organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-6-[2-(propan-2-yl­­idene)hydrazin­yl]pyridazine

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 23 August 2010; accepted 25 August 2010; online 28 August 2010)

In the title compound, C7H9ClN4, the 3-chloro-6-hydrazinylpyridazine unit is planar (r.m.s. deviation = 0.0219 Å) and is oriented at a dihedral angle 4.66 (27)° with respect to the propan-2-yl­idene group. In the crystal, the mol­ecules are linked into non-planar dimers due to a crystallographic twofold rotation via N—H⋯N hydrogen bonds with R22(8) graph-set ring motifs.

Related literature

For a related structure, see: Ather et al. (2010[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010). Acta Cryst. E66, o2107.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9ClN4

  • Mr = 184.63

  • Monoclinic, C 2/c

  • a = 20.6635 (19) Å

  • b = 7.8202 (6) Å

  • c = 11.3266 (8) Å

  • β = 94.140 (3)°

  • V = 1825.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.30 × 0.15 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.988

  • 6699 measured reflections

  • 1658 independent reflections

  • 1176 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.114

  • S = 1.02

  • 1658 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1i 0.86 2.33 3.083 (2) 146
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation to 3-chloro-6-hydrazinylpyridazine derivatives (Ather et al., 2010), the title compound (I, Fig. 1) is being reported here.

In (I), the 3-chloro-6-hydrazinylpyridazine moiety A (C1—C4/N1—N4/CL1) is planar with r. m. s. deviation of 0.0219 Å. The propyl group B(C5/C6/C7) is certainly planar. The dihedral angle between A/B is 4.66 (27)°. The title compound consists of non-planar dimers due to N—H···N type of H-bonding (Table 1, Fig. 2) with R22(8) ring motif (Bernstein et al., 1995). The dimers are formed due to a crystallographic twofold rotation axis parallel b and located in c = 1/4.

Related literature top

For a related structure, see: Ather et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

3-Chloro-6-hydrazinylpyridazine (0.5 g, 3.46 mmol), dissolved in acetone was refluxed for 15 min. The unreacted acetone was distilled off yielding in crude material. The product was re-crystallized in alcohol to affoard the colorless needles of (I).

Refinement top

The H-atoms were positioned geometrically (N–H = 0.86, C–H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

In continuation to 3-chloro-6-hydrazinylpyridazine derivatives (Ather et al., 2010), the title compound (I, Fig. 1) is being reported here.

In (I), the 3-chloro-6-hydrazinylpyridazine moiety A (C1—C4/N1—N4/CL1) is planar with r. m. s. deviation of 0.0219 Å. The propyl group B(C5/C6/C7) is certainly planar. The dihedral angle between A/B is 4.66 (27)°. The title compound consists of non-planar dimers due to N—H···N type of H-bonding (Table 1, Fig. 2) with R22(8) ring motif (Bernstein et al., 1995). The dimers are formed due to a crystallographic twofold rotation axis parallel b and located in c = 1/4.

For a related structure, see: Ather et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Perspective view of a pair of symmetry related title molecules with the N—H···N hydrogen bonds indicated by dashed lines [Symmetry code: a = - x, y, - z + 1/2].
3-Chloro-6-[2-(propan-2-ylidene)hydrazinyl]pyridazine top
Crystal data top
C7H9ClN4F(000) = 768
Mr = 184.63Dx = 1.344 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1176 reflections
a = 20.6635 (19) Åθ = 2.0–25.3°
b = 7.8202 (6) ŵ = 0.37 mm1
c = 11.3266 (8) ÅT = 296 K
β = 94.140 (3)°Needle, colorless
V = 1825.5 (3) Å30.30 × 0.15 × 0.14 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1658 independent reflections
Radiation source: fine-focus sealed tube1176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.0°
ω scansh = 2324
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 98
Tmin = 0.982, Tmax = 0.988l = 1113
6699 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0466P)2 + 1.083P]
where P = (Fo2 + 2Fc2)/3
1658 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C7H9ClN4V = 1825.5 (3) Å3
Mr = 184.63Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.6635 (19) ŵ = 0.37 mm1
b = 7.8202 (6) ÅT = 296 K
c = 11.3266 (8) Å0.30 × 0.15 × 0.14 mm
β = 94.140 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1658 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1176 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.034
6699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
1658 reflectionsΔρmin = 0.26 e Å3
111 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24961 (3)0.56355 (11)0.22863 (7)0.0864 (3)
N10.08033 (8)0.3556 (2)0.21840 (14)0.0503 (6)
N20.13843 (9)0.4249 (2)0.25439 (15)0.0547 (7)
N30.00430 (8)0.2720 (2)0.07587 (14)0.0528 (6)
N40.01436 (9)0.2424 (2)0.04230 (13)0.0497 (6)
C10.06381 (10)0.3389 (3)0.10295 (16)0.0429 (7)
C20.10598 (11)0.3850 (3)0.01608 (18)0.0519 (8)
C30.16374 (12)0.4516 (3)0.0531 (2)0.0583 (9)
C40.17733 (11)0.4706 (3)0.1745 (2)0.0537 (8)
C50.06866 (11)0.1693 (3)0.06689 (17)0.0469 (7)
C60.08681 (12)0.1354 (3)0.19521 (18)0.0628 (9)
C70.11442 (12)0.1098 (3)0.0200 (2)0.0663 (9)
H20.094220.369910.064050.0622*
H30.193590.483810.000390.0699*
H3A0.021220.248480.130340.0634*
H6A0.055900.189360.242480.0942*
H6B0.129260.180840.216050.0942*
H6C0.086880.014390.209330.0942*
H7A0.092860.029220.073290.0994*
H7B0.151160.055910.021350.0994*
H7C0.128760.205820.063960.0994*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0588 (5)0.1068 (6)0.0929 (6)0.0195 (4)0.0002 (3)0.0051 (4)
N10.0506 (11)0.0648 (12)0.0357 (10)0.0027 (9)0.0055 (8)0.0008 (8)
N20.0537 (12)0.0650 (12)0.0451 (10)0.0025 (9)0.0026 (9)0.0020 (9)
N30.0547 (12)0.0714 (12)0.0332 (9)0.0086 (10)0.0089 (8)0.0016 (9)
N40.0558 (12)0.0615 (11)0.0321 (9)0.0040 (9)0.0046 (8)0.0021 (8)
C10.0483 (13)0.0454 (11)0.0355 (11)0.0028 (9)0.0062 (9)0.0001 (9)
C20.0598 (15)0.0606 (14)0.0363 (11)0.0014 (11)0.0109 (10)0.0009 (10)
C30.0591 (16)0.0653 (15)0.0527 (14)0.0003 (12)0.0197 (11)0.0042 (12)
C40.0485 (14)0.0565 (13)0.0562 (14)0.0010 (10)0.0056 (10)0.0012 (11)
C50.0535 (14)0.0484 (12)0.0389 (11)0.0056 (10)0.0040 (10)0.0003 (10)
C60.0659 (16)0.0787 (17)0.0431 (12)0.0017 (13)0.0011 (11)0.0038 (12)
C70.0731 (17)0.0757 (16)0.0507 (14)0.0198 (14)0.0088 (12)0.0024 (12)
Geometric parameters (Å, º) top
Cl1—C41.733 (2)C5—C61.498 (3)
N1—N21.353 (2)C5—C71.488 (3)
N1—C11.334 (2)C2—H20.9300
N2—C41.303 (3)C3—H30.9300
N3—N41.385 (2)C6—H6A0.9600
N3—C11.351 (3)C6—H6B0.9600
N4—C51.272 (3)C6—H6C0.9600
N3—H3A0.8600C7—H7A0.9600
C1—C21.408 (3)C7—H7B0.9600
C2—C31.341 (3)C7—H7C0.9600
C3—C41.391 (3)
N1···N3i3.083 (2)H3A···C72.4700
N2···C2ii3.425 (3)H3A···H7A2.3300
N3···N1i3.083 (2)H3A···H7C2.3200
N1···H3Ai2.3300H3A···N1i2.3300
N1···H6Ciii2.9000H6A···H6Avii2.3300
N1···H7Ci2.8500H6B···H7B2.4800
N2···H7Ci2.7000H6B···C4v2.9500
N2···H2ii2.8100H6C···N1iii2.9000
N3···H7A2.7600H6C···C1iii3.0400
N3···H7C2.7900H6C···H7Avi2.4800
N4···H22.4800H7A···N32.7600
C2···N2iv3.425 (3)H7A···H3A2.3300
C3···C5v3.566 (3)H7A···C6viii2.9200
C5···C3v3.566 (3)H7A···H6Cviii2.4800
C1···H6Ciii3.0400H7B···H6B2.4800
C3···H7Cv3.0500H7C···N32.7900
C4···H6Bv2.9500H7C···H3A2.3200
C6···H7Avi2.9200H7C···N1i2.8500
C7···H3A2.4700H7C···N2i2.7000
H2···N42.4800H7C···C3v3.0500
H2···N2iv2.8100
N2—N1—C1119.56 (17)C1—C2—H2121.00
N1—N2—C4118.63 (17)C3—C2—H2121.00
N4—N3—C1117.99 (16)C2—C3—H3121.00
N3—N4—C5117.79 (16)C4—C3—H3121.00
N4—N3—H3A121.00C5—C6—H6A109.00
C1—N3—H3A121.00C5—C6—H6B109.00
N1—C1—N3115.14 (17)C5—C6—H6C109.00
N1—C1—C2122.19 (19)H6A—C6—H6B109.00
N3—C1—C2122.66 (17)H6A—C6—H6C109.00
C1—C2—C3117.56 (19)H6B—C6—H6C109.00
C2—C3—C4117.5 (2)C5—C7—H7A109.00
Cl1—C4—C3120.12 (18)C5—C7—H7B109.00
N2—C4—C3124.5 (2)C5—C7—H7C109.00
Cl1—C4—N2115.37 (17)H7A—C7—H7B109.00
C6—C5—C7117.4 (2)H7A—C7—H7C110.00
N4—C5—C6116.55 (19)H7B—C7—H7C109.00
N4—C5—C7126.04 (18)
C1—N1—N2—C41.3 (3)N3—N4—C5—C6178.64 (18)
N2—N1—C1—N3178.55 (17)N3—N4—C5—C70.8 (3)
N2—N1—C1—C22.5 (3)N1—C1—C2—C31.7 (3)
N1—N2—C4—Cl1178.26 (14)N3—C1—C2—C3179.5 (2)
N1—N2—C4—C30.7 (3)C1—C2—C3—C40.3 (3)
C1—N3—N4—C5175.6 (2)C2—C3—C4—Cl1177.43 (19)
N4—N3—C1—N1176.46 (17)C2—C3—C4—N21.5 (4)
N4—N3—C1—C22.5 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y, z; (iv) x, y+1, z1/2; (v) x, y+1, z; (vi) x, y, z1/2; (vii) x, y, z1/2; (viii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.862.333.083 (2)146
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H9ClN4
Mr184.63
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)20.6635 (19), 7.8202 (6), 11.3266 (8)
β (°) 94.140 (3)
V3)1825.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.30 × 0.15 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6699, 1658, 1176
Rint0.034
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.02
No. of reflections1658
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.862.333.083 (2)146
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

References

First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010). Acta Cryst. E66, o2107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds