organic compounds
Ergometrinine
aBAM Federal Institute for Materials Research and Testing, Department Analytical Chemistry, Reference Materials, Richard-Willstätter-Strasse 11, D-12489 Berlin-Adlershof, Germany
*Correspondence e-mail: franziska.emmerling@bam.de
The 19H23N3O2 {systematic name: (6aR,9S)-N-[(S)-1-hydroxypropan-2-yl]-7-methyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxamide}, was established based on reaction of ergometrine, which was followed by preparative HPLC. The non-aromatic ring (ring C of the ergoline skeleton) directly fused to the aromatic rings is nearly planar [maximum deviation = 0.271 (3) Å] and shows an whereas ring D, involved in an intramolecular N—H⋯N hydrogen bond, exibits a slightly distorted chair conformation. The structure displays undulating layers in the ac plane formed by O—H⋯O and N—H⋯O hydrogen bonds.
of ergometrinine, CRelated literature
Ergometrinine is one of the main ergot Claviceps purpurea on cereal grains in the field, see: Crews et al. (2009); Müller et al. (2009). For investigations of the biologically inactive C8-(S)-isomer of ergometrinine, see: Pierri et al. (1982); Komarova & Tolkachev (2001). For the of ergometrine maleate, see: Cejka et al. (1996).
produced by the fungusExperimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810030825/sj5027sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810030825/sj5027Isup2.hkl
Ergometrine maleate salt was purchased from Sigma-Aldrich (Taufkirchen, Germany). The isomeric purity (> 99%) of ergometrine was proved by HPLC-FLD. The stereoselective conversion of ergometrine to ergometrinine was carried out as follows: 40 mg of ergometrine maleate were placed in a 250 ml round-bottom flask, dissolved in 100 ml methanol and 4 ml 28% ammonium hydroxide solution was added. The resulting mixture was stored at 40 °C in a drying cabinet in darkness for
reaction. After 4 days showed two different compounds, the reactant ergometrine and the product ergometrinine. Afterwards the solvent was removed in vacuo and the residue of compounds was redissolved in a mixture of water and acetonitrile (70:30, v:v) and subjected to preparative HPLC for separation and purification of the two Colourless crystals of ergometrinine were grown by slow solvent evaporation from acetonitrile:water (80:20, v:v) in the absence of light at ambient temperature.In the absence of significant
effects, Friedel pairs were merged.The N—H and O—H hydrogen atoms were located in difference maps and and fixed in their found positions (AFIX 3) with Uiso(H) = 1.2 of the parent atom Ueq or 1.5 Ueq(Cmethyl, O).
Ergometrinine is one of the main ergot
produced by the fungus Claviceps purpurea on cereal grains in the field. Contamination of flour and cereal based foods with ergot including ergometrinine has previously been reported (Crews et al., 2009, Müller et al., 2009). The biologically inactive C8-(S)-isomer ergometrinine (Pierri et al., 1982) can be converted to the biologically active C8-(R)-isomer ergometrine and vice versa (Komarova & Tolkachev, 2001). The molecule crystallizes in the orthorhombic P212121. The molecular structure of the compound and the atom labeling scheme are shown in Fig 1. The could not be defined confidently based on the single crystal diffraction data. It was however established based on reaction of ergometrine, whose was determined previously (Cejka et al., 1996). Besides the intramolecular hydrogen bonds between N1-H1N and N2 (not shown in Fig. 2), each molecule is connected to four adjacent molecules via intermolecular hydrogen bonds (see dashed green bonds in Fig. 2). As a result undulating layers are formed in the the ac plane.Ergometrinine is one of the main ergot
produced by the fungus Claviceps purpurea on cereal grains in the field, see: Crews et al. (2009); Müller et al. (2009). For investigations of the biologically inactive C8-(S)-isomer of ergometrinine, see: Pierri et al. (1982); Komarova & Tolkachev (2001). For the of ergometrine maleate, see: Cejka et al. (1996).Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2009).C19H23N3O2 | F(000) = 696 |
Mr = 325.40 | Dx = 1.254 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 25 reflections |
a = 7.4097 (5) Å | θ = 15–23° |
b = 12.7313 (7) Å | µ = 0.66 mm−1 |
c = 18.2648 (9) Å | T = 298 K |
V = 1723.01 (17) Å3 | Needle, yellow |
Z = 4 | 0.20 × 0.05 × 0.02 mm |
Enraf–Nonius CAD-4 diffractometer | 1269 reflections with I > 2σ(I) |
Radiation source: rotating anode | Rint = 0.056 |
Graphite monochromator | θmax = 70.0°, θmin = 4.2° |
ω/2θ scans | h = −8→9 |
Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) | k = −15→15 |
Tmin = 0.879, Tmax = 0.986 | l = −22→22 |
4023 measured reflections | 3 standard reflections every 60 min |
1889 independent reflections | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0561P)2 + 0.0234P] where P = (Fo2 + 2Fc2)/3 |
1889 reflections | (Δ/σ)max < 0.001 |
219 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C19H23N3O2 | V = 1723.01 (17) Å3 |
Mr = 325.40 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 7.4097 (5) Å | µ = 0.66 mm−1 |
b = 12.7313 (7) Å | T = 298 K |
c = 18.2648 (9) Å | 0.20 × 0.05 × 0.02 mm |
Enraf–Nonius CAD-4 diffractometer | 1269 reflections with I > 2σ(I) |
Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) | Rint = 0.056 |
Tmin = 0.879, Tmax = 0.986 | 3 standard reflections every 60 min |
4023 measured reflections | intensity decay: 2% |
1889 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.14 e Å−3 |
1889 reflections | Δρmin = −0.16 e Å−3 |
219 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2918 (3) | −0.17372 (18) | 0.36716 (13) | 0.0586 (7) | |
O2 | 0.7137 (5) | −0.32052 (18) | 0.48938 (13) | 0.0815 (10) | |
H2O | 0.7329 | −0.3191 | 0.5439 | 0.122* | |
N1 | 0.5819 (4) | −0.1255 (2) | 0.35374 (16) | 0.0550 (8) | |
H1N | 0.6603 | −0.0793 | 0.3259 | 0.066* | |
N2 | 0.6383 (4) | 0.06231 (19) | 0.26795 (14) | 0.0519 (8) | |
N3 | 0.7306 (5) | 0.4652 (2) | 0.43312 (17) | 0.0666 (9) | |
H3N | 0.7302 | 0.5372 | 0.4476 | 0.080* | |
C1 | 0.4047 (6) | −0.1103 (2) | 0.34594 (17) | 0.0464 (9) | |
C2 | 0.6592 (5) | −0.2226 (3) | 0.38200 (17) | 0.0520 (9) | |
H2 | 0.5736 | −0.2793 | 0.3715 | 0.062* | |
C3 | 0.6825 (6) | −0.2176 (2) | 0.46383 (19) | 0.0602 (11) | |
H2A | 0.7839 | −0.1727 | 0.4761 | 0.072* | |
H2B | 0.5749 | −0.1889 | 0.4864 | 0.072* | |
C4 | 0.8315 (6) | −0.2470 (4) | 0.3419 (2) | 0.0890 (15) | |
H4A | 0.8070 | −0.2530 | 0.2904 | 0.133* | |
H4B | 0.8802 | −0.3121 | 0.3596 | 0.133* | |
H4C | 0.9170 | −0.1916 | 0.3500 | 0.133* | |
C5 | 0.3492 (5) | −0.0110 (2) | 0.30590 (17) | 0.0493 (9) | |
H5 | 0.2276 | −0.0228 | 0.2865 | 0.059* | |
C6 | 0.4692 (6) | 0.0159 (3) | 0.24169 (19) | 0.0584 (11) | |
H6A | 0.4950 | −0.0471 | 0.2137 | 0.070* | |
H6B | 0.4077 | 0.0653 | 0.2098 | 0.070* | |
C7 | 0.6047 (5) | 0.1676 (2) | 0.29911 (16) | 0.0440 (8) | |
H7 | 0.5654 | 0.2129 | 0.2588 | 0.053* | |
C8 | 0.7810 (5) | 0.2148 (3) | 0.32985 (19) | 0.0527 (9) | |
H8A | 0.8389 | 0.1644 | 0.3620 | 0.063* | |
H8B | 0.8631 | 0.2303 | 0.2899 | 0.063* | |
C9 | 0.7408 (5) | 0.3130 (2) | 0.37121 (18) | 0.0491 (9) | |
C10 | 0.8341 (6) | 0.4010 (3) | 0.3898 (2) | 0.0622 (10) | |
H10 | 0.9516 | 0.4157 | 0.3752 | 0.075* | |
C11 | 0.5652 (6) | 0.4189 (3) | 0.44279 (19) | 0.0543 (10) | |
C12 | 0.5701 (5) | 0.3240 (2) | 0.40378 (16) | 0.0435 (8) | |
C13 | 0.4242 (5) | 0.2560 (2) | 0.40020 (16) | 0.0436 (8) | |
C14 | 0.4491 (5) | 0.1623 (2) | 0.35402 (16) | 0.0417 (8) | |
C15 | 0.3382 (5) | 0.0807 (2) | 0.35753 (18) | 0.0459 (8) | |
H15 | 0.2495 | 0.0802 | 0.3936 | 0.055* | |
C16 | 0.2697 (5) | 0.2850 (3) | 0.43839 (18) | 0.0545 (9) | |
H16 | 0.1681 | 0.2421 | 0.4373 | 0.065* | |
C17 | 0.2672 (7) | 0.3792 (3) | 0.4786 (2) | 0.0685 (12) | |
H17 | 0.1631 | 0.3962 | 0.5045 | 0.082* | |
C18 | 0.4104 (7) | 0.4473 (3) | 0.4817 (2) | 0.0656 (11) | |
H18 | 0.4047 | 0.5094 | 0.5083 | 0.079* | |
C19 | 0.7721 (7) | 0.0655 (3) | 0.2083 (2) | 0.0793 (14) | |
H19A | 0.7780 | −0.0020 | 0.1850 | 0.119* | |
H19B | 0.8884 | 0.0830 | 0.2279 | 0.119* | |
H19C | 0.7371 | 0.1175 | 0.1730 | 0.119* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0606 (17) | 0.0495 (13) | 0.0658 (15) | −0.0125 (13) | 0.0060 (14) | 0.0047 (12) |
O2 | 0.129 (3) | 0.0458 (13) | 0.0695 (17) | 0.0021 (17) | −0.0340 (18) | 0.0006 (12) |
N1 | 0.048 (2) | 0.0480 (16) | 0.0684 (19) | −0.0048 (15) | −0.0015 (17) | 0.0171 (14) |
N2 | 0.067 (2) | 0.0411 (14) | 0.0477 (15) | 0.0007 (15) | 0.0157 (16) | −0.0004 (12) |
N3 | 0.090 (3) | 0.0410 (15) | 0.0693 (19) | −0.0083 (18) | −0.017 (2) | −0.0049 (15) |
C1 | 0.054 (3) | 0.0427 (17) | 0.0426 (17) | −0.0070 (19) | 0.0016 (18) | −0.0021 (14) |
C2 | 0.054 (2) | 0.0444 (18) | 0.058 (2) | −0.0008 (18) | −0.0048 (19) | 0.0014 (16) |
C3 | 0.071 (3) | 0.0408 (18) | 0.069 (2) | −0.0040 (19) | −0.017 (2) | 0.0001 (16) |
C4 | 0.069 (3) | 0.094 (3) | 0.104 (4) | 0.013 (3) | 0.018 (3) | 0.011 (3) |
C5 | 0.051 (2) | 0.0449 (17) | 0.0523 (19) | −0.0076 (18) | −0.0095 (18) | 0.0020 (15) |
C6 | 0.084 (3) | 0.0473 (19) | 0.0442 (18) | 0.000 (2) | −0.005 (2) | −0.0034 (16) |
C7 | 0.050 (2) | 0.0414 (15) | 0.0408 (16) | 0.0026 (17) | 0.0039 (17) | 0.0042 (14) |
C8 | 0.046 (2) | 0.0538 (19) | 0.058 (2) | −0.0014 (18) | 0.0112 (18) | 0.0019 (16) |
C9 | 0.051 (2) | 0.0431 (18) | 0.0531 (19) | −0.0019 (17) | −0.0028 (19) | 0.0044 (15) |
C10 | 0.059 (3) | 0.054 (2) | 0.074 (2) | −0.007 (2) | −0.008 (2) | 0.0077 (19) |
C11 | 0.072 (3) | 0.0394 (17) | 0.0520 (19) | 0.0029 (19) | −0.010 (2) | 0.0001 (16) |
C12 | 0.052 (2) | 0.0381 (16) | 0.0408 (17) | 0.0039 (18) | −0.0029 (17) | 0.0020 (14) |
C13 | 0.049 (2) | 0.0412 (16) | 0.0409 (16) | 0.0084 (18) | 0.0016 (17) | 0.0048 (13) |
C14 | 0.048 (2) | 0.0368 (15) | 0.0406 (16) | 0.0042 (16) | −0.0001 (16) | 0.0035 (13) |
C15 | 0.046 (2) | 0.0443 (16) | 0.0476 (17) | 0.0042 (17) | 0.0016 (17) | 0.0024 (14) |
C16 | 0.058 (3) | 0.0512 (18) | 0.0541 (19) | 0.0053 (19) | 0.010 (2) | 0.0019 (17) |
C17 | 0.087 (3) | 0.060 (2) | 0.059 (2) | 0.021 (3) | 0.018 (2) | −0.0003 (19) |
C18 | 0.098 (3) | 0.0418 (18) | 0.057 (2) | 0.018 (2) | 0.004 (2) | −0.0066 (16) |
C19 | 0.104 (4) | 0.061 (2) | 0.073 (2) | 0.004 (3) | 0.042 (3) | −0.0040 (19) |
O1—C1 | 1.226 (4) | C6—H6B | 0.9700 |
O2—C3 | 1.410 (4) | C7—C14 | 1.530 (4) |
O2—H2O | 1.0068 | C7—C8 | 1.544 (5) |
N1—C1 | 1.334 (5) | C7—H7 | 0.9800 |
N1—C2 | 1.457 (4) | C8—C9 | 1.490 (5) |
N1—H1N | 0.9707 | C8—H8A | 0.9700 |
N2—C6 | 1.466 (5) | C8—H8B | 0.9700 |
N2—C19 | 1.474 (5) | C9—C10 | 1.360 (5) |
N2—C7 | 1.477 (4) | C9—C12 | 1.405 (5) |
N3—C11 | 1.371 (5) | C10—H10 | 0.9300 |
N3—C10 | 1.372 (5) | C11—C18 | 1.397 (6) |
N3—H3N | 0.9537 | C11—C12 | 1.403 (4) |
C1—C5 | 1.517 (4) | C12—C13 | 1.386 (5) |
C2—C4 | 1.505 (5) | C13—C16 | 1.391 (5) |
C2—C3 | 1.506 (5) | C13—C14 | 1.473 (4) |
C2—H2 | 0.9800 | C14—C15 | 1.325 (4) |
C3—H2A | 0.9700 | C15—H15 | 0.9300 |
C3—H2B | 0.9700 | C16—C17 | 1.407 (5) |
C4—H4A | 0.9600 | C16—H16 | 0.9300 |
C4—H4B | 0.9600 | C17—C18 | 1.371 (6) |
C4—H4C | 0.9600 | C17—H17 | 0.9300 |
C5—C15 | 1.503 (4) | C18—H18 | 0.9300 |
C5—C6 | 1.511 (5) | C19—H19A | 0.9600 |
C5—H5 | 0.9800 | C19—H19B | 0.9600 |
C6—H6A | 0.9700 | C19—H19C | 0.9600 |
C3—O2—H2O | 109.5 | N2—C7—H7 | 107.2 |
C1—N1—C2 | 123.2 (3) | C14—C7—H7 | 107.2 |
C1—N1—H1N | 116.4 | C8—C7—H7 | 107.2 |
C2—N1—H1N | 117.7 | C9—C8—C7 | 110.0 (3) |
C6—N2—C19 | 110.1 (3) | C9—C8—H8A | 109.7 |
C6—N2—C7 | 110.3 (3) | C7—C8—H8A | 109.7 |
C19—N2—C7 | 111.9 (3) | C9—C8—H8B | 109.7 |
C11—N3—C10 | 108.5 (3) | C7—C8—H8B | 109.7 |
C11—N3—H3N | 112.1 | H8A—C8—H8B | 108.2 |
C10—N3—H3N | 137.2 | C10—C9—C12 | 105.6 (3) |
O1—C1—N1 | 122.8 (3) | C10—C9—C8 | 135.7 (4) |
O1—C1—C5 | 121.1 (3) | C12—C9—C8 | 118.6 (3) |
N1—C1—C5 | 116.1 (3) | C9—C10—N3 | 110.5 (4) |
N1—C2—C4 | 109.6 (3) | C9—C10—H10 | 124.7 |
N1—C2—C3 | 111.1 (3) | N3—C10—H10 | 124.7 |
C4—C2—C3 | 113.3 (4) | N3—C11—C18 | 133.5 (3) |
N1—C2—H2 | 107.5 | N3—C11—C12 | 106.4 (3) |
C4—C2—H2 | 107.5 | C18—C11—C12 | 120.1 (4) |
C3—C2—H2 | 107.5 | C13—C12—C11 | 122.8 (3) |
O2—C3—C2 | 107.9 (3) | C13—C12—C9 | 128.3 (3) |
O2—C3—H2A | 110.1 | C11—C12—C9 | 108.9 (3) |
C2—C3—H2A | 110.1 | C12—C13—C16 | 116.9 (3) |
O2—C3—H2B | 110.1 | C12—C13—C14 | 115.8 (3) |
C2—C3—H2B | 110.1 | C16—C13—C14 | 127.2 (3) |
H2A—C3—H2B | 108.4 | C15—C14—C13 | 122.0 (3) |
C2—C4—H4A | 109.5 | C15—C14—C7 | 122.3 (3) |
C2—C4—H4B | 109.5 | C13—C14—C7 | 115.7 (3) |
H4A—C4—H4B | 109.5 | C14—C15—C5 | 123.0 (3) |
C2—C4—H4C | 109.5 | C14—C15—H15 | 118.5 |
H4A—C4—H4C | 109.5 | C5—C15—H15 | 118.5 |
H4B—C4—H4C | 109.5 | C13—C16—C17 | 119.9 (4) |
C15—C5—C6 | 110.0 (3) | C13—C16—H16 | 120.0 |
C15—C5—C1 | 111.1 (2) | C17—C16—H16 | 120.0 |
C6—C5—C1 | 113.8 (3) | C18—C17—C16 | 123.4 (4) |
C15—C5—H5 | 107.2 | C18—C17—H17 | 118.3 |
C6—C5—H5 | 107.2 | C16—C17—H17 | 118.3 |
C1—C5—H5 | 107.2 | C17—C18—C11 | 116.8 (3) |
N2—C6—C5 | 109.9 (3) | C17—C18—H18 | 121.6 |
N2—C6—H6A | 109.7 | C11—C18—H18 | 121.6 |
C5—C6—H6A | 109.7 | N2—C19—H19A | 109.5 |
N2—C6—H6B | 109.7 | N2—C19—H19B | 109.5 |
C5—C6—H6B | 109.7 | H19A—C19—H19B | 109.5 |
H6A—C6—H6B | 108.2 | N2—C19—H19C | 109.5 |
N2—C7—C14 | 109.8 (2) | H19A—C19—H19C | 109.5 |
N2—C7—C8 | 110.5 (3) | H19B—C19—H19C | 109.5 |
C14—C7—C8 | 114.6 (2) | ||
C2—N1—C1—O1 | 5.7 (5) | N3—C11—C12—C9 | 0.7 (4) |
C2—N1—C1—C5 | −171.7 (3) | C18—C11—C12—C9 | −178.6 (3) |
C1—N1—C2—C4 | 142.9 (4) | C10—C9—C12—C13 | 178.9 (3) |
C1—N1—C2—C3 | −91.1 (4) | C8—C9—C12—C13 | −3.3 (5) |
N1—C2—C3—O2 | 165.5 (3) | C10—C9—C12—C11 | −1.0 (4) |
C4—C2—C3—O2 | −70.6 (4) | C8—C9—C12—C11 | 176.9 (3) |
O1—C1—C5—C15 | 96.5 (4) | C11—C12—C13—C16 | −0.9 (5) |
N1—C1—C5—C15 | −86.0 (4) | C9—C12—C13—C16 | 179.3 (3) |
O1—C1—C5—C6 | −138.6 (3) | C11—C12—C13—C14 | 177.2 (3) |
N1—C1—C5—C6 | 38.8 (4) | C9—C12—C13—C14 | −2.6 (5) |
C19—N2—C6—C5 | 166.6 (3) | C12—C13—C14—C15 | 165.5 (3) |
C7—N2—C6—C5 | −69.4 (3) | C16—C13—C14—C15 | −16.6 (5) |
C15—C5—C6—N2 | 48.3 (4) | C12—C13—C14—C7 | −17.5 (4) |
C1—C5—C6—N2 | −77.1 (3) | C16—C13—C14—C7 | 160.3 (3) |
C6—N2—C7—C14 | 50.1 (3) | N2—C7—C14—C15 | −14.9 (4) |
C19—N2—C7—C14 | 173.1 (3) | C8—C7—C14—C15 | −140.1 (3) |
C6—N2—C7—C8 | 177.6 (3) | N2—C7—C14—C13 | 168.2 (3) |
C19—N2—C7—C8 | −59.4 (4) | C8—C7—C14—C13 | 43.0 (4) |
N2—C7—C8—C9 | −171.3 (2) | C13—C14—C15—C5 | 173.7 (3) |
C14—C7—C8—C9 | −46.5 (4) | C7—C14—C15—C5 | −3.1 (5) |
C7—C8—C9—C10 | −155.5 (4) | C6—C5—C15—C14 | −13.5 (5) |
C7—C8—C9—C12 | 27.4 (4) | C1—C5—C15—C14 | 113.5 (4) |
C12—C9—C10—N3 | 0.9 (4) | C12—C13—C16—C17 | −0.5 (5) |
C8—C9—C10—N3 | −176.4 (4) | C14—C13—C16—C17 | −178.3 (3) |
C11—N3—C10—C9 | −0.5 (4) | C13—C16—C17—C18 | 1.2 (5) |
C10—N3—C11—C18 | 179.1 (4) | C16—C17—C18—C11 | −0.6 (6) |
C10—N3—C11—C12 | −0.2 (4) | N3—C11—C18—C17 | −179.9 (4) |
N3—C11—C12—C13 | −179.1 (3) | C12—C11—C18—C17 | −0.7 (5) |
C18—C11—C12—C13 | 1.5 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2 | 0.97 | 2.10 | 2.890 (4) | 138 |
O2—H2O···O1i | 1.01 | 1.68 | 2.684 (3) | 172 |
N3—H3N···O2ii | 0.95 | 1.97 | 2.918 (4) | 173 |
Symmetry codes: (i) x+1/2, −y−1/2, −z+1; (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C19H23N3O2 |
Mr | 325.40 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 7.4097 (5), 12.7313 (7), 18.2648 (9) |
V (Å3) | 1723.01 (17) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.66 |
Crystal size (mm) | 0.20 × 0.05 × 0.02 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (CORINC; Dräger & Gattow, 1971) |
Tmin, Tmax | 0.879, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4023, 1889, 1269 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.112, 1.00 |
No. of reflections | 1889 |
No. of parameters | 219 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.16 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2 | 0.97 | 2.10 | 2.890 (4) | 137.6 |
O2—H2O···O1i | 1.01 | 1.68 | 2.684 (3) | 172.0 |
N3—H3N···O2ii | 0.95 | 1.97 | 2.918 (4) | 172.5 |
Symmetry codes: (i) x+1/2, −y−1/2, −z+1; (ii) x, y+1, z. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cejka, J., Husak, M., Kratochvil, B., Jegorov, A. & Cvak, L. (1996). Collect. Czech. Chem. Commun. 61, 1396–1404. CSD CrossRef CAS Web of Science Google Scholar
Crews, C., Anderson, W. A. C., Rees, G. & Krska, R. (2009). Food Addit. Contam. Part B Surveill. 2, 79–85. Web of Science CrossRef CAS PubMed Google Scholar
Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Komarova, E. L. & Tolkachev, O. N. (2001). Pharm. Chem. J. 35, 37–45. Google Scholar
Müller, C., Kemmlein, S., Klaffke, H., Krauthause, W., Preiss-Weigert, A. & Wittkowski, R. (2009). Mol. Nutr. Food Res. 53, 500–507. Web of Science PubMed Google Scholar
Pierri, L., Pitman, I. H., Rae, I. D., Winkler, D. A. & Andrews, P. R. (1982). J. Med. Chem. 25, 937–942. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ergometrinine is one of the main ergot alkaloids produced by the fungus Claviceps purpurea on cereal grains in the field. Contamination of flour and cereal based foods with ergot alkaloids including ergometrinine has previously been reported (Crews et al., 2009, Müller et al., 2009). The biologically inactive C8-(S)-isomer ergometrinine (Pierri et al., 1982) can be converted to the biologically active C8-(R)-isomer ergometrine and vice versa (Komarova & Tolkachev, 2001). The molecule crystallizes in the orthorhombic space group P212121. The molecular structure of the compound and the atom labeling scheme are shown in Fig 1. The absolute configuration could not be defined confidently based on the single crystal diffraction data. It was however established based on epimerization reaction of ergometrine, whose absolute configuration was determined previously (Cejka et al., 1996). Besides the intramolecular hydrogen bonds between N1-H1N and N2 (not shown in Fig. 2), each molecule is connected to four adjacent molecules via intermolecular hydrogen bonds (see dashed green bonds in Fig. 2). As a result undulating layers are formed in the the ac plane.