metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η5-Cyclo­penta­dien­yl)[(1,2,3,4,4a,12a-η)-naphtho­[2,3-b][1,4]benzodioxine]iron(II) hexa­fluoridophosphate

aDepartment of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
*Correspondence e-mail: adam.piorko@smu.ca

(Received 10 August 2010; accepted 17 August 2010; online 21 August 2010)

At 296 (2) K, both complexed rings in the iron(II) complex cation of the title salt, [Fe(C5H5)(C16H10O2)]PF6, are almost parallel [dihedral angle between planes = 2.4 (3)°]. The quaternary C atoms of the complexed arene ring are located at the longest distance from the Fe atom, with Fe—C distances of 2.112 (4) and 2.105 (3) Å, which are slightly longer than the average Fe—C distance for this ring (2.083 Å). The Fe ion is located 1.660 (1) and 1.543 (1) Å, respectively, from the cyclo­penta­dienyl and the complexed arene ring.

Related literature

For the synthesis of the title compound and related structures, see Sutherland et al. (1982[Sutherland, R. G., Piórko, A., Gill, U. S. & Lee, C. C. (1982). J. Heterocycl. Chem. 19, 801-803.], 1988[Sutherland, R. G., Piórko, A., Lee, C. C., Simonsen, S. H. & Lynch, V. M. (1988). J. Heterocycl. Chem. 25, 1911-1916.]). For the crystal structures of similar polycyclic {(η5-Cp) (η6-arene) Fe(II)}+ salts, see Piórko et al. (1995[Piórko, A., Christie, S. & Zaworotko, M. J. (1995). Acta Cryst. C51, 26-29.]); Benites et al. (1996[Benites, M. R., Fronczek, F. R. & Maverick, A. W. (1996). J. Organomet. Chem. 516, 17-24.], 1999[Benites, M. R., Fronczek, F. R. & Maverick, A. W. (1999). J. Organomet. Chem. 577, 24-30.]); Decken (2004[Decken, A. (2004). Acta Cryst. E60, m1796-m1797.]); Zanello et al. (2009[Zanello, P., Herber, R. H., Kudinov, A. R., Corsini, M., Fabrizi de Biani, F., Nowik, I., Loginov, D. A., Vinogradov, M. M., Shul'pina, L. S., Ivanov, I. A. & Vologzhanina, A. V. (2009). J. Organomet. Chem. 694, 1161-1171.]) and literature cited therein; Asiri et al. (2010[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1850.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C16H10O2)]PF6

  • Mr = 500.15

  • Monoclinic, P 21 /c

  • a = 15.3216 (13) Å

  • b = 8.9296 (8) Å

  • c = 14.6559 (12) Å

  • β = 106.417 (1)°

  • V = 1923.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 296 K

  • 0.35 × 0.29 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.576, Tmax = 0.746

  • 12307 measured reflections

  • 3372 independent reflections

  • 2360 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.01

  • 3372 reflections

  • 318 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, along with similar polycyclic aromatic O-, S-, and N-containing heterocycles complexed with a cyclopentadienyliron(II) moiety, was reported from the study on nucleophilic aromatic di-substitution reactions using 1,2-dichlorobenzene FeCp complex (Sutherland et al., 1988), which was an extension of an earlier study on the same reaction leading to synthesis of heterocyclic systems related to 9,10-dihydroanthracene and containing two heteroatoms at the 9,10-positions (Sutherland et al., 1982).

The ORTEP of the title compound is shown in Figure 1. The planes of the coordinated arene ring and Cp ring are nearly parallel, with an angle of 2.4 (3)° between them, and this value is typically reported for benzodioxine–Fe–Cp complexes (see Piórko et al., 1995, and references therein) and for arene–Fe–Cp complexes, in general (see for example Benites et al., 1996; Benites et al., 1999; Decken, 2004; Zanello et al., 2009).

The Fe ion is located at the distances 1.660 (1)Å from the Cp ring and 1.543 (1)Å from the complexed arene ring, and these values are close to those reported in the literature for similar complexes (see for example Piórko et al., 1995; Benites et al., 1999; Decken, 2004, and literature cited therein).

In a complexed arene ring, the C–C bond lengths are found within the narrow range from 1.391 (6) to 1.409 (5) Å. Both oxygen atoms show similar bond lengths toward complexed arene ring carbon atoms [1.363 (4)Å and 1.362 (4) Å] and these appear to be shorter than similar bonds toward an uncomplexed ring [both at 1.389 (4) Å]. Similar trends have been reported for other dibenzodioxine complexes (see Piórko et al., 1995). Of the C–C bonds in the uncomplexed fused carbocyclic rings of the heterocycle three appear to be markedly shorter [range 1.348 (6) to 1.356 (5) Å], one of intermediate length [1.373 (6) Å], and remaining seven appear to be longer [the range from 1.396 (7) to 1.423 (5) Å]. Some of the angles in the structure of a heterocycle appear to be distorted with angles C4a–O5–C5a and C11a–O12–C12a [116.7 (3) and 116.2 (3)°, respectively] and angles C6–C6a–C7 and C10–C10a–C11 [122.0 (4) and 122.2 (4)°, respectively, showing the largest deviations from an idealized trigonal geometry. The distribution of both the bond lengths and angles for the naphtho-moiety of this heterocycle are similar to the values reported for the naphthalene moiety of the naphthalene-2,3-diol in complex with 4-aminoantipyrine, with angles being less severely distorted from idealized geometry than those reported in the cited work (Asiri et al., 2010).

Related literature top

For the synthesis of the title compound and related structures, see Sutherland et al. (1982, 1988). For the crystal structures of similar polycyclic {(η5-Cp) (η6-arene) Fe(II)}+ salts, see Piórko et al. (1995); Benites et al. (1996, 1999); Decken (2004); Zanello et al. (2009) and literature cited therein; Asiri et al. (2010).

Experimental top

The title complex was prepared following the procedure of Sutherland et al. (1988). A crystal used for data collection was grown by slow evaporation of solvents from a solution of the complex in acetone-diethyl ether-dichloromethane mixture at 280 K.

Refinement top

The H atoms were placed in geometrically idealized positions with C-H distances of 0.98Å (complexed aromatic) and 0.93Å (aromatic). H atoms were constrained to ride on the parent C atom with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.2Ueq(C) for the idealized tertiary protons. The equatorial fluorines on the PF6 anion were modelled with a disorder ratio of 49 (2):51 (2) in order to obtain an adequate model. The P-F distances in the disordered PF6 anion were restrained to be within 1.55Å.

Structure description top

The title compound, along with similar polycyclic aromatic O-, S-, and N-containing heterocycles complexed with a cyclopentadienyliron(II) moiety, was reported from the study on nucleophilic aromatic di-substitution reactions using 1,2-dichlorobenzene FeCp complex (Sutherland et al., 1988), which was an extension of an earlier study on the same reaction leading to synthesis of heterocyclic systems related to 9,10-dihydroanthracene and containing two heteroatoms at the 9,10-positions (Sutherland et al., 1982).

The ORTEP of the title compound is shown in Figure 1. The planes of the coordinated arene ring and Cp ring are nearly parallel, with an angle of 2.4 (3)° between them, and this value is typically reported for benzodioxine–Fe–Cp complexes (see Piórko et al., 1995, and references therein) and for arene–Fe–Cp complexes, in general (see for example Benites et al., 1996; Benites et al., 1999; Decken, 2004; Zanello et al., 2009).

The Fe ion is located at the distances 1.660 (1)Å from the Cp ring and 1.543 (1)Å from the complexed arene ring, and these values are close to those reported in the literature for similar complexes (see for example Piórko et al., 1995; Benites et al., 1999; Decken, 2004, and literature cited therein).

In a complexed arene ring, the C–C bond lengths are found within the narrow range from 1.391 (6) to 1.409 (5) Å. Both oxygen atoms show similar bond lengths toward complexed arene ring carbon atoms [1.363 (4)Å and 1.362 (4) Å] and these appear to be shorter than similar bonds toward an uncomplexed ring [both at 1.389 (4) Å]. Similar trends have been reported for other dibenzodioxine complexes (see Piórko et al., 1995). Of the C–C bonds in the uncomplexed fused carbocyclic rings of the heterocycle three appear to be markedly shorter [range 1.348 (6) to 1.356 (5) Å], one of intermediate length [1.373 (6) Å], and remaining seven appear to be longer [the range from 1.396 (7) to 1.423 (5) Å]. Some of the angles in the structure of a heterocycle appear to be distorted with angles C4a–O5–C5a and C11a–O12–C12a [116.7 (3) and 116.2 (3)°, respectively] and angles C6–C6a–C7 and C10–C10a–C11 [122.0 (4) and 122.2 (4)°, respectively, showing the largest deviations from an idealized trigonal geometry. The distribution of both the bond lengths and angles for the naphtho-moiety of this heterocycle are similar to the values reported for the naphthalene moiety of the naphthalene-2,3-diol in complex with 4-aminoantipyrine, with angles being less severely distorted from idealized geometry than those reported in the cited work (Asiri et al., 2010).

For the synthesis of the title compound and related structures, see Sutherland et al. (1982, 1988). For the crystal structures of similar polycyclic {(η5-Cp) (η6-arene) Fe(II)}+ salts, see Piórko et al. (1995); Benites et al. (1996, 1999); Decken (2004); Zanello et al. (2009) and literature cited therein; Asiri et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the complex showing the labelling of non-H atoms with the displacement ellipsoids shown at 50% probability levels.
(η5-Cyclopentadienyl)[(1,2,3,4,4a,12a-η)-naphtho[2,3- b][1,4]benzodioxine]iron(II) hexafluoridophosphate top
Crystal data top
[Fe(C5H5)(C16H10O2)]PF6F(000) = 1008
Mr = 500.15Dx = 1.727 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2735 reflections
a = 15.3216 (13) Åθ = 2.7–22.8°
b = 8.9296 (8) ŵ = 0.94 mm1
c = 14.6559 (12) ÅT = 296 K
β = 106.417 (1)°Block, green
V = 1923.4 (3) Å30.35 × 0.29 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3372 independent reflections
Radiation source: fine-focus sealed tube2360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1818
Tmin = 0.576, Tmax = 0.746k = 107
12307 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.6855P]
where P = (Fo2 + 2Fc2)/3
3372 reflections(Δ/σ)max < 0.001
318 parametersΔρmax = 0.39 e Å3
10 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Fe(C5H5)(C16H10O2)]PF6V = 1923.4 (3) Å3
Mr = 500.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3216 (13) ŵ = 0.94 mm1
b = 8.9296 (8) ÅT = 296 K
c = 14.6559 (12) Å0.35 × 0.29 × 0.17 mm
β = 106.417 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3372 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
2360 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 0.746Rint = 0.035
12307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04010 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
3372 reflectionsΔρmin = 0.38 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.16289 (3)0.26572 (5)0.26515 (3)0.04229 (18)
C10.1824 (3)0.0364 (4)0.2519 (3)0.0590 (10)
H10.14830.03430.27990.071*
C20.1398 (3)0.0996 (5)0.1626 (3)0.0702 (12)
H20.07720.07100.12930.084*
C30.1777 (3)0.2252 (5)0.1324 (3)0.0700 (12)
H30.14080.28270.07820.084*
C40.2580 (3)0.2887 (5)0.1898 (3)0.0627 (11)
H40.27630.38890.17520.075*
C4A0.3014 (2)0.2225 (4)0.2783 (2)0.0524 (9)
O50.37912 (17)0.2877 (3)0.33276 (19)0.0654 (7)
C110.4064 (2)0.0586 (4)0.5466 (2)0.0507 (9)
H110.37850.02220.56700.061*
C60.4885 (2)0.2990 (4)0.4823 (3)0.0601 (10)
H60.51570.37860.45980.072*
C5A0.4136 (2)0.2335 (4)0.4248 (3)0.0507 (9)
C6A0.5258 (2)0.2478 (4)0.5763 (3)0.0583 (10)
C10A0.4838 (2)0.1264 (4)0.6094 (2)0.0534 (9)
C100.5215 (3)0.0752 (5)0.7038 (3)0.0711 (12)
H100.49450.00420.72680.085*
C70.6054 (3)0.3126 (6)0.6385 (3)0.0814 (14)
H70.63400.39170.61730.098*
C80.6396 (3)0.2606 (6)0.7278 (4)0.0885 (15)
H80.69180.30410.76750.106*
C90.5979 (3)0.1423 (7)0.7616 (3)0.0829 (14)
H90.62200.10870.82370.099*
O120.29927 (16)0.0364 (3)0.39696 (17)0.0591 (7)
C11A0.3728 (2)0.1115 (4)0.4568 (2)0.0474 (8)
C12A0.2627 (2)0.0985 (4)0.3096 (2)0.0508 (9)
C150.0678 (3)0.4333 (4)0.2353 (3)0.0624 (10)
H150.04180.48040.17310.075*
C160.1460 (3)0.4808 (4)0.3056 (3)0.0635 (10)
H160.18420.56670.30100.076*
C130.0896 (3)0.2764 (5)0.3621 (3)0.0658 (11)
H130.08120.19490.40360.079*
C140.0335 (3)0.3075 (5)0.2704 (3)0.0636 (10)
H140.02090.25090.23670.076*
C170.1598 (3)0.3829 (5)0.3837 (3)0.0673 (12)
H170.20910.38910.44310.081*
P10.14134 (7)0.71338 (11)0.01907 (6)0.0534 (3)
F60.1339 (2)0.7270 (3)0.12317 (14)0.1027 (10)
F50.1492 (2)0.7032 (4)0.08442 (13)0.1125 (11)
F10.0591 (9)0.8194 (19)0.0190 (13)0.151 (7)0.49 (2)
F40.2020 (9)0.8540 (11)0.0478 (10)0.099 (4)0.49 (2)
F30.2262 (9)0.613 (2)0.0594 (8)0.119 (5)0.49 (2)
F20.0843 (16)0.5689 (16)0.0101 (14)0.171 (7)0.49 (2)
F4A0.0861 (10)0.8595 (11)0.0107 (10)0.108 (4)0.51 (2)
F3A0.2313 (9)0.802 (2)0.0361 (11)0.149 (6)0.51 (2)
F2A0.1942 (15)0.5649 (16)0.0482 (15)0.165 (7)0.51 (2)
F1A0.0482 (7)0.634 (2)0.0012 (11)0.119 (5)0.51 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0490 (3)0.0417 (3)0.0325 (3)0.0032 (2)0.00559 (19)0.0020 (2)
C10.066 (2)0.042 (2)0.061 (2)0.0015 (18)0.0035 (19)0.0074 (18)
C20.081 (3)0.066 (3)0.049 (2)0.014 (2)0.004 (2)0.020 (2)
C30.089 (3)0.083 (3)0.0362 (19)0.023 (3)0.013 (2)0.004 (2)
C40.077 (3)0.069 (3)0.051 (2)0.016 (2)0.031 (2)0.0117 (19)
C4A0.052 (2)0.053 (2)0.053 (2)0.0079 (18)0.0169 (17)0.0044 (17)
O50.0552 (15)0.0659 (19)0.0713 (17)0.0065 (13)0.0116 (13)0.0257 (14)
C110.0431 (19)0.051 (2)0.059 (2)0.0058 (17)0.0171 (17)0.0088 (17)
C60.050 (2)0.043 (2)0.083 (3)0.0032 (17)0.011 (2)0.0063 (19)
C5A0.0469 (19)0.043 (2)0.062 (2)0.0027 (16)0.0143 (17)0.0099 (17)
C6A0.045 (2)0.052 (3)0.073 (3)0.0043 (18)0.0101 (18)0.0073 (19)
C10A0.0417 (19)0.063 (3)0.053 (2)0.0115 (17)0.0093 (17)0.0078 (18)
C100.059 (2)0.097 (4)0.058 (2)0.014 (2)0.017 (2)0.000 (2)
C70.060 (3)0.072 (3)0.096 (4)0.004 (2)0.004 (2)0.010 (3)
C80.067 (3)0.097 (4)0.085 (3)0.001 (3)0.005 (3)0.026 (3)
C90.063 (3)0.119 (4)0.058 (3)0.017 (3)0.003 (2)0.014 (3)
O120.0536 (14)0.0509 (16)0.0604 (15)0.0074 (12)0.0039 (12)0.0155 (12)
C11A0.0402 (18)0.045 (2)0.054 (2)0.0021 (15)0.0078 (16)0.0021 (16)
C12A0.056 (2)0.041 (2)0.052 (2)0.0061 (17)0.0087 (17)0.0007 (16)
C150.060 (2)0.055 (3)0.069 (2)0.019 (2)0.014 (2)0.007 (2)
C160.071 (3)0.045 (2)0.080 (3)0.001 (2)0.030 (2)0.017 (2)
C130.074 (3)0.079 (3)0.051 (2)0.002 (2)0.029 (2)0.003 (2)
C140.052 (2)0.066 (3)0.072 (3)0.000 (2)0.014 (2)0.007 (2)
C170.074 (3)0.079 (3)0.047 (2)0.006 (2)0.0152 (19)0.020 (2)
P10.0587 (6)0.0512 (6)0.0445 (5)0.0020 (5)0.0052 (4)0.0036 (4)
F60.118 (2)0.131 (3)0.0626 (16)0.0151 (18)0.0325 (16)0.0094 (15)
F50.163 (3)0.120 (3)0.0552 (15)0.042 (2)0.0322 (17)0.0069 (15)
F10.066 (6)0.242 (18)0.118 (8)0.079 (8)0.017 (5)0.026 (11)
F40.137 (9)0.065 (5)0.092 (5)0.039 (5)0.030 (7)0.004 (4)
F30.133 (8)0.154 (10)0.059 (5)0.108 (8)0.009 (5)0.012 (6)
F20.236 (14)0.096 (9)0.143 (10)0.088 (10)0.011 (12)0.016 (7)
F4A0.168 (12)0.062 (5)0.103 (8)0.041 (5)0.051 (8)0.021 (4)
F3A0.067 (5)0.273 (18)0.095 (7)0.068 (8)0.004 (4)0.017 (9)
F2A0.256 (15)0.100 (8)0.171 (15)0.100 (9)0.115 (12)0.081 (8)
F1A0.101 (6)0.137 (10)0.123 (6)0.074 (7)0.036 (5)0.029 (8)
Geometric parameters (Å, º) top
Fe1—C172.040 (4)C5A—C11A1.402 (5)
Fe1—C142.040 (4)C6A—C10A1.414 (5)
Fe1—C152.048 (4)C6A—C71.423 (5)
Fe1—C132.047 (4)C10A—C101.417 (5)
Fe1—C162.048 (4)C10—C91.373 (6)
Fe1—C32.053 (4)C10—H100.9300
Fe1—C22.070 (4)C7—C81.348 (6)
Fe1—C42.072 (4)C7—H70.9300
Fe1—C12.086 (4)C8—C91.396 (7)
Fe1—C12A2.105 (3)C8—H80.9300
Fe1—C4A2.112 (4)C9—H90.9300
C1—C12A1.396 (5)O12—C12A1.362 (4)
C1—C21.406 (5)O12—C11A1.389 (4)
C1—H10.9800C15—C141.398 (5)
C2—C31.391 (6)C15—C161.407 (5)
C2—H20.9800C15—H150.9800
C3—C41.400 (6)C16—C171.407 (6)
C3—H30.9800C16—H160.9800
C4—C4A1.409 (5)C13—C141.403 (5)
C4—H40.9800C13—C171.403 (5)
C4A—O51.363 (4)C13—H130.9800
C4A—C12A1.394 (5)C14—H140.9800
O5—C5A1.389 (4)C17—H170.9800
C11—C11A1.356 (5)P1—F41.549 (2)
C11—C10A1.415 (5)P1—F11.548 (2)
C11—H110.9300P1—F21.549 (2)
C6—C5A1.350 (5)P1—F31.550 (2)
C6—C6A1.410 (5)P1—F51.5575 (16)
C6—H60.9300P1—F61.5664 (17)
C17—Fe1—C1467.49 (16)C4—C4A—Fe168.8 (2)
C17—Fe1—C1567.71 (16)C4A—O5—C5A116.7 (3)
C14—Fe1—C1540.00 (15)C11A—C11—C10A120.0 (3)
C17—Fe1—C1340.16 (15)C11A—C11—H11120.0
C14—Fe1—C1340.16 (15)C10A—C11—H11120.0
C15—Fe1—C1367.51 (17)C5A—C6—C6A120.5 (4)
C17—Fe1—C1640.26 (16)C5A—C6—H6119.8
C14—Fe1—C1667.26 (17)C6A—C6—H6119.8
C15—Fe1—C1640.18 (15)C6—C5A—O5118.6 (3)
C13—Fe1—C1667.41 (17)C6—C5A—C11A120.6 (3)
C17—Fe1—C3158.83 (19)O5—C5A—C11A120.8 (3)
C14—Fe1—C3115.88 (17)C6—C6A—C10A119.1 (3)
C15—Fe1—C3100.87 (17)C6—C6A—C7122.0 (4)
C13—Fe1—C3153.49 (18)C10A—C6A—C7118.9 (4)
C16—Fe1—C3119.78 (18)C11—C10A—C6A118.9 (3)
C17—Fe1—C2161.04 (19)C11—C10A—C10122.2 (4)
C14—Fe1—C2100.97 (17)C6A—C10A—C10118.9 (4)
C15—Fe1—C2113.79 (16)C9—C10—C10A120.2 (5)
C13—Fe1—C2121.53 (18)C9—C10—H10119.9
C16—Fe1—C2150.78 (17)C10A—C10—H10119.9
C3—Fe1—C239.42 (16)C8—C7—C6A120.7 (5)
C17—Fe1—C4126.30 (18)C8—C7—H7119.7
C14—Fe1—C4147.06 (16)C6A—C7—H7119.7
C15—Fe1—C4112.27 (16)C7—C8—C9120.9 (4)
C13—Fe1—C4166.28 (17)C7—C8—H8119.6
C16—Fe1—C4103.14 (17)C9—C8—H8119.6
C3—Fe1—C439.66 (17)C10—C9—C8120.5 (4)
C2—Fe1—C471.66 (18)C10—C9—H9119.7
C17—Fe1—C1128.39 (16)C8—C9—H9119.7
C14—Fe1—C1110.46 (17)C12A—O12—C11A116.2 (3)
C15—Fe1—C1144.04 (16)C11—C11A—O12117.5 (3)
C13—Fe1—C1103.38 (17)C11—C11A—C5A120.9 (3)
C16—Fe1—C1168.65 (15)O12—C11A—C5A121.5 (3)
C3—Fe1—C171.46 (17)O12—C12A—C4A122.2 (3)
C2—Fe1—C139.54 (14)O12—C12A—C1117.8 (3)
C4—Fe1—C184.65 (17)C4A—C12A—C1120.0 (3)
C17—Fe1—C12A106.86 (15)O12—C12A—Fe1130.5 (2)
C14—Fe1—C12A138.34 (16)C4A—C12A—Fe171.0 (2)
C15—Fe1—C12A174.54 (14)C1—C12A—Fe169.8 (2)
C13—Fe1—C12A108.15 (16)C14—C15—C16107.6 (4)
C16—Fe1—C12A135.72 (15)C14—C15—Fe169.7 (2)
C3—Fe1—C12A84.45 (15)C16—C15—Fe169.9 (2)
C2—Fe1—C12A71.12 (14)C14—C15—H15126.2
C4—Fe1—C12A71.10 (14)C16—C15—H15126.2
C1—Fe1—C12A38.90 (13)Fe1—C15—H15126.2
C17—Fe1—C4A106.32 (15)C15—C16—C17108.1 (4)
C14—Fe1—C4A172.93 (14)C15—C16—Fe169.9 (2)
C15—Fe1—C4A142.10 (16)C17—C16—Fe169.6 (2)
C13—Fe1—C4A132.83 (15)C15—C16—H16126.0
C16—Fe1—C4A110.57 (15)C17—C16—H16126.0
C3—Fe1—C4A71.14 (16)Fe1—C16—H16126.0
C2—Fe1—C4A84.02 (16)C14—C13—C17107.7 (4)
C4—Fe1—C4A39.33 (14)C14—C13—Fe169.6 (2)
C1—Fe1—C4A70.26 (15)C17—C13—Fe169.6 (2)
C12A—Fe1—C4A38.60 (13)C14—C13—H13126.1
C12A—C1—C2120.2 (4)C17—C13—H13126.1
C12A—C1—Fe171.3 (2)Fe1—C13—H13126.1
C2—C1—Fe169.6 (2)C15—C14—C13108.6 (4)
C12A—C1—H1119.1C15—C14—Fe170.3 (2)
C2—C1—H1119.1C13—C14—Fe170.2 (2)
Fe1—C1—H1119.1C15—C14—H14125.7
C3—C2—C1119.6 (4)C13—C14—H14125.7
C3—C2—Fe169.6 (2)Fe1—C14—H14125.7
C1—C2—Fe170.9 (2)C13—C17—C16108.0 (4)
C3—C2—H2119.3C13—C17—Fe170.2 (2)
C1—C2—H2119.3C16—C17—Fe170.2 (2)
Fe1—C2—H2119.3C13—C17—H17126.0
C2—C3—C4120.7 (4)C16—C17—H17126.0
C2—C3—Fe170.9 (2)Fe1—C17—H17126.0
C4—C3—Fe170.9 (2)F4—P1—F188.1 (7)
C2—C3—H3118.9F4—P1—F2177.5 (9)
C4—C3—H3118.9F1—P1—F294.1 (9)
Fe1—C3—H3118.9F4—P1—F389.4 (7)
C3—C4—C4A119.3 (4)F1—P1—F3177.4 (8)
C3—C4—Fe169.5 (2)F2—P1—F388.4 (9)
C4A—C4—Fe171.9 (2)F4—P1—F596.1 (5)
C3—C4—H4119.7F1—P1—F587.9 (7)
C4A—C4—H4119.7F2—P1—F582.8 (9)
Fe1—C4—H4119.7F3—P1—F592.9 (5)
O5—C4A—C12A121.9 (3)F4—P1—F682.8 (5)
O5—C4A—C4117.8 (3)F1—P1—F691.6 (7)
C12A—C4A—C4120.1 (4)F2—P1—F698.2 (9)
O5—C4A—Fe1131.6 (3)F3—P1—F687.5 (5)
C12A—C4A—Fe170.4 (2)F5—P1—F6178.9 (2)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C16H10O2)]PF6
Mr500.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)15.3216 (13), 8.9296 (8), 14.6559 (12)
β (°) 106.417 (1)
V3)1923.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.35 × 0.29 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.576, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12307, 3372, 2360
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.01
No. of reflections3372
No. of parameters318
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.38

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SAINT (Bruker, 2010, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors would like to thank Saint Mary's University for funding, the Natural Sciences and Engineering Research Council for a Discovery Grant (JDM), the Canadian Foundation for Innovation for a Leaders Opportunity Fund Grant and the Nova Scotia Research and Innovation Trust (JDM). Student funding was provided through the Saint Mary's University Summer Employment Experience Program (ADH).

References

First citationAsiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenites, M. R., Fronczek, F. R. & Maverick, A. W. (1996). J. Organomet. Chem. 516, 17–24.  CAS Google Scholar
First citationBenites, M. R., Fronczek, F. R. & Maverick, A. W. (1999). J. Organomet. Chem. 577, 24–30.  CAS Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDecken, A. (2004). Acta Cryst. E60, m1796–m1797.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPiórko, A., Christie, S. & Zaworotko, M. J. (1995). Acta Cryst. C51, 26–29.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutherland, R. G., Piórko, A., Gill, U. S. & Lee, C. C. (1982). J. Heterocycl. Chem. 19, 801–803.  CrossRef CAS Google Scholar
First citationSutherland, R. G., Piórko, A., Lee, C. C., Simonsen, S. H. & Lynch, V. M. (1988). J. Heterocycl. Chem. 25, 1911–1916.  CrossRef CAS Google Scholar
First citationZanello, P., Herber, R. H., Kudinov, A. R., Corsini, M., Fabrizi de Biani, F., Nowik, I., Loginov, D. A., Vinogradov, M. M., Shul'pina, L. S., Ivanov, I. A. & Vologzhanina, A. V. (2009). J. Organomet. Chem. 694, 1161–1171.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds