metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{4-chloro-N′-[phen­yl(2-pyrid­yl)methyl­­idene]benzohydrazidato-κ2N′,O}cobalt(III) nitrate methanol disolvate

aAnhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Teachers College, Anqing, 246011 Anhui, People's Republic of China
*Correspondence e-mail: wudayu_nju@yahoo.com.cn

(Received 3 August 2010; accepted 11 August 2010; online 18 August 2010)

In the title compound, [Co(C19H13ClN3O)2]NO3·2CH3OH, the central CoIII atom in the cation is surrounded by two tridentate ligands in a distorted octa­hedral fashion by four N and two O atoms. Classical O—H⋯O hydrogen bonds link both methanol solvent mol­ecules with the nitrate anion.

Related literature

For related work on the mononuclear cobalt compound, see: Herchel & Boca (2005[Herchel, R. & Boca, R. (2005). Dalton Trans. pp. 1352-1353.]). For a dimetallic dicobalt(II) complex, see: Gavrilova et al. (2002[Gavrilova, A., Qin, C. J., Sommer, R., Rheingold, A. & Bosnich, B. (2002). J. Am. Chem. Soc. 124, 1714-1722.]). For a spin-crossover FeII complex, see: Wu et al. (2009[Wu, D.-Y., Sato, O., Einaga, Y. & Duan, C.-Y. (2009). Angew. Chem. Int. Ed. 48, 1475-1478.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C19H13ClN3O)2]NO3·2CH4O

  • Mr = 854.57

  • Monoclinic, P 21 /c

  • a = 12.914 (8) Å

  • b = 17.423 (11) Å

  • c = 17.451 (11) Å

  • β = 93.031 (8)°

  • V = 3921 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 293 K

  • 0.31 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.839, Tmax = 0.875

  • 18168 measured reflections

  • 6859 independent reflections

  • 4829 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.156

  • S = 1.07

  • 6859 reflections

  • 516 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N2 1.853 (3)
Co1—N5 1.859 (3)
Co1—O2 1.899 (2)
Co1—N4 1.909 (3)
Co1—O1 1.915 (2)
Co1—N1 1.921 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O39—H39D⋯O3 0.82 1.94 2.747 (11) 167
O40—H40D⋯O3 0.85 2.16 2.873 (12) 142
O40—H40D⋯O5 0.85 2.20 2.963 (12) 150

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The CoIII complex with the oxygen-containing Schiff-base ligand is important because of their ability to bind dioxygen. Among them, the most wanted targets include the artificial blood and respiratory systems. A novel aspect lies in the structural versatility of hexadentate Schiff-bases versus. imidazolidine complexes manifesting itself in a stabilization of various structural and optical isomers depending upon the chemical hardness of the metal centre (Herchel & Boca, 2005; Gavrilova et al., 2002).

Our recent work indicated the N,O-donor tridentate ligand is suitable for the synthesis of spin-crossover materials (Wu et al., 2009). One of the examples is reported by us, which interestingly showed the mixed-spin state and synergy between spin transition and magnetic interaction. Here, for the title compound, we used 2(E)-1-[(4-chlorophenyl)carbonyl]-2-[phenyl(pyridin-2-yl)methylidene] diazanide as ligand, a typical rigid tridentate donor to synthesize a mononuclear compound, and we report the crystal structure of the complex [Co(C19H13N3OCl)2]+(NO3)-(CH3OH)2 (Fig. 1). The coordination environments of CoIII ions are completed by two ligands with average Co—N bond length of 1.885 Å and Co—O 1.907 Å (Table 1). Classical hydrogen bonds O—H···O exist between both methanol solvent molecules and the nitrate anion with D···A distances between 2.747 (11) Å and 2.963 (12) Å (Table 2).

The temperature-dependent magnetic susceptibility was measured down to 1.8 K. In the χ.T versus T plot (Fig. 2), χ.T reaches a zero value within the whole temperature region, which is consistent with S = 0 ground state for cobalt(III).

Related literature top

For related work on the mononuclear cobalt compound, see: Herchel & Boca (2005). For a dimetallic dicobalt(II) complex, see: Gavrilova et al. (2002). For a spin-crossover FeII complex, see: Wu et al. (2009).

Experimental top

A methanolic solution (25 ml) containing the ligand (0.2 mmol, 0.066 g) was added dropwise to Co(NO3)2.6H2O (0.1 mmol, 0.029 g). After stirring for 15 minutes, the dark solution was filtered. Red block-shaped crystals suitable for single-crystal X-ray diffraction were obtained by evaporating the resulting filtration in air for several days (yield: 56.2%). Anal calc (%). for C40H34Cl2CoN7O7: H 4.01 C 56.22 N 11.47. Found: H 4.12 C 56.32 N 11.21. The magnetic susceptibility χ was measured with a Quantum Design MPMS-5S SQUID magnetometer. Data were corrected for the diamagnetic contribution calculated from Pascal's constants.

Refinement top

C-bound H atoms were placed geometrically and allowed to ride during refinement with C—H = 0.93–0.96 Å with Uiso(H) = 1.2 Ueq(C). The hydroxy H atom of the methanol solvent molecule was located in a difference Fourier map and refined as riding with the parent atom with Uiso(H) = 1.5Ueq(O), O—H distances 0.82 and 0.85 Å.

Structure description top

The CoIII complex with the oxygen-containing Schiff-base ligand is important because of their ability to bind dioxygen. Among them, the most wanted targets include the artificial blood and respiratory systems. A novel aspect lies in the structural versatility of hexadentate Schiff-bases versus. imidazolidine complexes manifesting itself in a stabilization of various structural and optical isomers depending upon the chemical hardness of the metal centre (Herchel & Boca, 2005; Gavrilova et al., 2002).

Our recent work indicated the N,O-donor tridentate ligand is suitable for the synthesis of spin-crossover materials (Wu et al., 2009). One of the examples is reported by us, which interestingly showed the mixed-spin state and synergy between spin transition and magnetic interaction. Here, for the title compound, we used 2(E)-1-[(4-chlorophenyl)carbonyl]-2-[phenyl(pyridin-2-yl)methylidene] diazanide as ligand, a typical rigid tridentate donor to synthesize a mononuclear compound, and we report the crystal structure of the complex [Co(C19H13N3OCl)2]+(NO3)-(CH3OH)2 (Fig. 1). The coordination environments of CoIII ions are completed by two ligands with average Co—N bond length of 1.885 Å and Co—O 1.907 Å (Table 1). Classical hydrogen bonds O—H···O exist between both methanol solvent molecules and the nitrate anion with D···A distances between 2.747 (11) Å and 2.963 (12) Å (Table 2).

The temperature-dependent magnetic susceptibility was measured down to 1.8 K. In the χ.T versus T plot (Fig. 2), χ.T reaches a zero value within the whole temperature region, which is consistent with S = 0 ground state for cobalt(III).

For related work on the mononuclear cobalt compound, see: Herchel & Boca (2005). For a dimetallic dicobalt(II) complex, see: Gavrilova et al. (2002). For a spin-crossover FeII complex, see: Wu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, the thermal ellipsoids were drawn at 30% probability level.
[Figure 2] Fig. 2. The temperature dependent curve χmT versus T for the title compound.
Bis{4-chloro-N'-[phenyl(2- pyridyl)methylidene]benzohydrazidato}cobalt(III) nitrate methanol disolvate top
Crystal data top
[Co(C19H13ClN3O)2]NO3·2CH4OF(000) = 1760
Mr = 854.57Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.914 (8) ÅCell parameters from 6478 reflections
b = 17.423 (11) Åθ = 2.0–29.8°
c = 17.451 (11) ŵ = 0.63 mm1
β = 93.031 (8)°T = 293 K
V = 3921 (4) Å3Block, dark-red
Z = 40.31 × 0.23 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6859 independent reflections
Radiation source: fine-focus sealed tube4829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: ψ scan
(SADABS; Bruker, 1997)
h = 1513
Tmin = 0.839, Tmax = 0.875k = 2020
18168 measured reflectionsl = 2016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0912P)2]
where P = (Fo2 + 2Fc2)/3
6859 reflections(Δ/σ)max < 0.001
516 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Co(C19H13ClN3O)2]NO3·2CH4OV = 3921 (4) Å3
Mr = 854.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.914 (8) ŵ = 0.63 mm1
b = 17.423 (11) ÅT = 293 K
c = 17.451 (11) Å0.31 × 0.23 × 0.21 mm
β = 93.031 (8)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6859 independent reflections
Absorption correction: ψ scan
(SADABS; Bruker, 1997)
4829 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.875Rint = 0.033
18168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.07Δρmax = 0.48 e Å3
6859 reflectionsΔρmin = 0.39 e Å3
516 parameters
Special details top

Experimental. The magnetic measurements were performed on Quantum Design SQUID, MPMS-5S magnetometer.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.78242 (3)0.67158 (2)0.45385 (2)0.03739 (16)
Cl11.25567 (8)0.99362 (6)0.58995 (7)0.0794 (3)
C10.5964 (3)0.5811 (2)0.4093 (2)0.0584 (10)
H1A0.63740.54990.38010.070*
Cl20.87476 (11)0.29952 (6)0.76381 (6)0.0893 (4)
C20.4924 (3)0.5647 (3)0.4130 (3)0.0785 (13)
H2A0.46350.52320.38600.094*
C30.4327 (3)0.6090 (3)0.4561 (3)0.0953 (17)
H3A0.36280.59760.45980.143*
C40.4764 (3)0.6723 (2)0.4953 (3)0.0776 (13)
H4A0.43590.70380.52460.093*
C50.5800 (3)0.68681 (19)0.4894 (2)0.0499 (9)
C60.6359 (2)0.75209 (18)0.52701 (18)0.0428 (8)
C70.5881 (2)0.8070 (2)0.5784 (2)0.0494 (9)
C80.5451 (3)0.7802 (3)0.6441 (2)0.0721 (12)
H8A0.54580.72790.65510.087*
C90.5006 (4)0.8317 (3)0.6939 (3)0.0941 (16)
H9A0.47230.81400.73850.113*
C100.4986 (4)0.9092 (3)0.6767 (4)0.0972 (18)
H10A0.46760.94340.70930.117*
C110.5417 (3)0.9353 (3)0.6127 (3)0.0810 (13)
H11A0.54100.98760.60210.097*
C120.5867 (3)0.8852 (2)0.5631 (2)0.0618 (10)
H12A0.61610.90390.51930.074*
C130.8957 (2)0.78507 (16)0.51482 (16)0.0357 (7)
C140.9853 (2)0.83520 (16)0.53516 (17)0.0384 (7)
C150.9705 (3)0.90836 (18)0.5657 (2)0.0473 (8)
H15A0.90370.92490.57450.057*
C161.0538 (3)0.95642 (19)0.5829 (2)0.0541 (9)
H16A1.04361.00490.60350.065*
C171.1516 (3)0.9312 (2)0.5690 (2)0.0532 (9)
C181.1684 (3)0.8602 (2)0.5394 (2)0.0556 (9)
H18A1.23550.84470.53010.067*
C191.0863 (3)0.8113 (2)0.5233 (2)0.0501 (9)
H19A1.09820.76240.50440.060*
C200.9368 (3)0.47364 (19)0.2934 (2)0.0512 (9)
H20A0.98040.48040.33700.061*
C210.9521 (3)0.4125 (2)0.2450 (3)0.0675 (11)
H21A1.00630.37840.25600.081*
C220.8877 (4)0.4018 (2)0.1807 (2)0.0760 (13)
H22A0.89860.36050.14830.091*
C230.8071 (4)0.4517 (2)0.1639 (2)0.0698 (12)
H23A0.76300.44390.12070.084*
C240.7922 (3)0.5131 (2)0.2112 (2)0.0541 (9)
H24A0.73850.54740.19940.065*
C250.8568 (2)0.52489 (18)0.27717 (17)0.0408 (8)
C260.8359 (2)0.59022 (17)0.32795 (17)0.0391 (7)
C270.8125 (2)0.66884 (17)0.29955 (17)0.0406 (7)
C280.8283 (3)0.69599 (19)0.22675 (19)0.0501 (9)
H28A0.85290.66340.18960.060*
C290.8071 (3)0.7723 (2)0.2094 (2)0.0594 (10)
H29A0.81680.79090.16040.071*
C300.7716 (3)0.8203 (2)0.2648 (2)0.0594 (10)
H30A0.75730.87150.25370.071*
C310.7577 (3)0.79147 (19)0.3368 (2)0.0526 (9)
H31A0.73370.82380.37440.063*
C320.8300 (2)0.53820 (17)0.51756 (17)0.0386 (7)
C330.8387 (2)0.47777 (17)0.57681 (17)0.0373 (7)
C340.7889 (2)0.48666 (18)0.64438 (19)0.0435 (8)
H34A0.74870.53010.65140.052*
C350.7981 (3)0.43203 (19)0.7017 (2)0.0512 (9)
H35A0.76360.43830.74670.061*
C360.8591 (3)0.36758 (19)0.69139 (19)0.0516 (9)
C370.9087 (3)0.35630 (19)0.6240 (2)0.0504 (9)
H37A0.94860.31260.61720.061*
C380.8977 (3)0.41166 (17)0.56659 (19)0.0428 (8)
H38A0.93010.40450.52080.051*
N10.6394 (2)0.64084 (15)0.44688 (15)0.0445 (7)
N20.73280 (19)0.75294 (13)0.50965 (14)0.0372 (6)
N30.80414 (19)0.80719 (14)0.53669 (14)0.0390 (6)
N40.7780 (2)0.71727 (15)0.35430 (15)0.0423 (6)
N50.83192 (19)0.58678 (14)0.40247 (14)0.0388 (6)
N60.8493 (2)0.52095 (14)0.44585 (14)0.0406 (6)
O10.91181 (16)0.72240 (11)0.47687 (12)0.0416 (5)
O20.80192 (16)0.60633 (11)0.54059 (11)0.0412 (5)
O390.3498 (5)1.5978 (3)0.6311 (3)0.165 (2)
H39D0.38431.60340.67150.248*
C390.2696 (5)1.6509 (3)0.6272 (4)0.125 (2)
H39A0.29751.70160.63410.187*
H39B0.22281.64030.66690.187*
H39C0.23291.64740.57810.187*
C400.3173 (11)1.7336 (7)0.8722 (10)0.362 (12)
H40A0.30841.77970.90110.543*
H40B0.25071.71190.85800.543*
H40C0.35291.74530.82670.543*
O400.3808 (7)1.6761 (6)0.9207 (6)0.279 (4)
H40D0.41581.64910.89090.419*
O30.4443 (5)1.6345 (6)0.7710 (5)0.279 (5)
O40.5735 (5)1.5770 (3)0.7264 (4)0.179 (3)
O50.5666 (5)1.6126 (4)0.8508 (4)0.188 (3)
N70.5329 (5)1.6068 (4)0.7830 (5)0.130 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0474 (3)0.0359 (3)0.0290 (3)0.00039 (18)0.00347 (18)0.00440 (17)
Cl10.0703 (7)0.0821 (7)0.0852 (8)0.0326 (6)0.0027 (6)0.0005 (6)
C10.062 (2)0.057 (2)0.056 (2)0.0065 (18)0.0029 (19)0.0148 (18)
Cl20.1574 (12)0.0600 (6)0.0515 (7)0.0127 (7)0.0158 (7)0.0175 (5)
C20.062 (3)0.081 (3)0.093 (3)0.022 (2)0.004 (2)0.033 (3)
C30.058 (3)0.106 (4)0.124 (5)0.025 (3)0.017 (3)0.042 (3)
C40.054 (2)0.084 (3)0.096 (4)0.012 (2)0.014 (2)0.029 (3)
C50.049 (2)0.051 (2)0.050 (2)0.0032 (16)0.0047 (16)0.0083 (16)
C60.0439 (19)0.0461 (19)0.0386 (19)0.0027 (15)0.0043 (15)0.0054 (14)
C70.0401 (19)0.058 (2)0.051 (2)0.0024 (16)0.0030 (16)0.0157 (17)
C80.071 (3)0.075 (3)0.072 (3)0.006 (2)0.030 (2)0.006 (2)
C90.088 (4)0.126 (5)0.072 (3)0.002 (3)0.037 (3)0.025 (3)
C100.072 (3)0.103 (4)0.118 (5)0.013 (3)0.016 (3)0.055 (4)
C110.072 (3)0.066 (3)0.105 (4)0.012 (2)0.007 (3)0.025 (3)
C120.059 (2)0.057 (2)0.070 (3)0.0083 (18)0.008 (2)0.009 (2)
C130.0474 (19)0.0366 (17)0.0238 (16)0.0003 (14)0.0072 (14)0.0009 (13)
C140.0463 (18)0.0422 (18)0.0275 (16)0.0000 (14)0.0082 (14)0.0010 (13)
C150.051 (2)0.0429 (19)0.048 (2)0.0008 (15)0.0092 (16)0.0030 (15)
C160.067 (2)0.0420 (19)0.053 (2)0.0088 (17)0.0028 (19)0.0034 (16)
C170.058 (2)0.060 (2)0.043 (2)0.0198 (18)0.0044 (17)0.0017 (17)
C180.044 (2)0.070 (2)0.054 (2)0.0043 (18)0.0075 (17)0.0018 (19)
C190.052 (2)0.055 (2)0.044 (2)0.0008 (16)0.0057 (16)0.0092 (16)
C200.056 (2)0.050 (2)0.047 (2)0.0003 (17)0.0032 (17)0.0118 (16)
C210.078 (3)0.054 (2)0.072 (3)0.0069 (19)0.019 (2)0.014 (2)
C220.123 (4)0.051 (2)0.055 (3)0.014 (3)0.021 (3)0.023 (2)
C230.106 (3)0.064 (3)0.039 (2)0.016 (2)0.002 (2)0.0195 (19)
C240.072 (2)0.052 (2)0.038 (2)0.0066 (18)0.0035 (17)0.0052 (16)
C250.052 (2)0.0423 (18)0.0292 (17)0.0092 (15)0.0079 (15)0.0073 (13)
C260.0453 (18)0.0419 (18)0.0302 (18)0.0010 (14)0.0011 (14)0.0064 (13)
C270.0507 (19)0.0435 (18)0.0271 (17)0.0018 (14)0.0014 (14)0.0068 (13)
C280.072 (2)0.048 (2)0.0307 (19)0.0016 (17)0.0037 (16)0.0064 (15)
C290.088 (3)0.055 (2)0.035 (2)0.0024 (19)0.0003 (19)0.0044 (17)
C300.084 (3)0.046 (2)0.047 (2)0.0085 (18)0.000 (2)0.0079 (17)
C310.073 (2)0.045 (2)0.041 (2)0.0108 (17)0.0037 (17)0.0017 (16)
C320.0461 (18)0.0359 (17)0.0339 (18)0.0040 (14)0.0016 (14)0.0049 (13)
C330.0436 (18)0.0383 (17)0.0301 (17)0.0037 (13)0.0015 (14)0.0062 (13)
C340.051 (2)0.0398 (18)0.0396 (19)0.0005 (14)0.0045 (15)0.0051 (14)
C350.068 (2)0.051 (2)0.036 (2)0.0028 (17)0.0147 (17)0.0049 (16)
C360.078 (2)0.0405 (19)0.036 (2)0.0068 (17)0.0023 (18)0.0011 (15)
C370.067 (2)0.0368 (18)0.047 (2)0.0045 (16)0.0025 (18)0.0014 (15)
C380.054 (2)0.0405 (18)0.0342 (18)0.0029 (15)0.0056 (15)0.0042 (14)
N10.0515 (16)0.0400 (15)0.0417 (16)0.0025 (12)0.0008 (13)0.0061 (12)
N20.0439 (16)0.0364 (14)0.0312 (15)0.0005 (11)0.0014 (11)0.0027 (11)
N30.0439 (16)0.0395 (14)0.0340 (15)0.0017 (12)0.0055 (12)0.0058 (11)
N40.0499 (16)0.0430 (16)0.0338 (15)0.0029 (12)0.0010 (12)0.0015 (12)
N50.0501 (16)0.0365 (14)0.0297 (15)0.0007 (11)0.0018 (12)0.0017 (11)
N60.0547 (17)0.0359 (14)0.0313 (15)0.0005 (12)0.0023 (12)0.0033 (11)
O10.0467 (12)0.0415 (12)0.0370 (13)0.0015 (9)0.0051 (10)0.0085 (10)
O20.0580 (13)0.0369 (12)0.0291 (12)0.0029 (10)0.0052 (10)0.0041 (9)
O390.203 (5)0.130 (4)0.168 (5)0.012 (4)0.056 (4)0.046 (3)
C390.120 (5)0.086 (4)0.173 (7)0.009 (4)0.054 (4)0.013 (4)
C400.288 (16)0.233 (14)0.54 (3)0.011 (11)0.218 (17)0.054 (16)
O400.248 (9)0.326 (11)0.263 (10)0.029 (7)0.013 (7)0.119 (8)
O30.135 (5)0.431 (12)0.269 (9)0.069 (6)0.003 (5)0.133 (9)
O40.156 (5)0.140 (4)0.245 (7)0.034 (3)0.060 (5)0.033 (4)
O50.145 (5)0.209 (6)0.206 (7)0.063 (4)0.034 (4)0.095 (5)
N70.088 (4)0.115 (5)0.188 (8)0.012 (3)0.000 (5)0.069 (5)
Geometric parameters (Å, º) top
Co1—N21.853 (3)C21—H21A0.9300
Co1—N51.859 (3)C22—C231.377 (6)
Co1—O21.899 (2)C22—H22A0.9300
Co1—N41.909 (3)C23—C241.371 (5)
Co1—O11.915 (2)C23—H23A0.9300
Co1—N11.921 (3)C24—C251.400 (5)
Cl1—C171.752 (3)C24—H24A0.9300
C1—N11.336 (4)C25—C261.476 (4)
C1—C21.378 (5)C26—N51.306 (4)
C1—H1A0.9300C26—C271.482 (4)
Cl2—C361.737 (3)C27—N41.367 (4)
C2—C31.347 (6)C27—C281.381 (5)
C2—H2A0.9300C28—C291.387 (5)
C3—C41.400 (6)C28—H28A0.9300
C3—H3A0.9300C29—C301.375 (5)
C4—C51.371 (5)C29—H29A0.9300
C4—H4A0.9300C30—C311.374 (5)
C5—N11.357 (4)C30—H30A0.9300
C5—C61.481 (4)C31—N41.351 (4)
C6—N21.304 (4)C31—H31A0.9300
C6—C71.469 (4)C32—O21.310 (3)
C7—C81.381 (5)C32—N61.324 (4)
C7—C121.390 (5)C32—C331.476 (4)
C8—C91.394 (6)C33—C341.381 (4)
C8—H8A0.9300C33—C381.398 (4)
C9—C101.382 (7)C34—C351.381 (5)
C9—H9A0.9300C34—H34A0.9300
C10—C111.353 (7)C35—C361.389 (5)
C10—H10A0.9300C35—H35A0.9300
C11—C121.378 (5)C36—C371.382 (5)
C11—H11A0.9300C37—C381.393 (4)
C12—H12A0.9300C37—H37A0.9300
C13—O11.299 (3)C38—H38A0.9300
C13—N31.320 (4)N2—N31.385 (3)
C13—C141.478 (4)N5—N61.386 (3)
C14—C191.395 (5)O39—C391.387 (7)
C14—C151.398 (4)O39—H39D0.8200
C15—C161.383 (5)C39—H39A0.9600
C15—H15A0.9300C39—H39B0.9600
C16—C171.371 (5)C39—H39C0.9600
C16—H16A0.9300C40—O401.523 (12)
C17—C181.362 (5)C40—H40A0.9600
C18—C191.378 (5)C40—H40B0.9600
C18—H18A0.9300C40—H40C0.9600
C19—H19A0.9300O40—H40D0.8500
C20—C211.380 (5)O3—N71.249 (7)
C20—C251.383 (5)O4—N71.256 (8)
C20—H20A0.9300O5—N71.243 (8)
C21—C221.373 (6)
N2—Co1—N5176.99 (11)C24—C23—C22119.5 (4)
N2—Co1—O294.25 (11)C24—C23—H23A120.2
N5—Co1—O282.78 (10)C22—C23—H23A120.2
N2—Co1—N499.48 (11)C23—C24—C25120.9 (4)
N5—Co1—N483.51 (11)C23—C24—H24A119.5
O2—Co1—N4166.22 (10)C25—C24—H24A119.5
N2—Co1—O181.85 (10)C20—C25—C24118.6 (3)
N5—Co1—O198.64 (10)C20—C25—C26122.2 (3)
O2—Co1—O191.84 (9)C24—C25—C26119.1 (3)
N4—Co1—O188.96 (10)N5—C26—C25125.5 (3)
N2—Co1—N183.59 (11)N5—C26—C27111.0 (3)
N5—Co1—N195.86 (11)C25—C26—C27123.5 (3)
O2—Co1—N188.29 (10)N4—C27—C28120.1 (3)
N4—Co1—N194.38 (11)N4—C27—C26113.9 (3)
O1—Co1—N1165.41 (10)C28—C27—C26126.0 (3)
N1—C1—C2121.3 (3)C27—C28—C29119.5 (3)
N1—C1—H1A119.4C27—C28—H28A120.3
C2—C1—H1A119.4C29—C28—H28A120.3
C3—C2—C1119.6 (4)C30—C29—C28119.9 (3)
C3—C2—H2A120.2C30—C29—H29A120.0
C1—C2—H2A120.2C28—C29—H29A120.0
C2—C3—C4119.8 (4)C31—C30—C29119.0 (3)
C2—C3—H3A120.1C31—C30—H30A120.5
C4—C3—H3A120.1C29—C30—H30A120.5
C5—C4—C3118.6 (4)N4—C31—C30121.5 (3)
C5—C4—H4A120.7N4—C31—H31A119.2
C3—C4—H4A120.7C30—C31—H31A119.2
N1—C5—C4120.9 (3)O2—C32—N6124.4 (3)
N1—C5—C6114.8 (3)O2—C32—C33116.3 (3)
C4—C5—C6124.3 (3)N6—C32—C33119.3 (3)
N2—C6—C7125.0 (3)C34—C33—C38118.9 (3)
N2—C6—C5110.9 (3)C34—C33—C32119.8 (3)
C7—C6—C5124.0 (3)C38—C33—C32121.4 (3)
C8—C7—C12119.3 (3)C35—C34—C33121.0 (3)
C8—C7—C6119.2 (3)C35—C34—H34A119.5
C12—C7—C6121.5 (3)C33—C34—H34A119.5
C7—C8—C9119.7 (4)C34—C35—C36119.4 (3)
C7—C8—H8A120.1C34—C35—H35A120.3
C9—C8—H8A120.1C36—C35—H35A120.3
C10—C9—C8119.9 (5)C37—C36—C35121.1 (3)
C10—C9—H9A120.1C37—C36—Cl2118.7 (3)
C8—C9—H9A120.1C35—C36—Cl2120.2 (3)
C11—C10—C9120.2 (4)C36—C37—C38118.6 (3)
C11—C10—H10A119.9C36—C37—H37A120.7
C9—C10—H10A119.9C38—C37—H37A120.7
C10—C11—C12120.7 (4)C37—C38—C33121.0 (3)
C10—C11—H11A119.6C37—C38—H38A119.5
C12—C11—H11A119.6C33—C38—H38A119.5
C11—C12—C7120.1 (4)C1—N1—C5119.8 (3)
C11—C12—H12A119.9C1—N1—Co1128.4 (2)
C7—C12—H12A119.9C5—N1—Co1111.7 (2)
O1—C13—N3124.2 (3)C6—N2—N3123.9 (2)
O1—C13—C14118.4 (3)C6—N2—Co1118.4 (2)
N3—C13—C14117.4 (3)N3—N2—Co1117.31 (19)
C19—C14—C15118.4 (3)C13—N3—N2107.0 (2)
C19—C14—C13120.9 (3)C31—N4—C27120.0 (3)
C15—C14—C13120.6 (3)C31—N4—Co1126.9 (2)
C16—C15—C14121.0 (3)C27—N4—Co1112.5 (2)
C16—C15—H15A119.5C26—N5—N6124.6 (3)
C14—C15—H15A119.5C26—N5—Co1118.5 (2)
C17—C16—C15118.7 (3)N6—N5—Co1116.38 (19)
C17—C16—H16A120.6C32—N6—N5107.2 (2)
C15—C16—H16A120.6C13—O1—Co1109.54 (19)
C18—C17—C16121.6 (3)C32—O2—Co1108.96 (18)
C18—C17—Cl1120.5 (3)C39—O39—H39D109.5
C16—C17—Cl1117.9 (3)O39—C39—H39A109.5
C17—C18—C19120.2 (3)O39—C39—H39B109.5
C17—C18—H18A119.9H39A—C39—H39B109.5
C19—C18—H18A119.9O39—C39—H39C109.5
C18—C19—C14120.0 (3)H39A—C39—H39C109.5
C18—C19—H19A120.0H39B—C39—H39C109.5
C14—C19—H19A120.0O40—C40—H40A109.5
C21—C20—C25120.2 (3)O40—C40—H40B109.5
C21—C20—H20A119.9H40A—C40—H40B109.5
C25—C20—H20A119.9O40—C40—H40C109.5
C22—C21—C20120.3 (4)H40A—C40—H40C109.5
C22—C21—H21A119.9H40B—C40—H40C109.5
C20—C21—H21A119.9C40—O40—H40D108.1
C21—C22—C23120.5 (4)O5—N7—O3113.6 (9)
C21—C22—H22A119.8O5—N7—O4130.0 (8)
C23—C22—H22A119.8O3—N7—O4116.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O39—H39D···O30.821.942.747 (11)167
O40—H40D···O30.852.162.873 (12)142
O40—H40D···O50.852.202.963 (12)150

Experimental details

Crystal data
Chemical formula[Co(C19H13ClN3O)2]NO3·2CH4O
Mr854.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.914 (8), 17.423 (11), 17.451 (11)
β (°) 93.031 (8)
V3)3921 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.31 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionψ scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.839, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
18168, 6859, 4829
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.156, 1.07
No. of reflections6859
No. of parameters516
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.39

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—N21.853 (3)Co1—N41.909 (3)
Co1—N51.859 (3)Co1—O11.915 (2)
Co1—O21.899 (2)Co1—N11.921 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O39—H39D···O30.821.942.747 (11)167.4
O40—H40D···O30.852.162.873 (12)141.6
O40—H40D···O50.852.202.963 (12)149.8
 

Acknowledgements

This work was supported by Anhui Provincial Office of Science and Technology (project: Photo-induced Spin Crossover Cluster and Photomagnetic Devices).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGavrilova, A., Qin, C. J., Sommer, R., Rheingold, A. & Bosnich, B. (2002). J. Am. Chem. Soc. 124, 1714–1722.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHerchel, R. & Boca, R. (2005). Dalton Trans. pp. 1352–1353.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D.-Y., Sato, O., Einaga, Y. & Duan, C.-Y. (2009). Angew. Chem. Int. Ed. 48, 1475–1478.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds