organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-(2-Chloro­phen­yl)-2,6,9-tri­methyl­dibenzo[b,h][1,6]naphthyridine

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India
*Correspondence e-mail: d_velu@yahoo.com

(Received 13 July 2010; accepted 30 July 2010; online 28 August 2010)

In the title compound, C25H19ClN2, the dibenzo[b,h][1,6]naphthyridine system is planar to within 0.16 (2) Å, and the chloro­phenyl ring is inclined to it by 82.53 (7)°. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains propagating in [100]. There are also a number of weak ππ stacking inter­actions present [centroid–centroid distances = 3.8531 (1) and 3.7631 (1) Å].

Related literature

For the biological properties of [1,6]naphthyridine derivatives, see: Zhuang et al. (2003[Zhuang, L., Wai, J. S., Embrey, W. M., Fisher, E. T., Egbertson, S. M., Payne, S. L., Guare, P. J., Vacca, P. J., Hazuda, J. D., Felock, J. P., Wolfe, L. A., Stillmock, A. K., Witmer, V. M., Moyer, G., Schleif, A. W., Gabryelski, J. L., Leonard, M. Y., Lynch, J. J., Michelson, R. S. & Young, D. S. (2003). J. Med. Chem. 46, 453-456.]); Bedard et al. (2003[Bedard, J. S., Lucille, L. H., Thomas, S., Alice, C., John, D., John, H., Laval, C., Haolun, J. & Robert, F. R. (2003). Antimicrob. Agents Chemother. 44, 929-937.]); Hinschberger et al. (2003[Hinschberger, A., Butt, S., Lelong, V., Boulouard, M., Dumuis, A., Dauphin, F., Bureau, R., Pfeiffer, B., Renard, P. & Rault, S. (2003). J. Med. Chem. 46, 138-147.]); Naik et al. (2006[Naik, T. R., Naik, S. H., Raghavendra, M. & Naik, S. G. K. (2006). ARKIVOC, xv, 84-94.]). For the synthesis of the precursor of the title compound, see: Nandha Kumar et al. (2007[Nandha Kumar, R., Suresh, T., Dhanabal, T. & Mohan, P. S. (2007). Indian J. Chem. Sect B. 46, 995-1000.]). For the crystal structures of other naphthrydine derivatives, see: Sivakumar et al. (2003[Sivakumar, B., SethuSankar, K., Senthil Kumar, U. P., Jeyaraman, R. & Velmurugan, D. (2003). Acta Cryst. C59, o153-o155.]); Fun et al. (2009[Fun, H.-K., Yeap, C. S., Das, N. K., Mahapatra, A. K. & Goswami, S. (2009). Acta Cryst. E65, o1747.]); Vennila et al. (2010[Vennila, K. N., Prabha, K., Manoj, M., Prasad, K. J. R. & Velmurugan, D. (2010). Acta Cryst. E66, o1823.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H19ClN2

  • Mr = 382.87

  • Triclinic, [P \overline 1]

  • a = 6.5575 (4) Å

  • b = 10.6538 (7) Å

  • c = 14.3522 (9) Å

  • α = 93.755 (3)°

  • β = 103.099 (3)°

  • γ = 102.074 (3)°

  • V = 948.25 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.27 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.952

  • 17317 measured reflections

  • 4771 independent reflections

  • 3514 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.143

  • S = 1.00

  • 4771 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯N7i 0.93 2.42 3.318 (2) 162
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

[1,6]naphthyridine derivatives are reported to be a good class of HIV integrase inhibitors (Zhuang et al., 2003). Their antiviral properties have also been reported by (Bedard et al., 2003), and they were proved to be selective antagonists of 5-HT4 receptors (Hinschberger et al., 2003). The planar fused heterocyclic system in the title compound may lead to its DNA intercalating property (Naik et al., 2006). Due to this biological importance, the title compound was chosen for structural studies.

The title compound, illustrated in Fig. 1, consists of a dibenzo[b,h][1,6]naphthyridine core with chlorophenyl and methyl group substitutions. The bond lengths are in normal ranges (Allen et al., 1987), and are similar to those observed for other naphthrydine derivatives (Sivakumar et al., 2003; Fun et al., 2009; Vennila et al., 2010), as are the bond angles. The dihedral angle between the fused ring dibenzo[b,h][1,6]naphthyridine system (N1/N2/C1/C6/C8-C10/C12-C14; planar to within 0.16 (2) Å) and the chlorophenyl ring was found to be 82.53 (7)°. There is an apparent steric clash between the methyl group attached to C8 and the chlorophenyl ring attached to C14. The C9-C8-C19 bond angle of 123.05 (13)° and the C9-C14-C21 bond angle of 124.24 (12)°, suggests that these groups are being forced apart.

The crystal packing is stabilized by C—H···N hydrogen bonds forming chain like patterns propagating along [100] (Table 1, Fig. 2). A number of weak ππ stacking interactions may also stablize the crystal packing (see Table 2 for details).

Related literature top

For the biological properties of [1,6]naphthyridine derivatives, see: Zhuang et al. (2003); Bedard et al. (2003); Hinschberger et al. (2003); Naik et al. (2006). For the synthesis of the precursor of the title compound, see: Nandha Kumar et al. (2007). For the crystal structures of other naphthrydine derivatives, see: Sivakumar et al. (2003); Fun et al. (2009); Vennila et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The precursor of the title compoud, 2,6,4'-trimethyl-4-(N-phenylamino) quinoline, was prepared following the procedure of (Nandha Kumar et al.., 2007). 4-Chloro-2,6-dimethylquinoline (0.002 mol) was reacted with p-toluidine (0.002 mol) under neat conditions at 433 K for 30 mins. The product obtained was washed with water, dried, and purified by column chromatography over silica gel using an ethyl acetate:methanol (95:5) mixture to obtain the product as a white solid. A mixture of 2,6,4'-trimethyl-4-(N-phenylamino) quinoline (0.001 mol) and o-chlorobenzoic acid (0.0011 mol) was added to polyphosphoric acid (1 g of P2O5 and 0.5 ml H3PO4) and heated at 433 k for 5 h. The reaction mixture was poured into ice water, neutralized with saturated sodium bicarbonate solution to remove the excess of o-chlorobenzoic acid, extracted with ethyl acetate. It was then purified using silica gel column chromatography and the product was eluted with a petroleum ether:ethyl acetate (99:1) mixture to get the final product as a pale yellow solid. Recrystallization using ethanol gave yellow block-like crystals of the title compound suitable for X-ray diffraction analysis.

Refinement top

The H-atoms of methyl group C20 were disordered over two positions and were placed in calculated positions and treated as riding atoms, each with an occupancy of 0.5. The remaining H-atoms were positioned geometrically and treated as riding on their parent atoms; N—H = 0.86 Å, C—H = 0.93, 0.96 and 0.97 Å, for CH(aromatic), methyl and methylene H-atoms, respectively, with Uiso = k × Ueq(parent N, or C atom), where k = 1.5 for methyl H-atoms and 1.2 for all other H-atoms.

Structure description top

[1,6]naphthyridine derivatives are reported to be a good class of HIV integrase inhibitors (Zhuang et al., 2003). Their antiviral properties have also been reported by (Bedard et al., 2003), and they were proved to be selective antagonists of 5-HT4 receptors (Hinschberger et al., 2003). The planar fused heterocyclic system in the title compound may lead to its DNA intercalating property (Naik et al., 2006). Due to this biological importance, the title compound was chosen for structural studies.

The title compound, illustrated in Fig. 1, consists of a dibenzo[b,h][1,6]naphthyridine core with chlorophenyl and methyl group substitutions. The bond lengths are in normal ranges (Allen et al., 1987), and are similar to those observed for other naphthrydine derivatives (Sivakumar et al., 2003; Fun et al., 2009; Vennila et al., 2010), as are the bond angles. The dihedral angle between the fused ring dibenzo[b,h][1,6]naphthyridine system (N1/N2/C1/C6/C8-C10/C12-C14; planar to within 0.16 (2) Å) and the chlorophenyl ring was found to be 82.53 (7)°. There is an apparent steric clash between the methyl group attached to C8 and the chlorophenyl ring attached to C14. The C9-C8-C19 bond angle of 123.05 (13)° and the C9-C14-C21 bond angle of 124.24 (12)°, suggests that these groups are being forced apart.

The crystal packing is stabilized by C—H···N hydrogen bonds forming chain like patterns propagating along [100] (Table 1, Fig. 2). A number of weak ππ stacking interactions may also stablize the crystal packing (see Table 2 for details).

For the biological properties of [1,6]naphthyridine derivatives, see: Zhuang et al. (2003); Bedard et al. (2003); Hinschberger et al. (2003); Naik et al. (2006). For the synthesis of the precursor of the title compound, see: Nandha Kumar et al. (2007). For the crystal structures of other naphthrydine derivatives, see: Sivakumar et al. (2003); Fun et al. (2009); Vennila et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound illustrating the formation of the C-H···N hydrogen bonded (dashed lines) chain propagating along [100], and the ππ interactions (dashed lines); see Tables 1 and 2 for details.
12-(2-chlorophenyl)-2,7,11-trimethyl-5,10-diazatetraphene top
Crystal data top
C25H19ClN2Z = 2
Mr = 382.87F(000) = 400
Triclinic, P1Dx = 1.341 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5575 (4) ÅCell parameters from 4797 reflections
b = 10.6538 (7) Åθ = 1.5–28.5°
c = 14.3522 (9) ŵ = 0.21 mm1
α = 93.755 (3)°T = 293 K
β = 103.099 (3)°Block, yellow
γ = 102.074 (3)°0.27 × 0.25 × 0.23 mm
V = 948.25 (10) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4771 independent reflections
Radiation source: fine-focus sealed tube3514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 28.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.944, Tmax = 0.952k = 1414
17317 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.2763P]
where P = (Fo2 + 2Fc2)/3
4771 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C25H19ClN2γ = 102.074 (3)°
Mr = 382.87V = 948.25 (10) Å3
Triclinic, P1Z = 2
a = 6.5575 (4) ÅMo Kα radiation
b = 10.6538 (7) ŵ = 0.21 mm1
c = 14.3522 (9) ÅT = 293 K
α = 93.755 (3)°0.27 × 0.25 × 0.23 mm
β = 103.099 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4771 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3514 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.952Rint = 0.025
17317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
4771 reflectionsΔρmin = 0.51 e Å3
255 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.22259 (9)0.49217 (5)0.41457 (4)0.0809 (2)
C90.1060 (2)0.63949 (13)0.20011 (10)0.0345 (3)
C140.0361 (2)0.61889 (13)0.25997 (11)0.0354 (3)
N110.1756 (2)0.87266 (11)0.24184 (9)0.0396 (3)
C100.2149 (2)0.77063 (13)0.19709 (10)0.0353 (3)
C130.0816 (2)0.72702 (14)0.30668 (11)0.0371 (3)
C60.3810 (2)0.79371 (14)0.14465 (10)0.0367 (3)
C10.4188 (2)0.68758 (14)0.09475 (11)0.0382 (3)
C120.0265 (2)0.85236 (14)0.29330 (11)0.0379 (3)
N70.2977 (2)0.56271 (12)0.09035 (9)0.0405 (3)
C50.5087 (3)0.91727 (15)0.14455 (12)0.0427 (3)
H50.48290.98850.17700.051*
C210.1424 (2)0.48827 (13)0.28004 (11)0.0383 (3)
C150.2299 (3)0.71701 (15)0.36619 (12)0.0426 (3)
H150.29830.63560.37700.051*
C20.5826 (3)0.70513 (17)0.04574 (13)0.0478 (4)
H20.60750.63470.01190.057*
C180.0219 (3)0.96186 (15)0.33756 (12)0.0459 (4)
H180.04651.04440.32890.055*
C80.1537 (2)0.53873 (14)0.13957 (11)0.0376 (3)
C160.2740 (3)0.82394 (16)0.40769 (12)0.0435 (4)
C40.6710 (3)0.93469 (16)0.09730 (12)0.0463 (4)
C260.0401 (3)0.42446 (15)0.35054 (12)0.0450 (4)
C170.1666 (3)0.94743 (16)0.39226 (12)0.0471 (4)
H170.19601.02060.42040.057*
C220.3525 (3)0.42820 (16)0.23021 (15)0.0529 (4)
H220.42730.46930.18330.063*
C30.7064 (3)0.82702 (17)0.04798 (13)0.0512 (4)
H30.81620.83810.01600.061*
C230.4512 (3)0.30820 (18)0.24972 (17)0.0622 (5)
H230.59000.26840.21460.075*
C190.0335 (3)0.39954 (15)0.12548 (14)0.0502 (4)
H19A0.07900.35200.07790.075*
H19B0.11810.39420.10430.075*
H19C0.06300.36350.18530.075*
C250.1401 (3)0.30526 (16)0.37131 (14)0.0563 (5)
H250.06830.26460.41950.068*
C240.3463 (3)0.24775 (17)0.32009 (15)0.0583 (5)
H240.41440.16760.33340.070*
C200.8124 (3)1.06674 (18)0.10020 (15)0.0613 (5)
H20A0.91611.06060.06350.092*0.50
H20B0.88571.09990.16580.092*0.50
H20C0.72541.12390.07320.092*0.50
H20D0.76871.12900.13820.092*0.50
H20E0.79921.08970.03590.092*0.50
H20F0.95941.06570.12840.092*0.50
C270.4337 (3)0.81378 (19)0.46916 (15)0.0603 (5)
H27A0.57160.81790.43030.090*
H27B0.38580.88390.52030.090*
H27C0.44540.73310.49600.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0751 (4)0.0620 (3)0.0805 (4)0.0032 (2)0.0189 (3)0.0237 (3)
C90.0369 (7)0.0290 (6)0.0383 (7)0.0081 (5)0.0095 (6)0.0067 (5)
C140.0374 (7)0.0284 (7)0.0415 (8)0.0080 (5)0.0105 (6)0.0080 (6)
N110.0477 (7)0.0294 (6)0.0430 (7)0.0072 (5)0.0149 (6)0.0055 (5)
C100.0388 (7)0.0309 (7)0.0359 (7)0.0069 (6)0.0089 (6)0.0071 (5)
C130.0415 (8)0.0318 (7)0.0391 (8)0.0092 (6)0.0111 (6)0.0063 (6)
C60.0393 (7)0.0333 (7)0.0366 (7)0.0048 (6)0.0098 (6)0.0074 (6)
C10.0400 (8)0.0353 (7)0.0388 (8)0.0057 (6)0.0110 (6)0.0062 (6)
C120.0451 (8)0.0318 (7)0.0372 (7)0.0093 (6)0.0103 (6)0.0051 (6)
N70.0450 (7)0.0326 (6)0.0461 (7)0.0072 (5)0.0171 (6)0.0044 (5)
C50.0490 (9)0.0339 (7)0.0428 (8)0.0014 (6)0.0137 (7)0.0050 (6)
C210.0423 (8)0.0293 (7)0.0478 (8)0.0088 (6)0.0194 (6)0.0061 (6)
C150.0464 (8)0.0366 (8)0.0481 (9)0.0089 (6)0.0180 (7)0.0078 (6)
C20.0514 (9)0.0449 (9)0.0506 (9)0.0080 (7)0.0230 (7)0.0033 (7)
C180.0616 (10)0.0308 (7)0.0475 (9)0.0104 (7)0.0181 (8)0.0046 (6)
C80.0411 (8)0.0308 (7)0.0416 (8)0.0083 (6)0.0114 (6)0.0057 (6)
C160.0455 (8)0.0433 (8)0.0435 (8)0.0122 (7)0.0131 (7)0.0031 (7)
C40.0469 (9)0.0426 (8)0.0446 (9)0.0026 (7)0.0128 (7)0.0081 (7)
C260.0552 (9)0.0343 (7)0.0445 (9)0.0064 (7)0.0134 (7)0.0069 (6)
C170.0599 (10)0.0380 (8)0.0470 (9)0.0170 (7)0.0165 (8)0.0001 (7)
C220.0446 (9)0.0416 (9)0.0728 (12)0.0090 (7)0.0142 (8)0.0142 (8)
C30.0487 (9)0.0539 (10)0.0520 (10)0.0013 (7)0.0239 (8)0.0071 (8)
C230.0433 (9)0.0473 (10)0.0937 (15)0.0002 (8)0.0221 (10)0.0087 (10)
C190.0589 (10)0.0321 (7)0.0617 (11)0.0036 (7)0.0268 (8)0.0009 (7)
C250.0803 (13)0.0368 (8)0.0536 (10)0.0088 (8)0.0216 (9)0.0145 (7)
C240.0701 (12)0.0359 (8)0.0749 (13)0.0029 (8)0.0367 (10)0.0121 (8)
C200.0643 (12)0.0476 (10)0.0667 (12)0.0099 (8)0.0265 (10)0.0076 (9)
C270.0630 (11)0.0554 (11)0.0694 (12)0.0128 (9)0.0334 (10)0.0011 (9)
Geometric parameters (Å, º) top
Cl1—C261.7342 (18)C8—C191.504 (2)
C9—C141.399 (2)C16—C171.413 (2)
C9—C101.4381 (19)C16—C271.507 (2)
C9—C81.465 (2)C4—C31.397 (2)
C14—C131.414 (2)C4—C201.507 (2)
C14—C211.4978 (19)C26—C251.386 (2)
N11—C101.3272 (18)C17—H170.9300
N11—C121.3449 (19)C22—C231.384 (2)
C10—C61.448 (2)C22—H220.9300
C13—C121.422 (2)C3—H30.9300
C13—C151.425 (2)C23—C241.365 (3)
C6—C11.395 (2)C23—H230.9300
C6—C51.405 (2)C19—H19A0.9600
C1—N71.3888 (19)C19—H19B0.9600
C1—C21.399 (2)C19—H19C0.9600
C12—C181.419 (2)C25—C241.374 (3)
N7—C81.2966 (19)C25—H250.9300
C5—C41.374 (2)C24—H240.9300
C5—H50.9300C20—H20A0.9600
C21—C261.382 (2)C20—H20B0.9600
C21—C221.394 (2)C20—H20C0.9600
C15—C161.365 (2)C20—H20D0.9600
C15—H150.9300C20—H20E0.9600
C2—C31.374 (2)C20—H20F0.9600
C2—H20.9300C27—H27A0.9600
C18—C171.353 (2)C27—H27B0.9600
C18—H180.9300C27—H27C0.9600
C14—C9—C10117.59 (12)C18—C17—H17119.2
C14—C9—C8125.62 (13)C16—C17—H17119.2
C10—C9—C8116.79 (13)C23—C22—C21120.83 (17)
C9—C14—C13118.93 (13)C23—C22—H22119.6
C9—C14—C21124.24 (12)C21—C22—H22119.6
C13—C14—C21116.82 (13)C2—C3—C4121.42 (15)
C10—N11—C12118.23 (12)C2—C3—H3119.3
N11—C10—C9123.65 (13)C4—C3—H3119.3
N11—C10—C6117.60 (13)C24—C23—C22120.50 (18)
C9—C10—C6118.73 (12)C24—C23—H23119.8
C14—C13—C12118.07 (13)C22—C23—H23119.8
C14—C13—C15123.54 (13)C8—C19—H19A109.5
C12—C13—C15118.39 (13)C8—C19—H19B109.5
C1—C6—C5119.07 (14)H19A—C19—H19B109.5
C1—C6—C10118.10 (13)C8—C19—H19C109.5
C5—C6—C10122.80 (14)H19A—C19—H19C109.5
N7—C1—C6122.51 (13)H19B—C19—H19C109.5
N7—C1—C2117.55 (13)C24—C25—C26119.42 (17)
C6—C1—C2119.94 (14)C24—C25—H25120.3
N11—C12—C18118.06 (13)C26—C25—H25120.3
N11—C12—C13123.19 (13)C23—C24—C25120.02 (16)
C18—C12—C13118.73 (14)C23—C24—H24120.0
C8—N7—C1120.50 (13)C25—C24—H24120.0
C4—C5—C6121.15 (15)C4—C20—H20A109.5
C4—C5—H5119.4C4—C20—H20B109.5
C6—C5—H5119.4H20A—C20—H20B109.5
C26—C21—C22117.31 (14)C4—C20—H20C109.5
C26—C21—C14121.67 (14)H20A—C20—H20C109.5
C22—C21—C14120.98 (14)H20B—C20—H20C109.5
C16—C15—C13121.68 (15)C4—C20—H20D109.5
C16—C15—H15119.2H20A—C20—H20D141.1
C13—C15—H15119.2H20B—C20—H20D56.3
C3—C2—C1119.59 (15)H20C—C20—H20D56.3
C3—C2—H2120.2C4—C20—H20E109.5
C1—C2—H2120.2H20A—C20—H20E56.3
C17—C18—C12120.70 (15)H20B—C20—H20E141.1
C17—C18—H18119.6H20C—C20—H20E56.3
C12—C18—H18119.6H20D—C20—H20E109.5
N7—C8—C9122.88 (13)C4—C20—H20F109.5
N7—C8—C19114.02 (13)H20A—C20—H20F56.3
C9—C8—C19123.05 (13)H20B—C20—H20F56.3
C15—C16—C17118.83 (15)H20C—C20—H20F141.1
C15—C16—C27121.87 (15)H20D—C20—H20F109.5
C17—C16—C27119.31 (14)H20E—C20—H20F109.5
C5—C4—C3118.82 (15)C16—C27—H27A109.5
C5—C4—C20120.96 (16)C16—C27—H27B109.5
C3—C4—C20120.20 (15)H27A—C27—H27B109.5
C21—C26—C25121.90 (16)C16—C27—H27C109.5
C21—C26—Cl1119.98 (12)H27A—C27—H27C109.5
C25—C26—Cl1118.11 (14)H27B—C27—H27C109.5
C18—C17—C16121.65 (14)
C10—C9—C14—C136.1 (2)C13—C14—C21—C2282.85 (19)
C8—C9—C14—C13173.70 (13)C14—C13—C15—C16178.02 (15)
C10—C9—C14—C21172.70 (13)C12—C13—C15—C161.9 (2)
C8—C9—C14—C217.5 (2)N7—C1—C2—C3179.93 (16)
C12—N11—C10—C90.4 (2)C6—C1—C2—C30.6 (3)
C12—N11—C10—C6177.97 (13)N11—C12—C18—C17178.30 (15)
C14—C9—C10—N115.4 (2)C13—C12—C18—C170.6 (2)
C8—C9—C10—N11174.47 (13)C1—N7—C8—C91.4 (2)
C14—C9—C10—C6172.95 (13)C1—N7—C8—C19178.83 (14)
C8—C9—C10—C67.2 (2)C14—C9—C8—N7175.27 (14)
C9—C14—C13—C122.4 (2)C10—C9—C8—N74.9 (2)
C21—C14—C13—C12176.51 (13)C14—C9—C8—C197.5 (2)
C9—C14—C13—C15177.54 (14)C10—C9—C8—C19172.28 (14)
C21—C14—C13—C153.6 (2)C13—C15—C16—C171.1 (2)
N11—C10—C6—C1177.95 (13)C13—C15—C16—C27178.85 (16)
C9—C10—C6—C13.6 (2)C6—C5—C4—C30.6 (3)
N11—C10—C6—C54.1 (2)C6—C5—C4—C20177.91 (16)
C9—C10—C6—C5174.35 (14)C22—C21—C26—C250.3 (2)
C5—C6—C1—N7179.11 (14)C14—C21—C26—C25178.09 (15)
C10—C6—C1—N72.8 (2)C22—C21—C26—Cl1179.19 (13)
C5—C6—C1—C20.1 (2)C14—C21—C26—Cl13.0 (2)
C10—C6—C1—C2177.91 (14)C12—C18—C17—C160.2 (3)
C10—N11—C12—C18177.28 (14)C15—C16—C17—C180.0 (3)
C10—N11—C12—C133.8 (2)C27—C16—C17—C18179.91 (17)
C14—C13—C12—N112.8 (2)C26—C21—C22—C231.4 (3)
C15—C13—C12—N11177.25 (14)C14—C21—C22—C23179.24 (16)
C14—C13—C12—C18178.29 (14)C1—C2—C3—C40.8 (3)
C15—C13—C12—C181.6 (2)C5—C4—C3—C20.2 (3)
C6—C1—N7—C85.5 (2)C20—C4—C3—C2178.72 (18)
C2—C1—N7—C8175.23 (15)C21—C22—C23—C241.7 (3)
C1—C6—C5—C40.8 (2)C21—C26—C25—C240.6 (3)
C10—C6—C5—C4177.17 (14)Cl1—C26—C25—C24178.38 (14)
C9—C14—C21—C2683.9 (2)C22—C23—C24—C250.9 (3)
C13—C14—C21—C2694.89 (17)C26—C25—C24—C230.3 (3)
C9—C14—C21—C2298.31 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···N7i0.932.423.318 (2)162
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC25H19ClN2
Mr382.87
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.5575 (4), 10.6538 (7), 14.3522 (9)
α, β, γ (°)93.755 (3), 103.099 (3), 102.074 (3)
V3)948.25 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.27 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.944, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
17317, 4771, 3514
Rint0.025
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.143, 1.00
No. of reflections4771
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···N7i0.932.423.318 (2)162
Symmetry code: (i) x1, y, z.
ππ interactions [Å]
Cg2 is centroid of ring N11,C9,C10,C12-C14; Cg3 is centroid of ring C1-C6; Cg4 is centroid of ring C12,C13,C15-C18.
Symmetry codes : (i) -1+x, y,z; (ii) 1+x, y,z.
top
Cg(I)Cg(J)Centroid-to-Centroid
Cg(2)Cg(3i)3.8531 (1)
Cg(3)Cg(2ii)3.8531 (1)
Cg(3)Cg(4ii)3.7631 (1)
Cg(4)Cg(3i)3.7631 (1)
 

Acknowledgements

KNV thanks the CSIR for providing a Senior Research Fellowship. DV acknowledges the Department of Science and Technology (DST) for providing data collection facilities under major research projects and is also thankful for the financial support to the Department under UGC–SAP and DST–FIST programs.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBedard, J. S., Lucille, L. H., Thomas, S., Alice, C., John, D., John, H., Laval, C., Haolun, J. & Robert, F. R. (2003). Antimicrob. Agents Chemother. 44, 929–937.  Web of Science CrossRef Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Das, N. K., Mahapatra, A. K. & Goswami, S. (2009). Acta Cryst. E65, o1747.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHinschberger, A., Butt, S., Lelong, V., Boulouard, M., Dumuis, A., Dauphin, F., Bureau, R., Pfeiffer, B., Renard, P. & Rault, S. (2003). J. Med. Chem. 46, 138–147.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaik, T. R., Naik, S. H., Raghavendra, M. & Naik, S. G. K. (2006). ARKIVOC, xv, 84–94.  CrossRef Google Scholar
First citationNandha Kumar, R., Suresh, T., Dhanabal, T. & Mohan, P. S. (2007). Indian J. Chem. Sect B. 46, 995–1000.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, B., SethuSankar, K., Senthil Kumar, U. P., Jeyaraman, R. & Velmurugan, D. (2003). Acta Cryst. C59, o153–o155.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVennila, K. N., Prabha, K., Manoj, M., Prasad, K. J. R. & Velmurugan, D. (2010). Acta Cryst. E66, o1823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhuang, L., Wai, J. S., Embrey, W. M., Fisher, E. T., Egbertson, S. M., Payne, S. L., Guare, P. J., Vacca, P. J., Hazuda, J. D., Felock, J. P., Wolfe, L. A., Stillmock, A. K., Witmer, V. M., Moyer, G., Schleif, A. W., Gabryelski, J. L., Leonard, M. Y., Lynch, J. J., Michelson, R. S. & Young, D. S. (2003). J. Med. Chem. 46, 453–456.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds