metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(N-Benzyl-N-iso­propyl­di­thio­carbamato)chloridodi­phenyl­tin(IV)

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangbaan Malaysia, 43600 Bangi, Malaysia, bDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 6 August 2010; accepted 6 August 2010; online 11 August 2010)

The SnIV atom in the title organotin dithio­carbamate, [Sn(C6H5)2(C11H14NS2)Cl], is penta-coordinated by an asymmetrically coordinating dithio­carbamate ligand, a Cl and two ispo-C atoms of the Sn-bound phenyl groups. The resulting C2ClS2 donor set defines a coordination geometry inter­mediate between square-pyramidal and trigonal-bipyramidal with a slight tendency towards the latter. The formation of close intra­molecular C–H⋯Cl and C–H⋯S contacts precludes the Cl and S atoms from forming significant inter­molecular contacts. The presence of C–H⋯π contacts leads to the formation of supra­molecular arrays that stack along the b axis.

Related literature

For a review on the applications and structural chemistry of tin dithio­carbamates, see: Tiekink (2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C11H14NS2Cl]

  • Mr = 532.69

  • Monoclinic, P 21 /n

  • a = 9.1934 (1) Å

  • b = 15.1720 (2) Å

  • c = 16.8740 (2) Å

  • β = 96.497 (1)°

  • V = 2338.51 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd., Yarnton, UK.]) Tmin = 0.887, Tmax = 1.000

  • 54748 measured reflections

  • 5345 independent reflections

  • 4746 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.045

  • S = 1.04

  • 5345 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1 0.95 2.80 3.4477 (17) 126
C6—H6⋯S2 0.95 2.80 3.4996 (16) 131
C14—H14⋯S2 1.00 2.51 3.0291 (15) 112
C3—H3⋯Cg1i 0.95 2.92 3.8002 (18) 154
C16—H16c⋯Cg1ii 0.98 2.81 3.4512 (18) 124
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd., Yarnton, UK.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tin, including organotin, dithiocarbamates continue to attract attention as they are known to exhibit properties suggesting their potential as anti-cancer agents, anti-microbial agents and insecticides (Tiekink, 2008).

The SnIV atom in the structure of the title compound is five-coordinated, being chelated by an asymmetrically coordinating dithiocarbamate ligand, a chloride and two ispo-C atoms of the Sn-bound phenyl groups, Fig. 1. The coordination geometry is intermediate between square pyramidal and trigonal bi-pyramidal with a leaning towards the latter. This assignment is based on the value calculated for τ of 0.54 for the Sn atom, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Addison et al., 1984; Spek, 2009). The mode of coordination of the dithiocarbamate ligand, the disposition of the ligand donor set, and the intermediate coordination geometry matches with the literature precedents (Tiekink, 2008).

The formation of close intramolecular C–H···Cl and C–H···S contacts, Table 1, preclude the Cl and S atoms from forming significant intermolecular contacts. The most prominent intermolecular interactions are of the type C–H···π, involving the Sn-bound C7–C12 ring interacting with a methyl-H on one side and a phenyl-H on the other, Fig. 2 and Table 1. This results in the formation of supramolecular arrays in the ac plane which stack along the b axis, Fig. 3.

Related literature top

For a review on the applications and structural chemistry of tin dithiocarbamates, see: Tiekink (2008). For additional structural analysis, see: Addison et al. (1984); Spek (2009).

Experimental top

Carbon disulfide (10 mmol) was added dropwise to an ethanol solution (100 ml) of N-benzyl-N-isopropyl (10 mmol). The solution was kept at 273 K for 1 h. Diphenyltin dichloride (5 mmol) dissolved in ethanol (20 ml) was added to give a white precipitate. This was collected and recrystallized from a chloroform/ethanol (1/2) mixture.

Refinement top

C-bound H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation: C-H = 1.0, 0.99, 0.98 and 0.95 Å for CH, CH2, CH3 and CH(aromatic) H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Structure description top

Tin, including organotin, dithiocarbamates continue to attract attention as they are known to exhibit properties suggesting their potential as anti-cancer agents, anti-microbial agents and insecticides (Tiekink, 2008).

The SnIV atom in the structure of the title compound is five-coordinated, being chelated by an asymmetrically coordinating dithiocarbamate ligand, a chloride and two ispo-C atoms of the Sn-bound phenyl groups, Fig. 1. The coordination geometry is intermediate between square pyramidal and trigonal bi-pyramidal with a leaning towards the latter. This assignment is based on the value calculated for τ of 0.54 for the Sn atom, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Addison et al., 1984; Spek, 2009). The mode of coordination of the dithiocarbamate ligand, the disposition of the ligand donor set, and the intermediate coordination geometry matches with the literature precedents (Tiekink, 2008).

The formation of close intramolecular C–H···Cl and C–H···S contacts, Table 1, preclude the Cl and S atoms from forming significant intermolecular contacts. The most prominent intermolecular interactions are of the type C–H···π, involving the Sn-bound C7–C12 ring interacting with a methyl-H on one side and a phenyl-H on the other, Fig. 2 and Table 1. This results in the formation of supramolecular arrays in the ac plane which stack along the b axis, Fig. 3.

For a review on the applications and structural chemistry of tin dithiocarbamates, see: Tiekink (2008). For additional structural analysis, see: Addison et al. (1984); Spek (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the 2-D supramolecular array in the ac plane of the crystal structure of the title complex, with the C–H···π contacts shown as purple dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the crystal structure of the title complex, showing the stacking of the 2-D arrays along the b axis. The C–H···π contacts are shown as purple dashed lines.
(N-Benzyl-N-isopropyldithiocarbamato)chloridodiphenyltin(IV) top
Crystal data top
[Sn(C6H5)2(C11H14NS2)Cl]F(000) = 1072
Mr = 532.69Dx = 1.513 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 34829 reflections
a = 9.1934 (1) Åθ = 2.2–29.2°
b = 15.1720 (2) ŵ = 1.39 mm1
c = 16.8740 (2) ÅT = 100 K
β = 96.497 (1)°Block, colourless
V = 2338.51 (5) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
5345 independent reflections
Radiation source: fine-focus sealed tube4746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.1952 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1919
Tmin = 0.887, Tmax = 1.000l = 2121
54748 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0285P)2]
where P = (Fo2 + 2Fc2)/3
5345 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Sn(C6H5)2(C11H14NS2)Cl]V = 2338.51 (5) Å3
Mr = 532.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1934 (1) ŵ = 1.39 mm1
b = 15.1720 (2) ÅT = 100 K
c = 16.8740 (2) Å0.30 × 0.25 × 0.20 mm
β = 96.497 (1)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
5345 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4746 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.042
54748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
5345 reflectionsΔρmin = 0.33 e Å3
253 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.677004 (10)0.690203 (6)0.688075 (5)0.01845 (4)
Cl10.76007 (4)0.53663 (2)0.68888 (2)0.03259 (9)
S10.58215 (4)0.65598 (2)0.81529 (2)0.02475 (8)
S20.54077 (4)0.83082 (2)0.73935 (2)0.02118 (8)
N10.41603 (13)0.78207 (8)0.86783 (7)0.0232 (3)
C10.88272 (15)0.75295 (10)0.67971 (8)0.0240 (3)
C20.99547 (18)0.70469 (11)0.65168 (10)0.0325 (4)
H20.98320.64340.64160.039*
C31.12574 (18)0.74585 (15)0.63840 (10)0.0439 (5)
H31.20240.71270.61950.053*
C41.14323 (19)0.83449 (15)0.65269 (12)0.0482 (5)
H41.23180.86270.64290.058*
C51.03361 (19)0.88287 (13)0.68104 (11)0.0438 (5)
H51.04690.94410.69100.053*
C60.90314 (17)0.84220 (11)0.69513 (10)0.0318 (4)
H60.82810.87560.71530.038*
C70.52428 (15)0.68234 (8)0.58354 (8)0.0185 (3)
C80.49266 (16)0.75798 (10)0.53744 (9)0.0242 (3)
H80.53730.81250.55390.029*
C90.39670 (17)0.75412 (11)0.46787 (9)0.0292 (3)
H90.37670.80570.43660.035*
C100.33020 (17)0.67518 (11)0.44404 (10)0.0297 (4)
H100.26460.67250.39640.036*
C110.35952 (16)0.59975 (10)0.48987 (9)0.0274 (3)
H110.31300.54570.47390.033*
C120.45682 (15)0.60357 (9)0.55895 (9)0.0227 (3)
H120.47750.55170.58970.027*
C130.50196 (15)0.76049 (9)0.81307 (8)0.0199 (3)
C140.34197 (16)0.86968 (10)0.86646 (9)0.0289 (3)
H140.33990.89380.81120.035*
C150.4319 (2)0.93275 (12)0.92244 (12)0.0431 (4)
H15A0.53210.93550.90810.065*
H15B0.43350.91180.97750.065*
H15C0.38790.99160.91780.065*
C160.18495 (18)0.86220 (12)0.88488 (11)0.0400 (4)
H16A0.13200.82060.84770.060*
H16B0.13790.92020.87920.060*
H16C0.18350.84100.93970.060*
C170.40459 (18)0.72348 (11)0.93638 (9)0.0294 (3)
H17A0.37410.75920.98080.035*
H17B0.50300.69940.95410.035*
C180.29886 (16)0.64710 (10)0.92112 (9)0.0249 (3)
C190.20502 (18)0.63709 (11)0.85206 (9)0.0316 (3)
H19A0.20800.67810.80970.038*
C200.1059 (2)0.56752 (11)0.84380 (12)0.0411 (4)
H200.04120.56140.79610.049*
C210.1015 (2)0.50811 (12)0.90402 (13)0.0519 (5)
H210.03250.46120.89880.062*
C220.1979 (3)0.51627 (13)0.97299 (13)0.0581 (6)
H220.19620.47431.01460.070*
C230.2960 (2)0.58509 (11)0.98129 (10)0.0406 (4)
H230.36220.59011.02860.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01680 (6)0.01905 (6)0.01915 (6)0.00046 (4)0.00050 (4)0.00322 (3)
Cl10.0362 (2)0.02243 (19)0.0372 (2)0.00957 (16)0.00441 (17)0.00494 (15)
S10.0298 (2)0.02159 (18)0.02287 (18)0.00067 (15)0.00296 (15)0.00143 (14)
S20.02277 (18)0.01888 (17)0.02314 (18)0.00102 (13)0.00801 (14)0.00170 (13)
N10.0239 (6)0.0260 (6)0.0202 (6)0.0069 (5)0.0053 (5)0.0045 (5)
C10.0161 (7)0.0360 (9)0.0193 (7)0.0015 (6)0.0004 (5)0.0015 (6)
C20.0256 (8)0.0448 (10)0.0275 (8)0.0053 (7)0.0045 (7)0.0010 (7)
C30.0212 (8)0.0748 (14)0.0370 (10)0.0076 (9)0.0090 (7)0.0106 (9)
C40.0207 (9)0.0789 (15)0.0442 (11)0.0136 (9)0.0004 (8)0.0186 (10)
C50.0319 (9)0.0488 (11)0.0491 (11)0.0161 (8)0.0028 (8)0.0075 (9)
C60.0242 (8)0.0358 (9)0.0348 (9)0.0062 (7)0.0010 (7)0.0008 (7)
C70.0158 (6)0.0212 (7)0.0186 (7)0.0015 (5)0.0014 (5)0.0037 (5)
C80.0244 (8)0.0208 (8)0.0274 (8)0.0002 (6)0.0037 (6)0.0017 (6)
C90.0291 (8)0.0311 (9)0.0267 (8)0.0091 (7)0.0007 (6)0.0044 (6)
C100.0219 (8)0.0421 (10)0.0236 (8)0.0054 (7)0.0042 (6)0.0049 (7)
C110.0212 (7)0.0296 (8)0.0309 (8)0.0034 (6)0.0011 (6)0.0092 (6)
C120.0219 (7)0.0206 (7)0.0256 (7)0.0004 (6)0.0031 (6)0.0017 (6)
C130.0183 (7)0.0222 (7)0.0188 (7)0.0066 (6)0.0003 (5)0.0053 (5)
C140.0297 (8)0.0274 (8)0.0317 (8)0.0026 (7)0.0132 (7)0.0076 (6)
C150.0418 (10)0.0331 (10)0.0560 (12)0.0112 (8)0.0128 (9)0.0188 (8)
C160.0332 (9)0.0421 (10)0.0477 (11)0.0030 (8)0.0179 (8)0.0098 (8)
C170.0318 (8)0.0393 (9)0.0177 (7)0.0093 (7)0.0046 (6)0.0023 (6)
C180.0271 (8)0.0251 (8)0.0241 (7)0.0007 (6)0.0095 (6)0.0019 (6)
C190.0343 (9)0.0287 (9)0.0316 (8)0.0063 (7)0.0026 (7)0.0001 (7)
C200.0382 (10)0.0344 (10)0.0516 (11)0.0104 (8)0.0083 (8)0.0124 (8)
C210.0649 (13)0.0325 (10)0.0636 (13)0.0202 (9)0.0301 (11)0.0113 (9)
C220.0979 (18)0.0314 (10)0.0502 (12)0.0109 (11)0.0309 (12)0.0071 (9)
C230.0587 (12)0.0353 (10)0.0288 (9)0.0018 (9)0.0100 (8)0.0027 (7)
Geometric parameters (Å, º) top
Sn—S12.4621 (4)C10—H100.9500
Sn—S22.6672 (4)C11—C121.388 (2)
Sn—C12.1362 (14)C11—H110.9500
Sn—C72.1300 (14)C12—H120.9500
Sn—Cl12.4515 (4)C14—C161.515 (2)
S1—C131.7472 (15)C14—C151.521 (2)
S2—C131.7070 (14)C14—H141.0000
N1—C131.3230 (18)C15—H15A0.9800
N1—C171.4721 (19)C15—H15B0.9800
N1—C141.492 (2)C15—H15C0.9800
C1—C61.388 (2)C16—H16A0.9800
C1—C21.395 (2)C16—H16B0.9800
C2—C31.391 (2)C16—H16C0.9800
C2—H20.9500C17—C181.516 (2)
C3—C41.373 (3)C17—H17A0.9900
C3—H30.9500C17—H17B0.9900
C4—C51.376 (3)C18—C191.378 (2)
C4—H40.9500C18—C231.387 (2)
C5—C61.393 (2)C19—C201.391 (2)
C5—H50.9500C19—H19A0.9500
C6—H60.9500C20—C211.363 (3)
C7—C121.3881 (19)C20—H200.9500
C7—C81.3984 (19)C21—C221.386 (3)
C8—C91.388 (2)C21—H210.9500
C8—H80.9500C22—C231.377 (3)
C9—C101.384 (2)C22—H220.9500
C9—H90.9500C23—H230.9500
C10—C111.390 (2)
C7—Sn—C1118.41 (5)C11—C12—C7120.71 (13)
C7—Sn—Cl197.30 (4)C11—C12—H12119.6
C1—Sn—Cl198.42 (4)C7—C12—H12119.6
C7—Sn—S1116.42 (4)N1—C13—S2123.01 (11)
C1—Sn—S1123.72 (4)N1—C13—S1119.57 (11)
Cl1—Sn—S186.307 (14)S2—C13—S1117.42 (8)
C7—Sn—S291.36 (4)N1—C14—C16111.95 (13)
C1—Sn—S296.70 (4)N1—C14—C15109.62 (13)
Cl1—Sn—S2156.326 (13)C16—C14—C15112.52 (13)
S1—Sn—S270.135 (12)N1—C14—H14107.5
C13—S1—Sn88.86 (5)C16—C14—H14107.5
C13—S2—Sn83.16 (5)C15—C14—H14107.5
C13—N1—C17120.05 (13)C14—C15—H15A109.5
C13—N1—C14121.13 (12)C14—C15—H15B109.5
C17—N1—C14118.49 (12)H15A—C15—H15B109.5
C6—C1—C2119.07 (14)C14—C15—H15C109.5
C6—C1—Sn121.63 (11)H15A—C15—H15C109.5
C2—C1—Sn119.07 (12)H15B—C15—H15C109.5
C1—C2—C3120.35 (17)C14—C16—H16A109.5
C1—C2—H2119.8C14—C16—H16B109.5
C3—C2—H2119.8H16A—C16—H16B109.5
C4—C3—C2119.83 (17)C14—C16—H16C109.5
C4—C3—H3120.1H16A—C16—H16C109.5
C2—C3—H3120.1H16B—C16—H16C109.5
C3—C4—C5120.53 (17)N1—C17—C18115.44 (12)
C3—C4—H4119.7N1—C17—H17A108.4
C5—C4—H4119.7C18—C17—H17A108.4
C4—C5—C6120.12 (18)N1—C17—H17B108.4
C4—C5—H5119.9C18—C17—H17B108.4
C6—C5—H5119.9H17A—C17—H17B107.5
C1—C6—C5120.07 (16)C19—C18—C23118.87 (15)
C1—C6—H6120.0C19—C18—C17123.79 (14)
C5—C6—H6120.0C23—C18—C17117.33 (14)
C12—C7—C8118.86 (13)C18—C19—C20120.58 (16)
C12—C7—Sn121.74 (10)C18—C19—H19A119.7
C8—C7—Sn119.39 (10)C20—C19—H19A119.7
C9—C8—C7120.54 (14)C21—C20—C19120.13 (18)
C9—C8—H8119.7C21—C20—H20119.9
C7—C8—H8119.7C19—C20—H20119.9
C8—C9—C10120.02 (15)C20—C21—C22119.78 (18)
C8—C9—H9120.0C20—C21—H21120.1
C10—C9—H9120.0C22—C21—H21120.1
C9—C10—C11119.95 (14)C23—C22—C21120.17 (18)
C9—C10—H10120.0C23—C22—H22119.9
C11—C10—H10120.0C21—C22—H22119.9
C12—C11—C10119.92 (14)C22—C23—C18120.43 (18)
C12—C11—H11120.0C22—C23—H23119.8
C10—C11—H11120.0C18—C23—H23119.8
C7—Sn—S1—C1377.41 (6)C12—C7—C8—C90.7 (2)
C1—Sn—S1—C1388.60 (7)Sn—C7—C8—C9178.20 (11)
Cl1—Sn—S1—C13173.74 (5)C7—C8—C9—C100.7 (2)
S2—Sn—S1—C133.88 (4)C8—C9—C10—C110.0 (2)
C7—Sn—S2—C13113.69 (6)C9—C10—C11—C120.8 (2)
C1—Sn—S2—C13127.49 (6)C10—C11—C12—C70.8 (2)
Cl1—Sn—S2—C131.93 (6)C8—C7—C12—C110.1 (2)
S1—Sn—S2—C134.00 (5)Sn—C7—C12—C11178.90 (11)
C7—Sn—C1—C691.75 (12)C17—N1—C13—S2170.93 (10)
Cl1—Sn—C1—C6165.18 (11)C14—N1—C13—S22.41 (18)
S1—Sn—C1—C674.01 (12)C17—N1—C13—S18.53 (17)
S2—Sn—C1—C63.45 (12)C14—N1—C13—S1178.13 (10)
C7—Sn—C1—C282.83 (13)Sn—S2—C13—N1174.56 (12)
Cl1—Sn—C1—C220.24 (12)Sn—S2—C13—S15.98 (7)
S1—Sn—C1—C2111.41 (11)Sn—S1—C13—N1174.08 (11)
S2—Sn—C1—C2178.04 (11)Sn—S1—C13—S26.43 (7)
C6—C1—C2—C30.8 (2)C13—N1—C14—C16137.97 (14)
Sn—C1—C2—C3173.88 (12)C17—N1—C14—C1648.59 (18)
C1—C2—C3—C40.2 (3)C13—N1—C14—C1596.44 (16)
C2—C3—C4—C50.8 (3)C17—N1—C14—C1577.01 (16)
C3—C4—C5—C60.3 (3)C13—N1—C17—C1882.58 (17)
C2—C1—C6—C51.3 (2)C14—N1—C17—C18103.90 (16)
Sn—C1—C6—C5173.25 (12)N1—C17—C18—C197.8 (2)
C4—C5—C6—C10.8 (3)N1—C17—C18—C23173.37 (14)
C1—Sn—C7—C12130.17 (12)C23—C18—C19—C202.0 (2)
Cl1—Sn—C7—C1226.46 (12)C17—C18—C19—C20176.85 (15)
S1—Sn—C7—C1263.03 (12)C18—C19—C20—C210.4 (3)
S2—Sn—C7—C12131.46 (11)C19—C20—C21—C221.2 (3)
C1—Sn—C7—C848.66 (13)C20—C21—C22—C231.2 (3)
Cl1—Sn—C7—C8152.38 (11)C21—C22—C23—C180.4 (3)
S1—Sn—C7—C8118.13 (11)C19—C18—C23—C222.0 (3)
S2—Sn—C7—C849.71 (11)C17—C18—C23—C22176.94 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl10.952.803.4477 (17)126
C6—H6···S20.952.803.4996 (16)131
C14—H14···S21.002.513.0291 (15)112
C3—H3···Cg1i0.952.923.8002 (18)154
C16—H16c···Cg1ii0.982.813.4512 (18)124
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C11H14NS2)Cl]
Mr532.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.1934 (1), 15.1720 (2), 16.8740 (2)
β (°) 96.497 (1)
V3)2338.51 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
54748, 5345, 4746
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.045, 1.04
No. of reflections5345
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl10.952.803.4477 (17)126
C6—H6···S20.952.803.4996 (16)131
C14—H14···S21.002.513.0291 (15)112
C3—H3···Cg1i0.952.923.8002 (18)154
C16—H16c···Cg1ii0.982.813.4512 (18)124
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

We thank UKM (UKM-GUP-NBT-08–27-111 and UKM-ST-06-FRGS0092–2010), UPM and the University of Malaya for supporting this study.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd., Yarnton, UK.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds