C50.0393 (13)0.0305 (13)0.0405 (15)0.0069 (11)0.0053 (11)0.0012 (11)
C60.0237 (11)0.0276 (12)0.0269 (12)0.0016 (9)0.0040 (9)0.0013 (9)
C70.0447 (14)0.0318 (14)0.0292 (13)0.0044 (11)0.0095 (11)0.0075 (10)
C80.0243 (11)0.0260 (12)0.0305 (13)0.0012 (9)0.0032 (9)0.0005 (10)
C90.0320 (12)0.0254 (12)0.0248 (12)0.0024 (10)0.0035 (9)0.0017 (9)
C100.0406 (14)0.0362 (14)0.0290 (13)0.0099 (11)0.0078 (10)0.0053 (11)
C110.0497 (15)0.0310 (14)0.0269 (13)0.0004 (12)0.0093 (11)0.0015 (10)
C120.0613 (19)0.0503 (18)0.0402 (16)0.0150 (15)0.0008 (14)0.0051 (14)
Geometric parameters (Å, º) top
Cl1—C21.715 (2)C1—C21.403 (3)
F1—C41.309 (7)C1—C41.484 (4)
F2—C41.344 (6)C2—C31.372 (3)
F3—C41.306 (7)C3—C51.486 (3)
F1'—C41.316 (12)C5—H5A0.9800
F2'—C41.300 (11)C5—H5B0.9800
F3'—C41.339 (10)C5—H5C0.9800
O1—C81.352 (3)C6—C91.374 (3)
O1—C101.452 (3)C7—H7A0.9500
N1—C11.324 (3)C8—C91.389 (3)
N1—N21.362 (3)C9—H9A0.9500
N2—C31.380 (3)C10—C111.461 (3)
N2—C61.420 (3)C10—H10A0.9900
N3—C71.330 (3)C10—H10B0.9900
N3—C61.333 (3)C11—C121.170 (4)
N4—C81.326 (3)C12—H120.9500
N4—C71.334 (3)
C8—O1—C10117.33 (18)F3—C4—C1112.9 (4)
C1—N1—N2104.57 (19)F1—C4—C1112.9 (7)
N1—N2—C3112.62 (19)F1'—C4—C1113.8 (12)
N1—N2—C6117.62 (18)F3'—C4—C1109.1 (8)
C3—N2—C6129.8 (2)F2—C4—C1110.0 (4)
C7—N3—C6114.7 (2)C3—C5—H5A109.5
C8—N4—C7114.6 (2)C3—C5—H5B109.5
N1—C1—C2111.4 (2)H5A—C5—H5B109.5
N1—C1—C4119.0 (2)C3—C5—H5C109.5
C2—C1—C4129.5 (2)H5A—C5—H5C109.5
C3—C2—C1106.7 (2)H5B—C5—H5C109.5
C3—C2—Cl1125.8 (2)N3—C6—C9124.0 (2)
C1—C2—Cl1127.46 (19)N3—C6—N2115.5 (2)
C2—C3—N2104.7 (2)C9—C6—N2120.5 (2)
C2—C3—C5128.1 (2)N3—C7—N4127.9 (2)
N2—C3—C5127.3 (2)N3—C7—H7A116.1
F2'—C4—F381.9 (8)N4—C7—H7A116.1
F2'—C4—F1119.3 (10)N4—C8—O1119.6 (2)
F3—C4—F1108.6 (7)N4—C8—C9124.1 (2)
F2'—C4—F1'109.0 (14)O1—C8—C9116.3 (2)
F3—C4—F1'118.7 (11)C6—C9—C8114.7 (2)
F1—C4—F1'14.2 (15)C6—C9—H9A122.6
F2'—C4—F3'104.4 (9)C8—C9—H9A122.6
F3—C4—F3'24.2 (8)O1—C10—C11111.7 (2)
F1—C4—F3'89.7 (10)O1—C10—H10A109.3
F1'—C4—F3'102.3 (13)C11—C10—H10A109.3
F2'—C4—F225.2 (10)O1—C10—H10B109.3
F3—C4—F2106.6 (5)C11—C10—H10B109.3
F1—C4—F2105.4 (7)H10A—C10—H10B107.9
F1'—C4—F292.4 (11)C12—C11—C10177.0 (3)
F3'—C4—F2127.7 (7)C11—C12—H12180.0
F2'—C4—C1116.8 (7)
C1—N1—N2—C30.5 (2)C2—C1—C4—F1'49.2 (13)
C1—N1—N2—C6179.62 (18)N1—C1—C4—F3'112.0 (12)
N2—N1—C1—C20.1 (2)C2—C1—C4—F3'64.2 (13)
N2—N1—C1—C4177.0 (2)N1—C1—C4—F232.5 (7)
N1—C1—C2—C30.3 (3)C2—C1—C4—F2151.3 (7)
C4—C1—C2—C3176.2 (2)C7—N3—C6—C90.6 (3)
N1—C1—C2—Cl1179.60 (17)C7—N3—C6—N2179.65 (19)
C4—C1—C2—Cl13.9 (4)N1—N2—C6—N3177.90 (19)
C1—C2—C3—N20.6 (2)C3—N2—C6—N32.3 (3)
Cl1—C2—C3—N2179.31 (16)N1—N2—C6—C91.8 (3)
C1—C2—C3—C5178.3 (2)C3—N2—C6—C9178.0 (2)
Cl1—C2—C3—C51.8 (4)C6—N3—C7—N41.0 (4)
N1—N2—C3—C20.7 (2)C8—N4—C7—N30.4 (4)
C6—N2—C3—C2179.5 (2)C7—N4—C8—O1179.9 (2)
N1—N2—C3—C5178.1 (2)C7—N4—C8—C90.6 (3)
C6—N2—C3—C51.7 (4)C10—O1—C8—N47.7 (3)
N1—C1—C4—F2'6.0 (16)C10—O1—C8—C9172.72 (19)
C2—C1—C4—F2'177.7 (16)N3—C6—C9—C80.2 (3)
N1—C1—C4—F386.4 (9)N2—C6—C9—C8179.49 (19)
C2—C1—C4—F389.9 (9)N4—C8—C9—C60.9 (3)
N1—C1—C4—F1150.0 (8)O1—C8—C9—C6179.58 (19)
C2—C1—C4—F133.8 (8)C8—O1—C10—C1176.9 (3)
N1—C1—C4—F1'134.5 (13)O1—C10—C11—C12149 (6)

Experimental details

Crystal data
Chemical formulaC12H8ClF3N4O
Mr316.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.8331 (13), 7.7258 (12), 21.757 (4)
β (°) 99.270 (11)
V3)1299.5 (4)
Z4
Radiation typeCu Kα
µ (mm1)3.02
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.583, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
8543, 2361, 2009
Rint0.043
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.07
No. of reflections2361
No. of parameters220
No. of restraints69
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1998).

 

Acknowledgements

This work was supported by the Agricultural Public Sector Research and Special Funds (200803021) and the Major State Basic Reasearch Development Program of China (No. 2006CB101907 and No. 2010CB126106).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHirai, K., Uchida, A. & Ohno, R. (2002). Herbicide Classes in Development, edited by P. Boger, K. Hirai & K. Wakabyashi, pp. 279–289. Heidelberg: Springer-Verlag.  Google Scholar
First citationKrishnaiah, A. & Narsaiah, B. (2002). J. Fluorine Chem. 115, 9–11.  Web of Science CrossRef CAS Google Scholar
First citationLi, H. B., Zhu, Y. Q., Song, X. W., Hu, F. Z., Liu, B., Li, Y. H., Niu, Z. X., Liu, P., Wang, Z. H., Song, H. B., Zou, X. M. & Yang, H. Z. (2008). J. Agric. Food Chem. 56, 9535–9542.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOhno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci. 29, 15-26.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiga, Y., Okada, I., Ikeda, Y., Takizawa, E. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 313–314.  Web of Science CrossRef CAS Google Scholar
First citationSiemens (1998). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVicentini, C. B., Romagnoli, C., Andreotti, E. & Mares, D. (2007). J. Agric. Food. Chem. 55, 10331–10338.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds