organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Arborinol methyl ether from Areca catechu L.

aCollege of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China, and bSchool of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: huxpeng@mail.sysu.edu.cn

(Received 26 July 2010; accepted 2 August 2010; online 11 August 2010)

The title compound isolated from Areca catechu L. (common name: arborinol methyl ether; a member of the arborane family) was established as 3α-methoxyarbor-9(11)-ene, C31H52O. Rings A/B/C/D assume a chair conformation, while ring E has an envelope conformation. The absolute configuration was determined to be (3R,5R,8S,10S,13R,14S,17S,18S, 21S) by analysis of Bijvoet pairs based on resonant scattering of light atoms, yielding a Hooft parameter y of −0.03 (3).

Related literature

For the biological activity of Areca catechu L. compounds, see: Dar et al. (1997[Dar, A., Khatoon, S., Rahman, G., Atta-Ur-Rahman (1997). Phytomedicine, 4, 41-45.]); Hocart & Fankhauser (1996[Hocart, C. H. & Fankhauser, B. (1996). Experientia, 52, 281-285.]); Iwamoto et al. (1988[Iwamoto, M., Matsuo, T., Uchino, K., Tonosaki, Y. & Fukuchi, A. (1988). Planta Med. 54, 422-425.]); Kusumoto et al. (1995[Kusumoto, I., Nakabayashi, T., Kida, H., Miyashiro, H., Hattori, M., Namba, T. & Shimotohno, K. (1995). Phytother. Res. 9, 180-184.]); Norton (1998[Norton, S. A. (1998). J. Am. Acad. Dermatol. 38, 81-88.]); Lee & Choi (1999[Lee, K. K. & Choi, J. D. (1999). Int. J. Cosmet. Sci. 21, 275-284.]); Ohmoto & Natori (1969[Ohmoto, T. & Natori, S. (1969). J. Chem. Soc. D Chem. Commun. p. 601.]); Chan et al. (2008[Chan, S. W., Li, S., Kwok, C. Y., Benzie, I. F. F., Szeto, Y. T., Guo, D. J., He, X. P. & Yu, P. H. F. (2008). Pharm. Biol. 46, 587-595.]); Pithayanukul et al. (2009[Pithayanukul, P., Nithitanakool, S. & Bavovada, R. (2009). Molecules, 14, 4987-5000.]); Zhang et al. (2010[Zhang, X., Wu, J., Han, Z., Mei, W. L. & Dai, H. F. (2010). Chem. Res. Chin. Univ. 26, 161-164.]). For related structures, see: Corrêa et al. (2009[Corrêa, R. S., Coelho, C. P., dos Santos, M. H., Ellena, J. & Doriguetto, A. C. (2009). Acta Cryst. C65, o97-o99.]); Khera et al. (2003[Khera, S., Jolad, S. D., Carducci, M. D. & Timmermann, B. N. (2003). Acta Cryst. E59, o1403-o1404.]); Takahashi & Iitaka (1972[Takahashi, R. & Iitaka, Y. (1972). Acta Cryst. B28, 764-770.]). Analysis of the absolute configuration was performed by using likelihood methods (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]) using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C31H52O

  • Mr = 440.73

  • Triclinic, P 1

  • a = 6.2684 (2) Å

  • b = 7.1162 (3) Å

  • c = 16.0814 (5) Å

  • α = 96.812 (3)°

  • β = 91.079 (3)°

  • γ = 114.397 (4)°

  • V = 646.86 (4) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 0.48 mm−1

  • T = 120 K

  • 0.60 × 0.50 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.658, Tmax = 1.0

  • 10247 measured reflections

  • 4415 independent reflections

  • 4408 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.04

  • 4415 reflections

  • 298 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1952 Friedel pairs

  • Flack parameter: 0.02 (22)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Areca catechu L. is an important economical plant in tropical and subtropical areas. Its ripe fruit is widely used in traditional Chinese medicine for treatment of constipation, oedema, beriberi and dyspepsia. Pharmacological research have shown areca nut possesses psychoactive (Hocart & Fankhauser, 1996, Norton, 1998), anti-depressant (Dar et al. 1997), anti-HIV-1 (Kusumoto et al., 1995), anti-melanogenesis (Lee & Choi, 1999), anti-inflammatory (Pithayanukul et al., 2009), anti-oxidant (Chan et al., 2008), anti-tumor (Iwamoto et al., 1988) and cytotoxic activities (Zhang et al. 2010). During our investigation of the anti-depressant activity of Areca catechu L., the title compound (I) was isolated from chloroform extract of areca nut.

The structure of (I) was analysed by spectroscopic and spectrometric analysis and proved to be arborinol methyl ether. The same compound has previously been found in species of Gramineous (Ohmoto & Natori 1969) and the structures of related compounds have been previously reported (Takahashi & Iitaka, 1972, Khera et al., 2003, Corrêa et al., 2009), their stereochemistry were specified by biosynthesis. In this study, X-ray crystallographic analysis of (I) was undertaken to establish the structure and to assign the absolute stereochemistry. The Flack parameter (Flack, 1983) x = 0.02 (22) is slightly ambiguous based on resonant scattering of the light atoms (the heaviest atom in this compound is oxygen). Thus analysis of the absolute configuration was further performed by using likelihood methods (Hooft et al., 2008) with PLATON (Spek, 2009). The resulting value is y = -0.03 (3), corresponding to a probability P2(true) = 1.000 for this structure, confirming the absolute configuration. This value also agrees with the CD spectroscopic measurement result (Fig. 1). As shown in Fig. 2, rings A, B, C and D assume a chair conformation, while ring E adopts a envelope conformation. The A/B, C/D, and D/E ring junctions are trans fused about the C5DC10, C13DC14 and C17DC18 bonds, respectively. The absolute configuration of each chiral atom is 3R, 5R, 8S, 10S, 13R, 14S, 17S, 18S, 21S respectively. Compared with (I), the absolute configuration at all chiral centers of lupeol methyl ether is 3S, 5R, 8R, 9S,10R, 13R, 14R, 17R, 19R, while Fernane is 3R, 5S, 9R, 10S, 13S, 14S, 17R, 18R, 21R, agreeing well with the original results (Corrêa, et al., 2009, Khera et al., 2003).

Related literature top

For the biological activity of Areca catechu L. compounds, see: Dar et al. (1997); Hocart & Fankhauser (1996); Iwamoto et al. (1988); Kusumoto et al. (1995); Norton (1998); Lee & Choi (1999); Ohmoto & Natori (1969); Chan et al. (2008); Pithayanukul et al. (2009); Zhang et al. (2010). For related structures, see: Corrêa et al. (2009); Khera et al. (2003); Takahashi & Iitaka (1972). Analysis of the absolute configuration was performed by using likelihood methods (Hooft et al., 2008) using PLATON (Spek, 2009).

Experimental top

The chloroform extract of dried areca nut was chromatographed on a silica gel (200–300 mesh) column with increasing concentrations of EtOAc in petroleum ether. The fractions eluting with petroleum ether were collected to afford crude compound. The pure title compound was obtained by recrystallization with chloroform. Single crystals were obtained by slow evaporation of chloroform at room temperature.

Regarding to the ambiguous Flack parameter x = 0.02 (22), TWIN/BASF instructions were tested in a parallel refinement and resulted a BASF parameter of 0.02271, thus the single crystal used in data collection is barely a racemic mixture.

The title compound was a colorless crystal with mp 284~296 °C, [α]20D= +9.1° (c 0.01, CHCl3). 1H NMR (400 MHz, CDCl3) δ 5.22 (1H, d, J= 6.2 Hz, H-11), 2.79 (1H, m, H-3β), 1.03 (3H, s, H-25), 0.91(3H, s, H-23), 0.87 (3H, d, J= 6.5 Hz, H-29), 0.85 (3H, s, H-24), 0.81 (3H, d, J= 6.5 Hz, H-30), 0.79 (3H, s, H-26), 0.75 (3H, s, H-27), 0.74 (3H, s, H-28); 13 C NMR (100 MHz, CDCl3) δ 36.1(C-1), 21.5(C-2), 86.1(C-3), 38.5(C-4), 47.4(C-5), 20.6(C-6), 26.7(C-7), 41.3(C-8), 149.3(C-9), 39.8(C-10), 114.0(C-11), 36.2(C-12), 36.9(C-13), 38.3(C-14), 29.8(C-15), 36.2(C-16), 43.1(C-17), 52.3(C-18), 20.4(C-19), 28.6(C-20), 59.9(C-21), 31.0(C-22), 28.5(C-23), 22.3(C-24), 22.2(C-25), 17.3(C-26), 15.5(C-27), 14.2(C-28), 23.2(C-29), 22.1(C-30), 57.5(–OCH3). CD CH3CN); λmax/nm(Δε): 186(-0.70), 199(1.76), 215(0.58), 228(-0.14), 256(0.18), 299(-0.20).

Refinement top

H atoms were treated as riding in idealized positions, with C—H distances in the range 0.95–1.00 Å, depending on the atom type. Displacement parameters for H atoms were assigned as Uiso = 1.2Ueq of the attached atom (1.5 for methyl groups).

Structure description top

Areca catechu L. is an important economical plant in tropical and subtropical areas. Its ripe fruit is widely used in traditional Chinese medicine for treatment of constipation, oedema, beriberi and dyspepsia. Pharmacological research have shown areca nut possesses psychoactive (Hocart & Fankhauser, 1996, Norton, 1998), anti-depressant (Dar et al. 1997), anti-HIV-1 (Kusumoto et al., 1995), anti-melanogenesis (Lee & Choi, 1999), anti-inflammatory (Pithayanukul et al., 2009), anti-oxidant (Chan et al., 2008), anti-tumor (Iwamoto et al., 1988) and cytotoxic activities (Zhang et al. 2010). During our investigation of the anti-depressant activity of Areca catechu L., the title compound (I) was isolated from chloroform extract of areca nut.

The structure of (I) was analysed by spectroscopic and spectrometric analysis and proved to be arborinol methyl ether. The same compound has previously been found in species of Gramineous (Ohmoto & Natori 1969) and the structures of related compounds have been previously reported (Takahashi & Iitaka, 1972, Khera et al., 2003, Corrêa et al., 2009), their stereochemistry were specified by biosynthesis. In this study, X-ray crystallographic analysis of (I) was undertaken to establish the structure and to assign the absolute stereochemistry. The Flack parameter (Flack, 1983) x = 0.02 (22) is slightly ambiguous based on resonant scattering of the light atoms (the heaviest atom in this compound is oxygen). Thus analysis of the absolute configuration was further performed by using likelihood methods (Hooft et al., 2008) with PLATON (Spek, 2009). The resulting value is y = -0.03 (3), corresponding to a probability P2(true) = 1.000 for this structure, confirming the absolute configuration. This value also agrees with the CD spectroscopic measurement result (Fig. 1). As shown in Fig. 2, rings A, B, C and D assume a chair conformation, while ring E adopts a envelope conformation. The A/B, C/D, and D/E ring junctions are trans fused about the C5DC10, C13DC14 and C17DC18 bonds, respectively. The absolute configuration of each chiral atom is 3R, 5R, 8S, 10S, 13R, 14S, 17S, 18S, 21S respectively. Compared with (I), the absolute configuration at all chiral centers of lupeol methyl ether is 3S, 5R, 8R, 9S,10R, 13R, 14R, 17R, 19R, while Fernane is 3R, 5S, 9R, 10S, 13S, 14S, 17R, 18R, 21R, agreeing well with the original results (Corrêa, et al., 2009, Khera et al., 2003).

For the biological activity of Areca catechu L. compounds, see: Dar et al. (1997); Hocart & Fankhauser (1996); Iwamoto et al. (1988); Kusumoto et al. (1995); Norton (1998); Lee & Choi (1999); Ohmoto & Natori (1969); Chan et al. (2008); Pithayanukul et al. (2009); Zhang et al. (2010). For related structures, see: Corrêa et al. (2009); Khera et al. (2003); Takahashi & Iitaka (1972). Analysis of the absolute configuration was performed by using likelihood methods (Hooft et al., 2008) using PLATON (Spek, 2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Version 1.9.5_c; Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Circular Dichroism Spectroscopy of (I), measured on Chirascan Circular Dichroism Spectrometer, Applied PhotoPhysics (UK).
[Figure 2] Fig. 2. A view of the molecular structure of compound (I). The displacement ellipsoids are at the 50% probability level and H atoms are shown as small spheres of arbitrary radii..
3a-methoxyarbor-9(11)-ene top
Crystal data top
C31H52OZ = 1
Mr = 440.73F(000) = 246
Triclinic, P1Dx = 1.131 Mg m3
Hall symbol: P 1Cu Kα radiation, λ = 1.5418 Å
a = 6.2684 (2) ÅCell parameters from 11404 reflections
b = 7.1162 (3) Åθ = 2.8–69.9°
c = 16.0814 (5) ŵ = 0.48 mm1
α = 96.812 (3)°T = 120 K
β = 91.079 (3)°Block, colourless
γ = 114.397 (4)°0.60 × 0.50 × 0.40 mm
V = 646.86 (4) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4415 independent reflections
Radiation source: fine-focus sealed tube4408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Detector resolution: 16.0356 pixels mm-1θmax = 70.1°, θmin = 2.8°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 88
Tmin = 0.658, Tmax = 1.0l = 1919
10247 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.1188P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4415 reflectionsΔρmax = 0.27 e Å3
298 parametersΔρmin = 0.18 e Å3
3 restraintsAbsolute structure: Flack (1983), 1952 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (22)
Crystal data top
C31H52Oγ = 114.397 (4)°
Mr = 440.73V = 646.86 (4) Å3
Triclinic, P1Z = 1
a = 6.2684 (2) ÅCu Kα radiation
b = 7.1162 (3) ŵ = 0.48 mm1
c = 16.0814 (5) ÅT = 120 K
α = 96.812 (3)°0.60 × 0.50 × 0.40 mm
β = 91.079 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4415 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4408 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 1.0Rint = 0.011
10247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.27 e Å3
S = 1.04Δρmin = 0.18 e Å3
4415 reflectionsAbsolute structure: Flack (1983), 1952 Friedel pairs
298 parametersAbsolute structure parameter: 0.02 (22)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5138 (3)0.3358 (2)0.40741 (9)0.0184 (3)
H1B0.50500.45770.43350.022*
H1A0.35520.33700.40570.022*
C20.5864 (3)0.3558 (2)0.31749 (9)0.0198 (3)
H2B0.74120.36220.31880.024*
H2A0.47060.48710.28520.024*
C30.6011 (3)0.1728 (2)0.27380 (9)0.0192 (3)
H30.65610.18930.21650.023*
C40.7721 (3)0.0390 (2)0.32172 (8)0.0179 (3)
C50.7148 (2)0.0538 (2)0.41576 (8)0.0152 (3)
H50.55710.05750.41490.018*
C60.8804 (3)0.2588 (2)0.46836 (9)0.0197 (3)
H6B1.03620.25780.47850.024*
H6A0.90120.37670.43740.024*
C70.7799 (3)0.2871 (2)0.55207 (9)0.0200 (3)
H7A0.63030.29930.54150.024*
H7B0.89070.41860.58570.024*
C80.7348 (2)0.1057 (2)0.60306 (8)0.0153 (3)
H80.89200.10980.61880.018*
C90.5957 (2)0.1040 (2)0.54887 (8)0.0150 (3)
C100.6864 (2)0.1349 (2)0.46198 (8)0.0154 (3)
C110.4202 (3)0.2573 (2)0.57888 (9)0.0197 (3)
H110.33070.37970.54100.024*
C120.3540 (3)0.2501 (2)0.66850 (9)0.0199 (3)
H12B0.32050.38590.68780.024*
H12A0.20940.22620.67130.024*
C130.5521 (2)0.0759 (2)0.72699 (8)0.0154 (3)
C140.6215 (2)0.1294 (2)0.68650 (8)0.0145 (3)
C150.7946 (3)0.3152 (2)0.74854 (8)0.0179 (3)
H15B0.94070.29630.75760.021*
H15A0.83560.44460.72310.021*
C160.6969 (3)0.3411 (2)0.83427 (9)0.0191 (3)
H16B0.81750.46120.87100.023*
H16A0.55810.37160.82610.023*
C170.6263 (2)0.1459 (2)0.87773 (8)0.0173 (3)
C180.4636 (2)0.0441 (2)0.81386 (8)0.0166 (3)
H180.32440.01450.80160.020*
C190.3707 (3)0.2239 (2)0.86612 (10)0.0259 (3)
H19B0.48540.28460.87280.031*
H19A0.21980.33480.84040.031*
C200.3376 (3)0.1160 (3)0.95141 (10)0.0285 (4)
H20B0.41290.15130.99820.034*
H20A0.16840.16260.96000.034*
C210.4542 (3)0.1223 (2)0.94855 (9)0.0192 (3)
H210.32860.16070.92740.023*
C220.5449 (3)0.2481 (3)1.03637 (9)0.0248 (3)
H220.66260.20421.06050.030*
C230.7374 (3)0.2111 (2)0.28168 (9)0.0264 (3)
H23A0.74270.18630.22060.040*
H23C0.86270.34690.30410.040*
H23B0.58480.20970.29470.040*
C241.0260 (3)0.0673 (2)0.30911 (10)0.0243 (3)
H24C1.04910.04990.32750.036*
H24B1.13580.19770.34230.036*
H24A1.05470.07210.24950.036*
C250.9183 (3)0.1575 (2)0.47981 (9)0.0200 (3)
H25C0.89420.25520.52050.030*
H25B1.04200.02120.50270.030*
H25A0.96500.21020.42740.030*
C260.7569 (3)0.1429 (2)0.73227 (9)0.0205 (3)
H26C0.72430.24420.77190.031*
H26B0.90310.02050.75160.031*
H26A0.77320.20640.67660.031*
C270.4046 (3)0.1723 (2)0.66699 (9)0.0192 (3)
H27B0.45650.31500.65400.029*
H27C0.31090.15530.71590.029*
H27A0.30910.07380.61870.029*
C280.8488 (3)0.1317 (3)0.91300 (10)0.0259 (3)
H28B0.80480.00200.93420.039*
H28C0.92710.24590.95890.039*
H28A0.95570.14210.86830.039*
C290.3424 (3)0.1982 (3)1.09390 (10)0.0299 (4)
H29A0.22430.23921.07120.045*
H29C0.40250.27511.15020.045*
H29B0.27080.04831.09710.045*
C300.6642 (4)0.4834 (3)1.03546 (11)0.0385 (4)
H30B0.80990.51871.00700.058*
H30C0.70040.55511.09330.058*
H30A0.55870.52731.00550.058*
C310.2276 (3)0.3154 (3)0.19751 (10)0.0283 (4)
H31B0.30590.28730.14530.043*
H31A0.07900.30130.19290.043*
H31C0.19650.45730.20750.043*
O10.37357 (19)0.17199 (17)0.26493 (7)0.0247 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0232 (8)0.0137 (7)0.0171 (7)0.0071 (6)0.0013 (6)0.0005 (5)
C20.0255 (8)0.0165 (7)0.0180 (7)0.0104 (6)0.0000 (6)0.0020 (5)
C30.0238 (8)0.0222 (7)0.0143 (6)0.0132 (6)0.0022 (5)0.0010 (5)
C40.0239 (8)0.0176 (7)0.0139 (6)0.0100 (6)0.0027 (5)0.0027 (5)
C50.0163 (7)0.0152 (6)0.0149 (6)0.0074 (6)0.0032 (5)0.0016 (5)
C60.0249 (8)0.0139 (7)0.0173 (7)0.0047 (6)0.0042 (6)0.0031 (5)
C70.0280 (8)0.0116 (6)0.0167 (6)0.0048 (6)0.0048 (6)0.0012 (5)
C80.0167 (7)0.0137 (6)0.0143 (6)0.0053 (5)0.0009 (5)0.0023 (5)
C90.0170 (7)0.0135 (6)0.0149 (6)0.0071 (6)0.0000 (5)0.0010 (5)
C100.0156 (7)0.0140 (6)0.0167 (6)0.0066 (6)0.0008 (5)0.0011 (5)
C110.0210 (7)0.0151 (7)0.0174 (6)0.0031 (6)0.0015 (6)0.0021 (5)
C120.0193 (7)0.0153 (6)0.0196 (7)0.0019 (6)0.0041 (6)0.0010 (5)
C130.0143 (7)0.0143 (6)0.0166 (6)0.0048 (6)0.0019 (5)0.0025 (5)
C140.0141 (7)0.0129 (6)0.0151 (6)0.0043 (5)0.0013 (5)0.0013 (5)
C150.0179 (7)0.0147 (7)0.0164 (7)0.0028 (6)0.0030 (5)0.0001 (5)
C160.0183 (7)0.0186 (7)0.0163 (6)0.0047 (6)0.0012 (5)0.0019 (5)
C170.0151 (7)0.0225 (7)0.0139 (6)0.0082 (6)0.0002 (5)0.0000 (5)
C180.0151 (7)0.0181 (7)0.0165 (7)0.0067 (6)0.0022 (5)0.0023 (5)
C190.0324 (9)0.0232 (7)0.0217 (7)0.0101 (7)0.0095 (6)0.0054 (6)
C200.0356 (9)0.0290 (8)0.0215 (7)0.0128 (7)0.0106 (7)0.0067 (6)
C210.0181 (7)0.0262 (8)0.0145 (6)0.0106 (6)0.0008 (5)0.0021 (5)
C220.0242 (8)0.0374 (9)0.0151 (6)0.0163 (7)0.0018 (6)0.0004 (6)
C230.0421 (10)0.0224 (7)0.0180 (7)0.0163 (7)0.0038 (6)0.0044 (6)
C240.0250 (8)0.0253 (7)0.0216 (7)0.0095 (6)0.0091 (6)0.0026 (6)
C250.0231 (7)0.0236 (7)0.0179 (6)0.0146 (6)0.0004 (5)0.0024 (5)
C260.0258 (8)0.0215 (7)0.0191 (6)0.0139 (6)0.0050 (6)0.0056 (5)
C270.0205 (7)0.0231 (7)0.0173 (6)0.0120 (6)0.0024 (5)0.0034 (5)
C280.0208 (8)0.0415 (9)0.0191 (7)0.0172 (7)0.0007 (6)0.0021 (6)
C290.0354 (9)0.0415 (9)0.0166 (7)0.0205 (8)0.0048 (6)0.0015 (6)
C300.0439 (11)0.0391 (10)0.0198 (8)0.0078 (8)0.0042 (7)0.0077 (7)
C310.0282 (9)0.0290 (8)0.0236 (7)0.0094 (7)0.0047 (6)0.0015 (6)
O10.0263 (6)0.0291 (6)0.0206 (5)0.0161 (5)0.0056 (4)0.0052 (4)
Geometric parameters (Å, º) top
C1—C21.5324 (19)C7—H7A0.9900
C1—C101.5405 (18)C7—H7B0.9900
C2—C31.522 (2)C8—H81.0000
C3—O11.4333 (17)C11—H110.9500
C3—C41.541 (2)C12—H12B0.9900
C4—C231.5374 (19)C12—H12A0.9900
C4—C241.540 (2)C15—H15B0.9900
C4—C51.5625 (18)C15—H15A0.9900
C5—C61.5310 (18)C16—H16B0.9900
C5—C101.5596 (18)C16—H16A0.9900
C6—C71.5238 (19)C18—H181.0000
C7—C81.5420 (18)C19—H19B0.9900
C8—C91.5276 (17)C19—H19A0.9900
C8—C141.5540 (18)C20—H20B0.9900
C9—C111.337 (2)C20—H20A0.9900
C9—C101.5441 (18)C21—H211.0000
C10—C251.5518 (18)C22—H221.0000
C11—C121.5081 (19)C23—H23A0.9800
C12—C131.5398 (19)C23—H23C0.9800
C13—C181.5389 (18)C23—H23B0.9800
C13—C261.5475 (18)C24—H24C0.9800
C13—C141.5681 (17)C24—H24B0.9800
C14—C151.5433 (18)C24—H24A0.9800
C14—C271.5459 (18)C25—H25C0.9800
C15—C161.5408 (18)C25—H25B0.9800
C16—C171.532 (2)C25—H25A0.9800
C17—C281.5416 (19)C26—H26C0.9800
C17—C181.5542 (18)C26—H26B0.9800
C17—C211.559 (2)C26—H26A0.9800
C18—C191.530 (2)C27—H27B0.9800
C19—C201.551 (2)C27—H27C0.9800
C20—C211.552 (2)C27—H27A0.9800
C21—C221.5389 (18)C28—H28B0.9800
C22—C301.528 (3)C28—H28C0.9800
C22—C291.531 (2)C28—H28A0.9800
C31—O11.4081 (17)C29—H29A0.9800
C1—H1B0.9900C29—H29C0.9800
C1—H1A0.9900C29—H29B0.9800
C2—H2B0.9900C30—H30B0.9800
C2—H2A0.9900C30—H30C0.9800
C3—H31.0000C30—H30A0.9800
C5—H51.0000C31—H31B0.9800
C6—H6B0.9900C31—H31A0.9800
C6—H6A0.9900C31—H31C0.9800
C2—C1—C10112.49 (11)C9—C11—H11117.6
C3—C2—C1111.47 (11)C12—C11—H11117.6
O1—C3—C2110.02 (12)C11—C12—H12B109.4
O1—C3—C4108.37 (10)C13—C12—H12B109.4
C2—C3—C4112.71 (11)C11—C12—H12A109.4
C23—C4—C24107.02 (13)C13—C12—H12A109.4
C23—C4—C3107.93 (11)H12B—C12—H12A108.0
C24—C4—C3108.99 (11)C16—C15—H15B108.8
C23—C4—C5109.08 (11)C14—C15—H15B108.8
C24—C4—C5113.95 (11)C16—C15—H15A108.8
C3—C4—C5109.68 (11)C14—C15—H15A108.8
C6—C5—C10110.54 (10)H15B—C15—H15A107.7
C6—C5—C4113.02 (11)C17—C16—H16B109.2
C10—C5—C4116.75 (10)C15—C16—H16B109.2
C7—C6—C5110.12 (12)C17—C16—H16A109.2
C6—C7—C8112.85 (11)C15—C16—H16A109.2
C9—C8—C7110.87 (10)H16B—C16—H16A107.9
C9—C8—C14112.63 (11)C19—C18—H18104.2
C7—C8—C14112.86 (10)C13—C18—H18104.2
C11—C9—C8121.21 (12)C17—C18—H18104.2
C11—C9—C10122.38 (11)C18—C19—H19B111.3
C8—C9—C10116.10 (11)C20—C19—H19B111.3
C1—C10—C9111.82 (11)C18—C19—H19A111.3
C1—C10—C25108.20 (11)C20—C19—H19A111.3
C9—C10—C25105.67 (10)H19B—C19—H19A109.2
C1—C10—C5108.28 (10)C19—C20—H20B110.3
C9—C10—C5108.41 (10)C21—C20—H20B110.3
C25—C10—C5114.52 (11)C19—C20—H20A110.3
C9—C11—C12124.77 (12)C21—C20—H20A110.3
C11—C12—C13111.37 (12)H20B—C20—H20A108.5
C18—C13—C12110.26 (11)C22—C21—H21106.7
C18—C13—C26111.86 (11)C20—C21—H21106.7
C12—C13—C26106.74 (11)C17—C21—H21106.7
C18—C13—C14108.59 (10)C30—C22—H22108.1
C12—C13—C14107.04 (10)C29—C22—H22108.1
C26—C13—C14112.23 (11)C21—C22—H22108.1
C15—C14—C27107.89 (10)C4—C23—H23A109.5
C15—C14—C8111.00 (11)C4—C23—H23C109.5
C27—C14—C8108.65 (10)H23A—C23—H23C109.5
C15—C14—C13109.22 (10)C4—C23—H23B109.5
C27—C14—C13111.49 (11)H23A—C23—H23B109.5
C8—C14—C13108.61 (10)H23C—C23—H23B109.5
C16—C15—C14113.60 (11)C4—C24—H24C109.5
C17—C16—C15112.21 (11)C4—C24—H24B109.5
C16—C17—C28109.54 (13)H24C—C24—H24B109.5
C16—C17—C18107.77 (10)C4—C24—H24A109.5
C28—C17—C18115.07 (11)H24C—C24—H24A109.5
C16—C17—C21116.94 (11)H24B—C24—H24A109.5
C28—C17—C21109.01 (11)C10—C25—H25C109.5
C18—C17—C2198.36 (11)C10—C25—H25B109.5
C19—C18—C13120.14 (11)H25C—C25—H25B109.5
C19—C18—C17104.13 (11)C10—C25—H25A109.5
C13—C18—C17117.98 (11)H25C—C25—H25A109.5
C18—C19—C20102.56 (12)H25B—C25—H25A109.5
C19—C20—C21107.16 (12)C13—C26—H26C109.5
C22—C21—C20112.19 (12)C13—C26—H26B109.5
C22—C21—C17120.19 (12)H26C—C26—H26B109.5
C20—C21—C17103.53 (11)C13—C26—H26A109.5
C30—C22—C29109.14 (13)H26C—C26—H26A109.5
C30—C22—C21113.42 (13)H26B—C26—H26A109.5
C29—C22—C21109.97 (13)C14—C27—H27B109.5
C31—O1—C3113.55 (11)C14—C27—H27C109.5
C2—C1—H1B109.1H27B—C27—H27C109.5
C10—C1—H1B109.1C14—C27—H27A109.5
C2—C1—H1A109.1H27B—C27—H27A109.5
C10—C1—H1A109.1H27C—C27—H27A109.5
H1B—C1—H1A107.8C17—C28—H28B109.5
C3—C2—H2B109.3C17—C28—H28C109.5
C1—C2—H2B109.3H28B—C28—H28C109.5
C3—C2—H2A109.3C17—C28—H28A109.5
C1—C2—H2A109.3H28B—C28—H28A109.5
H2B—C2—H2A108.0H28C—C28—H28A109.5
O1—C3—H3108.6C22—C29—H29A109.5
C2—C3—H3108.6C22—C29—H29C109.5
C4—C3—H3108.6H29A—C29—H29C109.5
C6—C5—H5105.1C22—C29—H29B109.5
C10—C5—H5105.1H29A—C29—H29B109.5
C4—C5—H5105.1H29C—C29—H29B109.5
C7—C6—H6B109.6C22—C30—H30B109.5
C5—C6—H6B109.6C22—C30—H30C109.5
C7—C6—H6A109.6H30B—C30—H30C109.5
C5—C6—H6A109.6C22—C30—H30A109.5
H6B—C6—H6A108.2H30B—C30—H30A109.5
C6—C7—H7A109.0H30C—C30—H30A109.5
C8—C7—H7A109.0O1—C31—H31B109.5
C6—C7—H7B109.0O1—C31—H31A109.5
C8—C7—H7B109.0H31B—C31—H31A109.5
H7A—C7—H7B107.8O1—C31—H31C109.5
C9—C8—H8106.7H31B—C31—H31C109.5
C7—C8—H8106.7H31A—C31—H31C109.5
C14—C8—H8106.7
C10—C1—C2—C359.20 (15)C7—C8—C14—C2750.92 (14)
C1—C2—C3—O163.96 (15)C9—C8—C14—C1345.87 (13)
C1—C2—C3—C457.11 (16)C7—C8—C14—C13172.36 (11)
O1—C3—C4—C2347.33 (15)C18—C13—C14—C1553.03 (13)
C2—C3—C4—C23169.34 (12)C12—C13—C14—C15172.05 (11)
O1—C3—C4—C24163.22 (11)C26—C13—C14—C1571.16 (13)
C2—C3—C4—C2474.77 (15)C18—C13—C14—C2766.11 (13)
O1—C3—C4—C571.40 (13)C12—C13—C14—C2752.92 (13)
C2—C3—C4—C550.61 (14)C26—C13—C14—C27169.71 (11)
C23—C4—C5—C663.07 (15)C18—C13—C14—C8174.21 (10)
C24—C4—C5—C656.44 (15)C12—C13—C14—C866.76 (12)
C3—C4—C5—C6178.92 (11)C26—C13—C14—C850.03 (13)
C23—C4—C5—C10167.06 (12)C27—C14—C15—C1663.76 (14)
C24—C4—C5—C1073.43 (15)C8—C14—C15—C16177.30 (10)
C3—C4—C5—C1049.05 (15)C13—C14—C15—C1657.58 (14)
C10—C5—C6—C761.27 (14)C14—C15—C16—C1757.96 (15)
C4—C5—C6—C7165.77 (11)C15—C16—C17—C2874.67 (14)
C5—C6—C7—C857.48 (15)C15—C16—C17—C1851.19 (14)
C6—C7—C8—C949.90 (16)C15—C16—C17—C21160.71 (12)
C6—C7—C8—C14177.32 (11)C12—C13—C18—C1959.69 (16)
C7—C8—C9—C11137.79 (14)C26—C13—C18—C1958.92 (17)
C14—C8—C9—C1110.25 (17)C14—C13—C18—C19176.68 (12)
C7—C8—C9—C1048.41 (15)C12—C13—C18—C17171.39 (11)
C14—C8—C9—C10175.96 (10)C26—C13—C18—C1769.99 (15)
C2—C1—C10—C9173.16 (10)C14—C13—C18—C1754.41 (14)
C2—C1—C10—C2570.88 (14)C16—C17—C18—C19171.12 (12)
C2—C1—C10—C553.79 (14)C28—C17—C18—C1966.36 (15)
C11—C9—C10—C115.03 (17)C21—C17—C18—C1949.26 (12)
C8—C9—C10—C1171.26 (11)C16—C17—C18—C1352.82 (14)
C11—C9—C10—C25102.47 (15)C28—C17—C18—C1369.71 (16)
C8—C9—C10—C2571.24 (13)C21—C17—C18—C13174.68 (11)
C11—C9—C10—C5134.32 (14)C13—C18—C19—C20171.98 (12)
C8—C9—C10—C551.97 (14)C17—C18—C19—C2037.10 (15)
C6—C5—C10—C1178.59 (11)C18—C19—C20—C2110.02 (17)
C4—C5—C10—C150.38 (14)C19—C20—C21—C22151.34 (13)
C6—C5—C10—C957.09 (14)C19—C20—C21—C1720.29 (16)
C4—C5—C10—C9171.88 (11)C16—C17—C21—C2277.55 (16)
C6—C5—C10—C2560.60 (14)C28—C17—C21—C2247.34 (17)
C4—C5—C10—C2570.43 (15)C18—C17—C21—C22167.58 (12)
C8—C9—C11—C125.5 (2)C16—C17—C21—C20156.35 (12)
C10—C9—C11—C12167.90 (13)C28—C17—C21—C2078.77 (15)
C9—C11—C12—C1316.42 (19)C18—C17—C21—C2041.47 (13)
C11—C12—C13—C18169.17 (11)C20—C21—C22—C30179.12 (14)
C11—C12—C13—C2669.12 (14)C17—C21—C22—C3057.15 (18)
C11—C12—C13—C1451.23 (14)C20—C21—C22—C2958.36 (16)
C9—C8—C14—C15165.96 (10)C17—C21—C22—C29179.67 (13)
C7—C8—C14—C1567.56 (14)C2—C3—O1—C3179.35 (14)
C9—C8—C14—C2775.56 (13)C4—C3—O1—C31157.01 (12)

Experimental details

Crystal data
Chemical formulaC31H52O
Mr440.73
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.2684 (2), 7.1162 (3), 16.0814 (5)
α, β, γ (°)96.812 (3), 91.079 (3), 114.397 (4)
V3)646.86 (4)
Z1
Radiation typeCu Kα
µ (mm1)0.48
Crystal size (mm)0.60 × 0.50 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.658, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
10247, 4415, 4408
Rint0.011
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.04
No. of reflections4415
No. of parameters298
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.18
Absolute structureFlack (1983), 1952 Friedel pairs
Absolute structure parameter0.02 (22)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Version 1.9.5_c; Westrip, 2010).

 

Acknowledgements

The authors gratefully thank the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (XXH), the National Natural Science Foundation of China, 30800169 (XPH) and the Research Fund for the Doctoral Program of Higher Education of China, 200805581146 (XPH).

References

First citationChan, S. W., Li, S., Kwok, C. Y., Benzie, I. F. F., Szeto, Y. T., Guo, D. J., He, X. P. & Yu, P. H. F. (2008). Pharm. Biol. 46, 587–595.  Web of Science CrossRef CAS Google Scholar
First citationCorrêa, R. S., Coelho, C. P., dos Santos, M. H., Ellena, J. & Doriguetto, A. C. (2009). Acta Cryst. C65, o97–o99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDar, A., Khatoon, S., Rahman, G., Atta-Ur-Rahman (1997). Phytomedicine, 4, 41–45.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHocart, C. H. & Fankhauser, B. (1996). Experientia, 52, 281–285.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIwamoto, M., Matsuo, T., Uchino, K., Tonosaki, Y. & Fukuchi, A. (1988). Planta Med. 54, 422–425.  CrossRef CAS PubMed Google Scholar
First citationKhera, S., Jolad, S. D., Carducci, M. D. & Timmermann, B. N. (2003). Acta Cryst. E59, o1403–o1404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKusumoto, I., Nakabayashi, T., Kida, H., Miyashiro, H., Hattori, M., Namba, T. & Shimotohno, K. (1995). Phytother. Res. 9, 180–184.  CrossRef CAS Web of Science Google Scholar
First citationLee, K. K. & Choi, J. D. (1999). Int. J. Cosmet. Sci. 21, 275–284.  CrossRef PubMed CAS Google Scholar
First citationNorton, S. A. (1998). J. Am. Acad. Dermatol. 38, 81–88.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOhmoto, T. & Natori, S. (1969). J. Chem. Soc. D Chem. Commun. p. 601.  CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPithayanukul, P., Nithitanakool, S. & Bavovada, R. (2009). Molecules, 14, 4987–5000.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, R. & Iitaka, Y. (1972). Acta Cryst. B28, 764–770.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Wu, J., Han, Z., Mei, W. L. & Dai, H. F. (2010). Chem. Res. Chin. Univ. 26, 161–164.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds