organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-[(S)-1-phenyl­eth­yl]benzene­sulfonamide

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Çankırı Karatekin University, TR-18100 Çankırı, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 5 August 2010; accepted 10 August 2010; online 21 August 2010)

In the title compound, C15H17NO2S, the dihedral angle between the aromatic rings is 14.47 (8)°. The mol­ecule is bent at the N atom, with a C—SO2—NH—C torsion angle of 79.06 (13)°. In the crystal structure, the sulfonamide groups are hydrogen bonded via N—H⋯O links, forming chains of mol­ecules along the crystallographic b axis. ππ inter­actions [centroid–centroid distance = 3.81 (3) Å] also occur.

Related literature

For general background to sulfonamides, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o286-o289.]) and literature cited therein; Padeiskaya & Polukhina (1974[Padeiskaya E. N. & Polukhina A. M. (1974). Novel Sulfonylamide Medicines of Prolonged Effect for Treating Infectious Diseases. Moscow: Meditsina.]). For the anti­microbial properties of sulfonamides and their applications in medical practice, see: Mashkovskii (1987[Mashkovskii, M. D. (1987). Pharmaceuticals. Minsk, Belorussia: V.2.]); Zhungietu & Granik, (2000[Zhungietu, G. I. & Granik, V. G. (2000). Basic Principles of Drug Design. Chisinau: Izd-vo MoldGU.]). For chemical aspects of related compounds, see: Liu et al. (2009a[Liu, C. R., Li, M. B., Yang, C. F. & Tian, S. K. (2009a). Chem. Eur. J. 15, 793-797.],b[Liu, C. R., Li, M. B., Cheng, D. J., Yang, C. F. & Tian, S. K. (2009b). Org. Lett. 11, 2543-2545.]); Seong et al. (1998[Seong, M. R., Lee, H. J. & Kim, J. N. (1998). Tetrahedron Lett. 39, 6219-6222.]). For related structures, see: Deng & Hu (2005[Deng, L.-P. & Hu, Y.-Z. (2005). Acta Cryst. E61, o2652-o2653.]); Zhu et al. (2008[Zhu, H.-Y., Wu, Z. & Jiang, S. (2008). Acta Cryst. E64, o596.]); Chatterjee et al. (1982[Chatterjee, C., Dattagupta, J. K. & Saha, N. N. (1982). Acta Cryst. B38, 1845-1847.]); Ghosh et al. (1991[Ghosh, M., Basak, A. K., Mazumdar, S. K. & Sheldrick, B. (1991). Acta Cryst. C47, 577-580.]); Takasuka & Nakai, (2001[Takasuka, M. & Nakai, H. (2001). Vib. Spectrosc. 25, 197-204.]). For spectroscopic data for the title compound, see: Georgy et al. (2009[Georgy, M., Boucard, V., Debleds, O., Zotto, C. D. & Campagne, P. (2009). Tetrahedron, 65, 1758-1766.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO2S

  • Mr = 275.36

  • Monoclinic, P 21

  • a = 8.1588 (4) Å

  • b = 10.1498 (4) Å

  • c = 8.9242 (5) Å

  • β = 105.545 (4)°

  • V = 711.98 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.76 × 0.55 × 0.38 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.881, Tmax = 0.933

  • 10843 measured reflections

  • 2950 independent reflections

  • 2864 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.05

  • 2950 reflections

  • 176 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1388 Friedel pairs

  • Flack parameter: −0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H16⋯O1i 0.84 (2) 2.11 (2) 2.9519 (17) 178 (1)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzenesulfonamide derivatives are well known in the biological sciences for their antibacterial, anticancer and anti- HIV activities. In the field of catalysis, their chloro derivatives are particularly important for carrying out a large number of oxidation reactions wherein the reaction kinetics are very important (Siddiqui et al., 2008 and literature cited therein).

Sulfonamides possess a number of antimicrobial properties and are applied in medical practice for treating infections caused by pathogens (Mashkovskii, 1987; Zhungietu & Granik, 2000). However, considering the ubiquitous spreading of resistant forms of bacteria, the problem of preparing novel sulfonamides with advanced biomedical characteristics and the investigation of their structures and properties remain highly topical.

The benzylic and allylic amines are useful alkylating agents for the formation of carbon-carbon and carbon-heteroatom bonds under lewis acid conditions and benzylic, allylic halides and the corresponding sulfonates are frequently employed as the alkylating agents.(Liu et al., 2009a). There are few reports for the preparation of diarylated derivatives and sulfinic acid (Liu et al., 2009b; Seong et al., 1998).

The benzene rings A(C1—C6) and B(C10—C15) are both nearly planar with the maximum r.m.s. deviation from the mean plane as 0.0067 (12)Å for C5 (Fig. 1). The para-substituent on the conformation of the benzene ring is nearly planar to the that of the other benzene ring, making a dihedral angle of 14.47 (8)°.

In the crystal, the molecules are linked in opposite directions with each other via N1—H16···O1 intermolecular interactions and ππ stacking interactions between the benzene rings (centroid to centroid distance = 3.81 (3)Å are also effective in crystal packing. (Fig. 2, Table 1).

The molecule is bent at the N atom with a C—SO2—NH—C torsion angle of 79.06 (13)° and agree with the corresponding angle -77.2 (2)° in N-[4-(Dimethylamino)benzylidene]-4-methylbenzene-sulfonamide (Deng & Hu, 2005). The atoms around the sulfonamide S atom is arranged in a slightly distorted tetrahedral configuration. The largest deviation is in the angle O2—S1—O1 [119.63 (8)°]. In N,4-Dimethyl-N-(4-nitrobenzyl)benzene- sulfonamide, the similar angle is 119.53 (15)° (Zhu et al., 2008) and the same conforms to the non-tetrahedral nature commonly observed in sulfonamides (Chatterjee et al., 1982; Ghosh et al., 1991; Takasuka & Nakai, 2001).

Related literature top

For general background to sulfonamides, see: Siddiqui et al. (2008) and literature cited therein; Padeiskaya & Polukhina (1974). For the antimicrobial properties of sulfonamides and their applications in medical practice, see: Mashkovskii (1987); Zhungietu & Granik, (2000). For chemical aspects of related compounds, see: Liu et al. (2009a,b); Seong et al. (1998). For related structures, see: Deng & Hu (2005); Zhu et al. (2008); Chatterjee et al. (1982); Ghosh et al. (1991); Takasuka & Nakai, (2001). For spectroscopic data of the title compound, see: Georgy et al. (2009).

Experimental top

(S) 1-Phenyl ethyl amine (1 g, 8.2 mmol) was dissolved in toluene (20 ml) under nitrogene at room temperature. TsCl (1.87 g, 9.8 mmol) was added to this solution. After 5 minutes the white precipate was formed. After stirring 5 minutes diisopropyl ethyl amine (1.43 ml, 8.2 mmol) was added to the solution. The reaction mixture was stirred at room temperature for an additional 3.5 h. After 3.5 h no amine was detected by TLC. The solution washed two times with water and organic layer dried over MgSO4. Solvent evaporated. The crude mixture purified by column chromotography PE/EtOAc (1:1), gave the title compound as a white crystalline solid (1.8 g, 79%). M.p. 87–89°C. Spectroskopic data identical with Lit. (Georgy et al., 2009).

Refinement top

The H atom of the NH group was located in a difference map and refined freely. All other H atoms were positioned with idealized geometry using a riding model, with C–H = 0.93 Å (aromatic), 0.98 Å (methine) and 0.96 Å (methyl). All H atoms were refined with Uiso=1.2Ueq (parent atom).

Structure description top

Benzenesulfonamide derivatives are well known in the biological sciences for their antibacterial, anticancer and anti- HIV activities. In the field of catalysis, their chloro derivatives are particularly important for carrying out a large number of oxidation reactions wherein the reaction kinetics are very important (Siddiqui et al., 2008 and literature cited therein).

Sulfonamides possess a number of antimicrobial properties and are applied in medical practice for treating infections caused by pathogens (Mashkovskii, 1987; Zhungietu & Granik, 2000). However, considering the ubiquitous spreading of resistant forms of bacteria, the problem of preparing novel sulfonamides with advanced biomedical characteristics and the investigation of their structures and properties remain highly topical.

The benzylic and allylic amines are useful alkylating agents for the formation of carbon-carbon and carbon-heteroatom bonds under lewis acid conditions and benzylic, allylic halides and the corresponding sulfonates are frequently employed as the alkylating agents.(Liu et al., 2009a). There are few reports for the preparation of diarylated derivatives and sulfinic acid (Liu et al., 2009b; Seong et al., 1998).

The benzene rings A(C1—C6) and B(C10—C15) are both nearly planar with the maximum r.m.s. deviation from the mean plane as 0.0067 (12)Å for C5 (Fig. 1). The para-substituent on the conformation of the benzene ring is nearly planar to the that of the other benzene ring, making a dihedral angle of 14.47 (8)°.

In the crystal, the molecules are linked in opposite directions with each other via N1—H16···O1 intermolecular interactions and ππ stacking interactions between the benzene rings (centroid to centroid distance = 3.81 (3)Å are also effective in crystal packing. (Fig. 2, Table 1).

The molecule is bent at the N atom with a C—SO2—NH—C torsion angle of 79.06 (13)° and agree with the corresponding angle -77.2 (2)° in N-[4-(Dimethylamino)benzylidene]-4-methylbenzene-sulfonamide (Deng & Hu, 2005). The atoms around the sulfonamide S atom is arranged in a slightly distorted tetrahedral configuration. The largest deviation is in the angle O2—S1—O1 [119.63 (8)°]. In N,4-Dimethyl-N-(4-nitrobenzyl)benzene- sulfonamide, the similar angle is 119.53 (15)° (Zhu et al., 2008) and the same conforms to the non-tetrahedral nature commonly observed in sulfonamides (Chatterjee et al., 1982; Ghosh et al., 1991; Takasuka & Nakai, 2001).

For general background to sulfonamides, see: Siddiqui et al. (2008) and literature cited therein; Padeiskaya & Polukhina (1974). For the antimicrobial properties of sulfonamides and their applications in medical practice, see: Mashkovskii (1987); Zhungietu & Granik, (2000). For chemical aspects of related compounds, see: Liu et al. (2009a,b); Seong et al. (1998). For related structures, see: Deng & Hu (2005); Zhu et al. (2008); Chatterjee et al. (1982); Ghosh et al. (1991); Takasuka & Nakai, (2001). For spectroscopic data of the title compound, see: Georgy et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram for (I), showing the N—H···O hydrogen bonds and ππ interactions. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. [Symmetry code; (i): 1 - x, -1/2 + y, 1 - z]. (Cg1 and Cg2 are the centroids of the C1—C6 and C10—C15 rings, respectively).
4-Methyl-N-[(S)-1-phenylethyl]benzenesulfonamide top
Crystal data top
C15H17NO2SF(000) = 292
Mr = 275.36Dx = 1.284 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 10843 reflections
a = 8.1588 (4) Åθ = 2.4–26.9°
b = 10.1498 (4) ŵ = 0.23 mm1
c = 8.9242 (5) ÅT = 296 K
β = 105.545 (4)°Plane graphite, colorless
V = 711.98 (6) Å30.76 × 0.55 × 0.38 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
2950 independent reflections
Radiation source: fine-focus sealed tube2864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
rotation method scansθmax = 26.5°, θmin = 2.4°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1010
Tmin = 0.881, Tmax = 0.933k = 1212
10843 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.0201P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2950 reflectionsΔρmax = 0.17 e Å3
176 parametersΔρmin = 0.23 e Å3
2 restraintsAbsolute structure: Flack (1983), 1388 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C15H17NO2SV = 711.98 (6) Å3
Mr = 275.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.1588 (4) ŵ = 0.23 mm1
b = 10.1498 (4) ÅT = 296 K
c = 8.9242 (5) Å0.76 × 0.55 × 0.38 mm
β = 105.545 (4)°
Data collection top
Stoe IPDS 2
diffractometer
2950 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2864 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.933Rint = 0.027
10843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.17 e Å3
S = 1.05Δρmin = 0.23 e Å3
2950 reflectionsAbsolute structure: Flack (1983), 1388 Friedel pairs
176 parametersAbsolute structure parameter: 0.02 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69009 (17)0.77118 (14)0.68328 (15)0.0428 (3)
C20.67635 (19)0.88063 (14)0.77051 (17)0.0476 (3)
H20.60340.94910.72690.057*
C30.7724 (2)0.88734 (17)0.92370 (18)0.0535 (3)
H30.76330.96090.98310.064*
C40.8815 (2)0.78666 (18)0.98963 (19)0.0553 (4)
C50.8956 (2)0.6792 (2)0.9000 (2)0.0609 (4)
H50.97080.61190.94320.073*
C60.8002 (2)0.66945 (17)0.7473 (2)0.0546 (3)
H60.80960.59580.68820.066*
C70.9778 (3)0.7926 (3)1.1598 (2)0.0814 (6)
H7A1.04690.87061.17890.098*
H7B1.04910.71631.18640.098*
H7C0.89840.79481.22210.098*
C80.25591 (18)0.69454 (16)0.54631 (17)0.0492 (3)
H80.20310.76770.47880.059*
C90.1317 (2)0.5803 (2)0.5145 (3)0.0721 (5)
H9A0.10250.55910.40570.087*
H9B0.03080.60430.54370.087*
H9C0.18330.50500.57390.087*
C100.29391 (16)0.74216 (18)0.71331 (15)0.0466 (3)
C110.2449 (2)0.86701 (19)0.7442 (2)0.0638 (4)
H110.18850.92120.66270.077*
C120.2791 (3)0.9121 (2)0.8955 (3)0.0831 (6)
H120.24530.99640.91510.100*
C130.3624 (3)0.8335 (3)1.0168 (2)0.0803 (6)
H130.38440.86391.11860.096*
C140.4129 (3)0.7105 (2)0.9874 (2)0.0714 (6)
H140.47120.65751.06950.086*
C150.3784 (2)0.66387 (18)0.83688 (18)0.0568 (4)
H150.41210.57920.81840.068*
N10.40634 (17)0.65258 (12)0.49794 (14)0.0465 (3)
O10.48302 (17)0.87632 (11)0.44036 (12)0.0612 (3)
O20.65796 (18)0.68619 (15)0.40456 (14)0.0684 (3)
S10.55950 (4)0.75139 (4)0.49215 (3)0.04629 (10)
H160.4401 (19)0.5744 (16)0.5177 (19)0.044 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0486 (6)0.0399 (7)0.0399 (6)0.0036 (5)0.0121 (5)0.0028 (5)
C20.0549 (7)0.0398 (7)0.0448 (7)0.0017 (6)0.0075 (6)0.0004 (6)
C30.0611 (8)0.0499 (8)0.0464 (7)0.0085 (7)0.0093 (6)0.0067 (6)
C40.0486 (7)0.0667 (11)0.0466 (7)0.0086 (6)0.0058 (6)0.0061 (6)
C50.0541 (8)0.0640 (10)0.0610 (9)0.0129 (7)0.0093 (7)0.0120 (8)
C60.0596 (8)0.0492 (8)0.0561 (8)0.0090 (7)0.0172 (7)0.0004 (7)
C70.0795 (12)0.1006 (17)0.0517 (9)0.0085 (11)0.0040 (8)0.0086 (9)
C80.0502 (7)0.0509 (7)0.0418 (7)0.0045 (6)0.0044 (5)0.0014 (6)
C90.0593 (9)0.0869 (14)0.0674 (11)0.0175 (9)0.0124 (8)0.0182 (10)
C100.0478 (6)0.0465 (7)0.0449 (6)0.0002 (6)0.0113 (5)0.0038 (7)
C110.0646 (9)0.0576 (10)0.0690 (10)0.0131 (8)0.0177 (8)0.0074 (8)
C120.0906 (14)0.0773 (14)0.0898 (15)0.0018 (11)0.0388 (12)0.0340 (12)
C130.0881 (14)0.1013 (17)0.0577 (10)0.0286 (12)0.0306 (10)0.0272 (11)
C140.0815 (11)0.0865 (15)0.0437 (8)0.0241 (10)0.0127 (8)0.0035 (8)
C150.0693 (9)0.0506 (8)0.0489 (8)0.0047 (7)0.0131 (7)0.0035 (7)
N10.0589 (6)0.0347 (6)0.0439 (6)0.0013 (5)0.0105 (5)0.0056 (5)
O10.0858 (8)0.0432 (6)0.0457 (5)0.0070 (5)0.0022 (5)0.0079 (5)
O20.0826 (8)0.0785 (8)0.0519 (6)0.0063 (7)0.0317 (6)0.0120 (6)
S10.06240 (19)0.04072 (16)0.03579 (15)0.00478 (15)0.01324 (12)0.00162 (14)
Geometric parameters (Å, º) top
C1—C21.378 (2)C9—H9A0.9600
C1—C61.387 (2)C9—H9B0.9600
C1—S11.7638 (13)C9—H9C0.9600
C2—C31.383 (2)C10—C111.379 (3)
C2—H20.9300C10—C151.384 (2)
C3—C41.379 (2)C11—C121.381 (3)
C3—H30.9300C11—H110.9300
C4—C51.375 (3)C12—C131.370 (4)
C4—C71.512 (2)C12—H120.9300
C5—C61.380 (2)C13—C141.362 (4)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—C151.381 (2)
C7—H7A0.9600C14—H140.9300
C7—H7B0.9600C15—H150.9300
C7—H7C0.9600N1—S11.6138 (13)
C8—N11.469 (2)N1—H160.843 (15)
C8—C91.516 (2)O1—S11.4339 (12)
C8—C101.5177 (19)O2—S11.4251 (13)
C8—H80.9800
C2—C1—C6120.59 (13)H9A—C9—H9B109.5
C2—C1—S1121.23 (11)C8—C9—H9C109.5
C6—C1—S1118.06 (11)H9A—C9—H9C109.5
C1—C2—C3119.18 (14)H9B—C9—H9C109.5
C1—C2—H2120.4C11—C10—C15118.51 (15)
C3—C2—H2120.4C11—C10—C8119.70 (15)
C4—C3—C2121.00 (15)C15—C10—C8121.78 (16)
C4—C3—H3119.5C10—C11—C12120.45 (19)
C2—C3—H3119.5C10—C11—H11119.8
C5—C4—C3118.99 (14)C12—C11—H11119.8
C5—C4—C7120.90 (17)C13—C12—C11120.5 (2)
C3—C4—C7120.05 (17)C13—C12—H12119.8
C4—C5—C6121.19 (16)C11—C12—H12119.8
C4—C5—H5119.4C14—C13—C12119.55 (19)
C6—C5—H5119.4C14—C13—H13120.2
C5—C6—C1119.03 (16)C12—C13—H13120.2
C5—C6—H6120.5C13—C14—C15120.6 (2)
C1—C6—H6120.5C13—C14—H14119.7
C4—C7—H7A109.5C15—C14—H14119.7
C4—C7—H7B109.5C14—C15—C10120.44 (18)
H7A—C7—H7B109.5C14—C15—H15119.8
C4—C7—H7C109.5C10—C15—H15119.8
H7A—C7—H7C109.5C8—N1—S1122.98 (10)
H7B—C7—H7C109.5C8—N1—H16117.6 (11)
N1—C8—C9106.99 (14)S1—N1—H16112.3 (11)
N1—C8—C10114.46 (12)O2—S1—O1119.63 (8)
C9—C8—C10112.21 (15)O2—S1—N1106.51 (8)
N1—C8—H8107.6O1—S1—N1106.62 (7)
C9—C8—H8107.6O2—S1—C1107.46 (7)
C10—C8—H8107.6O1—S1—C1107.99 (7)
C8—C9—H9A109.5N1—S1—C1108.18 (6)
C8—C9—H9B109.5
C6—C1—C2—C30.7 (2)C11—C12—C13—C140.5 (3)
S1—C1—C2—C3175.22 (11)C12—C13—C14—C151.1 (3)
C1—C2—C3—C40.2 (2)C13—C14—C15—C100.9 (3)
C2—C3—C4—C50.8 (2)C11—C10—C15—C140.2 (3)
C2—C3—C4—C7176.55 (16)C8—C10—C15—C14179.21 (15)
C3—C4—C5—C61.4 (3)C9—C8—N1—S1172.13 (12)
C7—C4—C5—C6175.96 (18)C10—C8—N1—S162.90 (17)
C4—C5—C6—C10.9 (3)C8—N1—S1—O2165.68 (12)
C2—C1—C6—C50.2 (2)C8—N1—S1—O136.88 (13)
S1—C1—C6—C5175.89 (13)C8—N1—S1—C179.06 (13)
N1—C8—C10—C11122.94 (16)C2—C1—S1—O2145.43 (12)
C9—C8—C10—C11114.90 (18)C6—C1—S1—O238.50 (14)
N1—C8—C10—C1556.5 (2)C2—C1—S1—O115.11 (14)
C9—C8—C10—C1565.69 (19)C6—C1—S1—O1168.83 (12)
C15—C10—C11—C120.3 (3)C2—C1—S1—N199.93 (12)
C8—C10—C11—C12179.74 (18)C6—C1—S1—N176.13 (12)
C10—C11—C12—C130.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H16···O1i0.84 (2)2.11 (2)2.9519 (17)178 (1)
Symmetry code: (i) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H17NO2S
Mr275.36
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.1588 (4), 10.1498 (4), 8.9242 (5)
β (°) 105.545 (4)
V3)711.98 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.76 × 0.55 × 0.38
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.881, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
10843, 2950, 2864
Rint0.027
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.05
No. of reflections2950
No. of parameters176
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.23
Absolute structureFlack (1983), 1388 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H16···O1i0.843 (16)2.110 (16)2.9519 (17)177.8 (10)
Symmetry code: (i) x+1, y1/2, z+1.
 

Acknowledgements

The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions. The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationChatterjee, C., Dattagupta, J. K. & Saha, N. N. (1982). Acta Cryst. B38, 1845–1847.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDeng, L.-P. & Hu, Y.-Z. (2005). Acta Cryst. E61, o2652–o2653.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGeorgy, M., Boucard, V., Debleds, O., Zotto, C. D. & Campagne, P. (2009). Tetrahedron, 65, 1758–1766.  Web of Science CrossRef CAS Google Scholar
First citationGhosh, M., Basak, A. K., Mazumdar, S. K. & Sheldrick, B. (1991). Acta Cryst. C47, 577–580.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, C. R., Li, M. B., Cheng, D. J., Yang, C. F. & Tian, S. K. (2009b). Org. Lett. 11, 2543–2545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, C. R., Li, M. B., Yang, C. F. & Tian, S. K. (2009a). Chem. Eur. J. 15, 793–797.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMashkovskii, M. D. (1987). Pharmaceuticals. Minsk, Belorussia: V.2.  Google Scholar
First citationPadeiskaya E. N. & Polukhina A. M. (1974). Novel Sulfonylamide Medicines of Prolonged Effect for Treating Infectious Diseases. Moscow: Meditsina.  Google Scholar
First citationSeong, M. R., Lee, H. J. & Kim, J. N. (1998). Tetrahedron Lett. 39, 6219–6222.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o286–o289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTakasuka, M. & Nakai, H. (2001). Vib. Spectrosc. 25, 197–204.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, H.-Y., Wu, Z. & Jiang, S. (2008). Acta Cryst. E64, o596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhungietu, G. I. & Granik, V. G. (2000). Basic Principles of Drug Design. Chisinau: Izd-vo MoldGU.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds