organic compounds
3-Phenyldiazenyl-1,2-dimethyl-1H-indole
aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Gazi University, 06500 Beşevler, Ankara, Turkey, and cDepartment of Chemistry, Atatürk University, 22240 Erzurum, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title molecule, C16H15N3, the indole ring system is planar within 0.021 (3) Å and the phenyl ring is inclined to this plane by 17.32 (14)°. π–π contacts involving the pyrrole rings of inversion-related indole units [centroid–centroid distance = 3.5187 (17) Å] stabilize the crystal structure.
Related literature
For the use and applications of et al. (1996); Bahatti & Seshadri (2004); Biswas & Umapathy (2000); Catino & Farris (1985); Clark & Hester (1993); Fadda et al. (1994); Hunger (2003); Taniike et al. (1996); Zollinger (2003); Willner & Rubin (1996). For related structures, see: Hökelek et al. (2007a,b); Seferoğlu et al. (2006, 2007, 2008). For standard bond lengths, see: Allen et al. (1987).
see: BachExperimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810031648/su2202sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810031648/su2202Isup2.hkl
For the preparation of the title compound, aniline (190 mg, 2 mmol) was dissolved in HCl (1.5 ml) and water (4.0 ml). The solution was cooled in an ice-salt bath and a cold solution of NaNO2 (150 mg, 2 mmol) in water (3.0 ml) was added dropwise with stirring. The resulting diazonium salt was cooled in an ice-salt bath and then added dropwise with stirring to 1,2-dimethylindole (300 mg, 2 mmol) in an acetic acid/propionic acid mixture (2:1, 8.0 ml). The solution was stirred at 273-278 K for 1 h and the pH of the reaction mixture was maintained at 4-6 by the simultaneous addition of a sodium hydroxide solution (40-50 ml). The mixture was stirred for a further 1 h. The resulting solid was filtered, washed with cold water and crystallized from ethanol (yield; 440 mg, 92%, m.p. 398 K).
The C9 methyl H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.96 Å, with Uiso(H) = 1.5Ueq(C). The remaining H-atoms were located in a difference Fourier map and were refined freely.
Azo compounds are very important in the field of dyes, pigments and advanced materials (Hunger, 2003). It has been known for many years that the
are the most widely used class of dyes, due to their versatile applications in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and polymers, biological-medical studies and advanced applications in organic syntheses (Catino & Farris, 1985; Zollinger, 2003; Bahatti & Seshadri, 2004; Taniike et al., 1996; Fadda et al., 1994). They are also used in the fields of nonlinear optics and optical data storage (Taniike et al., 1996; Bach et al., 1996; Clark & Hester, 1993). Their optical properties depend on not only the spectroscopic properties of the molecules but also their crystallographic arrangements (Biswas & Umapathy, 2000; Willner & Rubin, 1996). Previously, the syntheses, crystal structures, spectroscopic and tautomeric properties of novel azo indole dyes have been reported in solution and solid state (Hökelek et al., 2007a,b; Seferoğlu et al., 2008; Seferoğlu et al., 2007; Seferoğlu et al., 2006). We report herein on the synthesis and of the title compound.The molecular structure of the title molecule is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are in normal ranges. The indole ring system is planar to within 0.022 (3) Å, with a dihedral angle of 1.22 (15)° between rings A (N1/C1-C3/C8) and B (C3-C8). The orientation of the phenyl ring C (C11-C16) with respect to the indole ring system may be described by the dihedral angle of 17.32 (14)°. Atoms C9, C10, N2 and N3 are displaced by 0.006 (3), -0.107 (4), 0.003 (2) and 0.050 (2) Å, respectively, from the plane of the indole ring system, hence are almost coplanar.
In the crystal there are π···π contacts involving A rings, of the indole group, related by an inversion center, which stabilize the crystal packing: Cg1—Cg1i distance is 3.519 (2) Å [symmetry code: (i) -x, -y, -z, where Cg1 is the centroid of the pyrrole ring A (N1/C1-C3/C8)].
For the use and applications of
see: Bach et al. (1996); Bahatti & Seshadri (2004); Biswas & Umapathy (2000); Catino & Farris (1985); Clark & Hester (1993); Fadda et al. (1994); Hunger (2003); Taniike et al. (1996); Zollinger (2003); Willner & Rubin (1996). For related structures, see: Hökelek et al. (2007a,b); Seferoğlu et al. (2006, 2007, 2008). For standard bond lengths, see: Allen et al. (1987).For related literature, see: .
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. |
C16H15N3 | F(000) = 1056 |
Mr = 249.31 | Dx = 1.231 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3396 reflections |
a = 16.3442 (3) Å | θ = 2.4–26.4° |
b = 10.2713 (2) Å | µ = 0.08 mm−1 |
c = 16.5312 (3) Å | T = 294 K |
β = 104.264 (3)° | Block, orange |
V = 2689.64 (9) Å3 | 0.35 × 0.28 × 0.18 mm |
Z = 8 |
Rigaku R-AXIS RAPID-S diffractometer | 1503 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.103 |
Graphite monochromator | θmax = 26.4°, θmin = 2.4° |
ω scans | h = −20→20 |
27159 measured reflections | k = −12→12 |
2762 independent reflections | l = −20→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.198 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0864P)2 + 0.4512P] where P = (Fo2 + 2Fc2)/3 |
2762 reflections | (Δ/σ)max < 0.001 |
221 parameters | Δρmax = 0.11 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C16H15N3 | V = 2689.64 (9) Å3 |
Mr = 249.31 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.3442 (3) Å | µ = 0.08 mm−1 |
b = 10.2713 (2) Å | T = 294 K |
c = 16.5312 (3) Å | 0.35 × 0.28 × 0.18 mm |
β = 104.264 (3)° |
Rigaku R-AXIS RAPID-S diffractometer | 1503 reflections with I > 2σ(I) |
27159 measured reflections | Rint = 0.103 |
2762 independent reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.198 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.11 e Å−3 |
2762 reflections | Δρmin = −0.18 e Å−3 |
221 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.08081 (14) | 0.0254 (2) | 0.10187 (13) | 0.0815 (7) | |
N2 | 0.14870 (13) | 0.1760 (2) | −0.06346 (13) | 0.0776 (6) | |
N3 | 0.12083 (14) | 0.2792 (2) | −0.10430 (14) | 0.0809 (6) | |
C1 | 0.13054 (17) | 0.0347 (3) | 0.04696 (16) | 0.0788 (7) | |
C2 | 0.10816 (16) | 0.1455 (3) | −0.00174 (16) | 0.0735 (7) | |
C3 | 0.04189 (16) | 0.2101 (2) | 0.02639 (15) | 0.0740 (7) | |
C4 | −0.00515 (18) | 0.3236 (3) | 0.00533 (18) | 0.0830 (8) | |
H4 | 0.0013 (16) | 0.382 (3) | −0.0413 (16) | 0.091 (8)* | |
C5 | −0.06401 (19) | 0.3556 (3) | 0.0491 (2) | 0.0941 (9) | |
H5 | −0.0962 (17) | 0.443 (3) | 0.0354 (16) | 0.098 (8)* | |
C6 | −0.0776 (2) | 0.2777 (3) | 0.1129 (2) | 0.1000 (10) | |
H6 | −0.1200 (19) | 0.301 (3) | 0.1470 (17) | 0.105 (9)* | |
C7 | −0.03322 (19) | 0.1639 (3) | 0.13422 (18) | 0.0891 (9) | |
H7 | −0.0458 (17) | 0.109 (3) | 0.1772 (16) | 0.096 (9)* | |
C8 | 0.02687 (17) | 0.1317 (3) | 0.09164 (15) | 0.0765 (7) | |
C9 | 0.0837 (2) | −0.0775 (3) | 0.16314 (18) | 0.1000 (10) | |
H9A | 0.0273 | −0.1057 | 0.1615 | 0.150* | |
H9B | 0.1099 | −0.0451 | 0.2178 | 0.150* | |
H9C | 0.1157 | −0.1496 | 0.1504 | 0.150* | |
C10 | 0.1983 (2) | −0.0607 (4) | 0.0456 (3) | 0.1006 (10) | |
H101 | 0.177 (2) | −0.153 (4) | 0.032 (2) | 0.139 (13)* | |
H102 | 0.239 (2) | −0.063 (3) | 0.097 (2) | 0.118 (12)* | |
H103 | 0.232 (2) | −0.032 (3) | 0.004 (2) | 0.122 (12)* | |
C11 | 0.16377 (17) | 0.3083 (3) | −0.16766 (16) | 0.0773 (7) | |
C12 | 0.24027 (19) | 0.2553 (3) | −0.17310 (19) | 0.0845 (8) | |
H12 | 0.2668 (19) | 0.184 (3) | −0.1278 (18) | 0.112 (10)* | |
C13 | 0.2756 (2) | 0.2934 (4) | −0.2364 (2) | 0.1010 (10) | |
H13 | 0.326 (2) | 0.255 (3) | −0.2414 (18) | 0.099 (9)* | |
C14 | 0.2366 (3) | 0.3836 (4) | −0.2952 (2) | 0.1079 (11) | |
H14 | 0.265 (3) | 0.408 (4) | −0.341 (2) | 0.158 (14)* | |
C15 | 0.1604 (3) | 0.4367 (4) | −0.2903 (2) | 0.1051 (10) | |
H15 | 0.1309 (17) | 0.507 (3) | −0.3271 (18) | 0.096 (9)* | |
C16 | 0.1245 (2) | 0.4012 (3) | −0.2262 (2) | 0.0936 (9) | |
H16 | 0.0750 (19) | 0.438 (3) | −0.2170 (18) | 0.102 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0829 (15) | 0.0828 (15) | 0.0780 (14) | 0.0006 (12) | 0.0181 (12) | 0.0063 (11) |
N2 | 0.0683 (13) | 0.0804 (15) | 0.0873 (14) | −0.0050 (11) | 0.0252 (11) | −0.0059 (12) |
N3 | 0.0752 (14) | 0.0862 (15) | 0.0865 (15) | −0.0040 (12) | 0.0302 (12) | 0.0007 (12) |
C1 | 0.0758 (17) | 0.0795 (17) | 0.0772 (17) | −0.0019 (14) | 0.0116 (14) | −0.0068 (14) |
C2 | 0.0680 (15) | 0.0758 (16) | 0.0790 (16) | −0.0035 (13) | 0.0222 (13) | −0.0027 (13) |
C3 | 0.0739 (16) | 0.0765 (17) | 0.0744 (16) | −0.0045 (13) | 0.0233 (13) | 0.0015 (13) |
C4 | 0.0842 (18) | 0.0767 (18) | 0.094 (2) | 0.0042 (15) | 0.0336 (15) | 0.0079 (15) |
C5 | 0.090 (2) | 0.086 (2) | 0.117 (2) | 0.0084 (16) | 0.0458 (18) | 0.0033 (18) |
C6 | 0.101 (2) | 0.103 (2) | 0.110 (2) | 0.0037 (19) | 0.051 (2) | 0.0061 (19) |
C7 | 0.091 (2) | 0.105 (2) | 0.0790 (18) | −0.0056 (18) | 0.0354 (15) | 0.0061 (16) |
C8 | 0.0760 (16) | 0.0780 (17) | 0.0737 (16) | −0.0014 (14) | 0.0150 (13) | 0.0014 (13) |
C9 | 0.115 (2) | 0.092 (2) | 0.0880 (19) | −0.0002 (17) | 0.0153 (17) | 0.0204 (16) |
C10 | 0.093 (2) | 0.091 (2) | 0.112 (3) | 0.0140 (19) | 0.016 (2) | −0.004 (2) |
C11 | 0.0759 (17) | 0.0817 (17) | 0.0782 (17) | −0.0150 (14) | 0.0264 (14) | −0.0105 (14) |
C12 | 0.0813 (19) | 0.090 (2) | 0.089 (2) | −0.0125 (16) | 0.0355 (16) | −0.0158 (16) |
C13 | 0.097 (2) | 0.110 (2) | 0.110 (3) | −0.016 (2) | 0.053 (2) | −0.023 (2) |
C14 | 0.117 (3) | 0.118 (3) | 0.100 (3) | −0.034 (2) | 0.048 (2) | −0.013 (2) |
C15 | 0.114 (3) | 0.109 (3) | 0.092 (2) | −0.023 (2) | 0.025 (2) | 0.006 (2) |
C16 | 0.088 (2) | 0.101 (2) | 0.095 (2) | −0.0115 (18) | 0.0307 (18) | −0.0004 (18) |
N1—C1 | 1.363 (3) | C8—C7 | 1.382 (4) |
N1—C8 | 1.388 (3) | C9—H9A | 0.9600 |
N1—C9 | 1.457 (3) | C9—H9B | 0.9600 |
N2—C2 | 1.382 (3) | C9—H9C | 0.9600 |
N3—N2 | 1.279 (3) | C10—H101 | 1.02 (4) |
N3—C11 | 1.429 (3) | C10—H102 | 0.93 (3) |
C1—C10 | 1.482 (4) | C10—H103 | 1.03 (3) |
C2—C1 | 1.390 (4) | C11—C16 | 1.397 (4) |
C3—C2 | 1.442 (4) | C12—C11 | 1.387 (4) |
C3—C4 | 1.393 (4) | C12—C13 | 1.371 (4) |
C3—C8 | 1.415 (3) | C12—H12 | 1.06 (3) |
C4—C5 | 1.378 (4) | C13—C14 | 1.380 (5) |
C4—H4 | 1.00 (3) | C13—H13 | 0.93 (3) |
C5—H5 | 1.04 (3) | C14—C15 | 1.381 (5) |
C6—C5 | 1.384 (4) | C14—H14 | 1.01 (4) |
C6—H6 | 1.02 (3) | C15—H15 | 0.99 (3) |
C7—C6 | 1.375 (4) | C16—C15 | 1.381 (4) |
C7—H7 | 0.96 (3) | C16—H16 | 0.94 (3) |
C1—N1—C8 | 109.2 (2) | N1—C9—H9B | 109.5 |
C1—N1—C9 | 126.3 (2) | N1—C9—H9C | 109.5 |
C8—N1—C9 | 124.5 (2) | H9A—C9—H9B | 109.5 |
N3—N2—C2 | 113.8 (2) | H9A—C9—H9C | 109.5 |
N2—N3—C11 | 112.7 (2) | H9B—C9—H9C | 109.5 |
N1—C1—C2 | 109.2 (2) | C1—C10—H102 | 112 (2) |
N1—C1—C10 | 122.2 (3) | C1—C10—H101 | 114 (2) |
C2—C1—C10 | 128.6 (3) | C1—C10—H103 | 110.4 (18) |
N2—C2—C1 | 120.5 (2) | H102—C10—H101 | 108 (3) |
N2—C2—C3 | 132.0 (2) | H102—C10—H103 | 104 (3) |
C1—C2—C3 | 107.5 (2) | H101—C10—H103 | 109 (3) |
C4—C3—C2 | 135.8 (2) | C12—C11—N3 | 125.3 (3) |
C4—C3—C8 | 118.6 (2) | C12—C11—C16 | 119.4 (3) |
C8—C3—C2 | 105.6 (2) | C16—C11—N3 | 115.2 (3) |
C3—C4—H4 | 122.5 (15) | C11—C12—H12 | 116.3 (17) |
C5—C4—C3 | 118.8 (3) | C13—C12—C11 | 119.5 (3) |
C5—C4—H4 | 118.7 (15) | C13—C12—H12 | 124.2 (17) |
C4—C5—C6 | 121.7 (3) | C12—C13—C14 | 121.5 (4) |
C4—C5—H5 | 118.3 (15) | C12—C13—H13 | 119.7 (19) |
C6—C5—H5 | 119.9 (15) | C14—C13—H13 | 118.8 (18) |
C5—C6—H6 | 122.8 (16) | C13—C14—C15 | 119.4 (3) |
C7—C6—C5 | 120.9 (3) | C13—C14—H14 | 118 (2) |
C7—C6—H6 | 116.3 (16) | C15—C14—H14 | 122 (2) |
C6—C7—C8 | 117.9 (3) | C14—C15—H15 | 124.3 (17) |
C6—C7—H7 | 119.2 (17) | C16—C15—C14 | 120.0 (4) |
C8—C7—H7 | 122.9 (17) | C16—C15—H15 | 115.4 (17) |
N1—C8—C3 | 108.5 (2) | C11—C16—H16 | 115.3 (18) |
C7—C8—N1 | 129.5 (3) | C15—C16—C11 | 120.2 (4) |
C7—C8—C3 | 122.0 (3) | C15—C16—H16 | 124.5 (18) |
N1—C9—H9A | 109.5 | ||
C8—N1—C1—C2 | −1.7 (3) | C8—C3—C2—C1 | −0.7 (3) |
C8—N1—C1—C10 | 176.5 (3) | C2—C3—C4—C5 | −178.6 (3) |
C9—N1—C1—C2 | 179.3 (2) | C8—C3—C4—C5 | 0.4 (4) |
C9—N1—C1—C10 | −2.4 (4) | C2—C3—C8—N1 | −0.3 (3) |
C1—N1—C8—C3 | 1.2 (3) | C2—C3—C8—C7 | 179.8 (2) |
C1—N1—C8—C7 | −178.9 (3) | C4—C3—C8—N1 | −179.6 (2) |
C9—N1—C8—C3 | −179.8 (2) | C4—C3—C8—C7 | 0.5 (4) |
C9—N1—C8—C7 | 0.0 (4) | C3—C4—C5—C6 | −0.2 (5) |
N3—N2—C2—C1 | 178.9 (2) | C7—C6—C5—C4 | −0.9 (5) |
N3—N2—C2—C3 | −1.8 (4) | C8—C7—C6—C5 | 1.8 (5) |
C11—N3—N2—C2 | −179.98 (19) | N1—C8—C7—C6 | 178.6 (3) |
N2—N3—C11—C12 | −15.8 (4) | C3—C8—C7—C6 | −1.6 (4) |
N2—N3—C11—C16 | 166.1 (2) | N3—C11—C16—C15 | −179.9 (3) |
N2—C2—C1—N1 | −179.0 (2) | C12—C11—C16—C15 | 2.0 (4) |
N2—C2—C1—C10 | 2.9 (4) | C11—C12—C13—C14 | −0.1 (5) |
C3—C2—C1—N1 | 1.5 (3) | C13—C12—C11—N3 | −178.8 (2) |
C3—C2—C1—C10 | −176.6 (3) | C13—C12—C11—C16 | −0.9 (4) |
C4—C3—C2—N2 | −1.0 (5) | C13—C14—C15—C16 | 1.1 (5) |
C4—C3—C2—C1 | 178.4 (3) | C12—C13—C14—C15 | 0.0 (5) |
C8—C3—C2—N2 | 179.9 (2) | C11—C16—C15—C14 | −2.1 (5) |
Experimental details
Crystal data | |
Chemical formula | C16H15N3 |
Mr | 249.31 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 294 |
a, b, c (Å) | 16.3442 (3), 10.2713 (2), 16.5312 (3) |
β (°) | 104.264 (3) |
V (Å3) | 2689.64 (9) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.35 × 0.28 × 0.18 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID-S |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27159, 2762, 1503 |
Rint | 0.103 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.198, 1.04 |
No. of reflections | 2762 |
No. of parameters | 221 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.11, −0.18 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).
Acknowledgements
The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bach, H., Anderle, K., Fuhrmann, Th. & Wendorff, J. H. (1996). J. Phys. Chem. 100, 4135–4140. CrossRef CAS Web of Science Google Scholar
Bahatti, H. S. & Seshadri, S. (2004). Color. Technol. 120, 151–155. Google Scholar
Biswas, N. & Umapathy, S. (2000). J. Phys. Chem. A 104, 2734–2745. Web of Science CrossRef CAS Google Scholar
Catino, S. C. & Farris, R. E. (1985). Azo dyes. In Concise encyclopedia of chemical technology, edited by M. Grayson, pp. 142–144. New York: John Wiley and Sons. Google Scholar
Clark, R. J. H. & Hester, R. E. (1993). Spectroscopy of New Materials: Advances in Spectroscopy, edited by R. J. H. Clark & R. E. Hester. New York: John Wiley and Sons. Google Scholar
Fadda, A. A., Etmen, H. A., Amer, F. A., Barghout, M. & Mohammed, K. S. J. (1994). J. Chem. Technol. Biotechnol. 61, 343–349. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hökelek, T., Seferoğlu, Z., Şahin, E. & Ertan, N. (2007a). Acta Cryst. E63, o3281–o3282. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Seferoğlu, Z., Şahin, E. & Kaynak, F. B. (2007b). Acta Cryst. E63, o2837–o2839. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hunger, K. (2003). Industrial dyes, chemistry, properties, applications, edited by K. Hunger, pp. 20–35. Weinheim: Wiley-VCH. Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Seferoğlu, Z., Ertan, N., Hökelek, T. & Şahin, E. (2008). Dyes Pigm. 77, 614–625. Google Scholar
Seferoğlu, Z., Hökelek, T., Şahin, E. & Ertan, N. (2006). Acta Cryst. E62, o2108–o2110. Web of Science CSD CrossRef IUCr Journals Google Scholar
Seferoğlu, Z., Hökelek, T., Şahin, E. & Ertan, N. (2007). Acta Cryst. E63, o568–o570. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508–15516. CrossRef CAS Web of Science Google Scholar
Willner, I. & Rubin, S. (1996). Angew. Chem. Int. Ed. Engl. 35, 367–385. CrossRef CAS Web of Science Google Scholar
Zollinger, H. (2003). Colour chemistry: synthesis, properties and applications of organic dyes and pigments, edited by H. Zollinger, 3rd rev. ed. Weinheim: Wiley-VCH. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Azo compounds are very important in the field of dyes, pigments and advanced materials (Hunger, 2003). It has been known for many years that the azo compounds are the most widely used class of dyes, due to their versatile applications in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and polymers, biological-medical studies and advanced applications in organic syntheses (Catino & Farris, 1985; Zollinger, 2003; Bahatti & Seshadri, 2004; Taniike et al., 1996; Fadda et al., 1994). They are also used in the fields of nonlinear optics and optical data storage (Taniike et al., 1996; Bach et al., 1996; Clark & Hester, 1993). Their optical properties depend on not only the spectroscopic properties of the molecules but also their crystallographic arrangements (Biswas & Umapathy, 2000; Willner & Rubin, 1996). Previously, the syntheses, crystal structures, spectroscopic and tautomeric properties of novel azo indole dyes have been reported in solution and solid state (Hökelek et al., 2007a,b; Seferoğlu et al., 2008; Seferoğlu et al., 2007; Seferoğlu et al., 2006). We report herein on the synthesis and crystal structure of the title compound.
The molecular structure of the title molecule is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are in normal ranges. The indole ring system is planar to within 0.022 (3) Å, with a dihedral angle of 1.22 (15)° between rings A (N1/C1-C3/C8) and B (C3-C8). The orientation of the phenyl ring C (C11-C16) with respect to the indole ring system may be described by the dihedral angle of 17.32 (14)°. Atoms C9, C10, N2 and N3 are displaced by 0.006 (3), -0.107 (4), 0.003 (2) and 0.050 (2) Å, respectively, from the plane of the indole ring system, hence are almost coplanar.
In the crystal there are π···π contacts involving A rings, of the indole group, related by an inversion center, which stabilize the crystal packing: Cg1—Cg1i distance is 3.519 (2) Å [symmetry code: (i) -x, -y, -z, where Cg1 is the centroid of the pyrrole ring A (N1/C1-C3/C8)].