organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(4-tert-butyl­benz­yl)silane

aDepartment of Chemistry, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
*Correspondence e-mail: djones@uncc.edu

(Received 14 August 2010; accepted 24 August 2010; online 28 August 2010)

The title compound, C44H60Si, was prepared as an inter­nal standard for diffusion-ordered NMR spectroscopy. The Si atom lies on a special position with [\overline4] site symmetry.

Related literature

For applications of the title compound in NMR spectroscopy, see: Li et al. (2009[Li, D., Kagan, G., Hopson, R. & Williard, P. G. (2009). J. Am. Chem. Soc. 131, 5627-5634.]). For similar structures in the same space group, see: Liao et al. (2002[Liao, Y., Baskett, M., Lahti, P. & Palacio, F. (2002). Chem. Commun. pp. 252-253.]); Laliberté et al. (2004[Laliberté, D., Maris, T. & Wuest, J. (2004). Can. J. Chem. 82, 386-398.]). For a previously reported NMR standard, see: Monroe et al. (2010[Monroe, T. B., Thomas, A. A., Jones, D. S. & Ogle, C. A. (2010). Acta Cryst. E66, o132.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C44H60Si

  • Mr = 617.01

  • Tetragonal, P 42 /n

  • a = 17.394 (2) Å

  • c = 6.3613 (6) Å

  • V = 1924.7 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 295 K

  • 0.31 × 0.15 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 5204 measured reflections

  • 1738 independent reflections

  • 1056 reflections with I > 2σ(I)

  • Rint = 0.036

  • 3 standard reflections every 113 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.135

  • S = 1.02

  • 1738 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was prepared as an internal standard for diffusion-ordered NMR spectroscopy. A recent paper on this subject (Li et al., 2009) suggests an internal standard method for correlating diffusion coefficients with formula weights. The title compound was chosen because its shape in solution both approximates that of a spheroid and is similar to that of the species being studied. In addition, it neither reacts with the species under study nor gives interfering NMR signals.

The molecular structure of the title molecule is illustrated in Fig. 1. The molecule sits on a fourfold rotoinversion axis, with the Si atom located at the point of inversion and the four ligands arranged tetrahedrally around the Si atom. The crystal packing of the title compound, viewed along the c axis, is illustrated in Fig. 2.

The space group, P42/n, is relatively rare, comprising fewer than 700 of the half-million-plus structures in the Cambridge Structural Database [Version 5.31; Allen, 2002]. Similar structures which crystallized in the same space group include tetrakis(4-N-t-Butyl-N-aminoxylphenyl)silane (Liao et al., 2002) and tetrakis(4-(Ethoxycarbonylamino)phenyl)silane bis(dioxane) clathrate (Laliberté et al., 2004).

We have previously reported on the crystal structure of another NMR standard of smaller molecular weight, bis(2-naphthylmethyl)diphenylsilane (Monroe et al., 2010).

Related literature top

For applications of the title compound in NMR spectroscopy, see: Li et al. (2009). For similar structures in the same space group, see: Liao et al. (2002); Laliberté et al. (2004). For a previously reported NMR standard, see: Monroe et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The synthesis of the title compound is descibed in Fig. 3. A dry, 250 ml Schlenk flask, equipped with a magnetic stirbar, was charged with 4-tertbutyltoluene (I) (7.13 g, 50 mmol), potassium tert-butoxide (6.72 g, 55 mmol), then purged with nitrogen. 100 ml of freshly distilled dry THF was added and the reaction was cooled to 195 K. n-BuLi (23.91 ml, 2.3M, 55 mmol) was then added dropwise. The Schlenk flask was then capped and kept at 233 K overnight. The solution was again cooled to 195 K and 2.09 ml (1.68 g, 10 mmol) of tetrachlorosilane was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for two hours. The mixture was then quenched with deionized water and extracted three times with petroleum ether. The combined organic layers were dried with magnesium sulfate, filtered, and evaporated. Bulb-to-bulb distillation gave a tan solid, which was recrystallized from petroleum ether to yield pure colorless crystals of tetrakis(4-tert-butylbenzyl)silane (II) (3.45 g, 56% recovery).

mp 407–409 K; 1H NMR (Toluene-d8, 300 MHz): 1.27 (s)9H, 2.14 (s)2H, 6.85 (d)2H, 7.20 (d)2H. 13C NMR (Toluene-d8, 300 MHz): 31.66, 34.20, 20.71, 124.96, 128.75, 129.52, 147.13. GC/MS (70ev) m/z: 469.4, 57.1

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for aromatic CH, CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Structure description top

The title compound was prepared as an internal standard for diffusion-ordered NMR spectroscopy. A recent paper on this subject (Li et al., 2009) suggests an internal standard method for correlating diffusion coefficients with formula weights. The title compound was chosen because its shape in solution both approximates that of a spheroid and is similar to that of the species being studied. In addition, it neither reacts with the species under study nor gives interfering NMR signals.

The molecular structure of the title molecule is illustrated in Fig. 1. The molecule sits on a fourfold rotoinversion axis, with the Si atom located at the point of inversion and the four ligands arranged tetrahedrally around the Si atom. The crystal packing of the title compound, viewed along the c axis, is illustrated in Fig. 2.

The space group, P42/n, is relatively rare, comprising fewer than 700 of the half-million-plus structures in the Cambridge Structural Database [Version 5.31; Allen, 2002]. Similar structures which crystallized in the same space group include tetrakis(4-N-t-Butyl-N-aminoxylphenyl)silane (Liao et al., 2002) and tetrakis(4-(Ethoxycarbonylamino)phenyl)silane bis(dioxane) clathrate (Laliberté et al., 2004).

We have previously reported on the crystal structure of another NMR standard of smaller molecular weight, bis(2-naphthylmethyl)diphenylsilane (Monroe et al., 2010).

For applications of the title compound in NMR spectroscopy, see: Li et al. (2009). For similar structures in the same space group, see: Liao et al. (2002); Laliberté et al. (2004). For a previously reported NMR standard, see: Monroe et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of title molecule with 50% probability displacement ellipsoids [Symmetry codes: (i) -x + 1/2, -y + 1/2, z (ii) y, -x + 1/2, -z + 1/2 (iii) -y + 1/2, x, -z + 1/2].
[Figure 2] Fig. 2. Crystal packing diagram of the title compound viewed along the c axis.
[Figure 3] Fig. 3. Synthesis scheme.
Tetrakis(4-tert-butylbenzyl)silane top
Crystal data top
C44H60SiDx = 1.065 Mg m3
Mr = 617.01Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P42/nCell parameters from 25 reflections
Hall symbol: -P 4bcθ = 7.8–35.3°
a = 17.394 (2) ŵ = 0.72 mm1
c = 6.3613 (6) ÅT = 295 K
V = 1924.7 (4) Å3Prism, colorless
Z = 20.31 × 0.15 × 0.12 mm
F(000) = 676
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 67.4°, θmin = 3.6°
non–profiled ω/2θ scansh = 2020
5204 measured reflectionsk = 2015
1738 independent reflectionsl = 70
1056 reflections with I > 2σ(I)3 standard reflections every 113 reflections
Rint = 0.036 intensity decay: 2%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0761P)2 + 0.1124P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max < 0.001
wR(F2) = 0.135Δρmax = 0.13 e Å3
S = 1.02Δρmin = 0.11 e Å3
1738 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
106 parametersExtinction coefficient: 0.0033 (6)
0 restraints
Crystal data top
C44H60SiZ = 2
Mr = 617.01Cu Kα radiation
Tetragonal, P42/nµ = 0.72 mm1
a = 17.394 (2) ÅT = 295 K
c = 6.3613 (6) Å0.31 × 0.15 × 0.12 mm
V = 1924.7 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.036
5204 measured reflections3 standard reflections every 113 reflections
1738 independent reflections intensity decay: 2%
1056 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
1738 reflectionsΔρmin = 0.11 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si0.250.250.250.0599 (4)
C40.50538 (12)0.30509 (12)0.4293 (4)0.0780 (7)
H40.52630.28560.55290.094*
C10.33661 (10)0.25820 (11)0.0742 (4)0.0674 (7)
H1A0.35070.20690.02880.081*
H1B0.32170.28680.05020.081*
C50.54015 (10)0.36783 (10)0.3360 (3)0.0535 (5)
C70.44050 (11)0.35854 (12)0.0714 (4)0.0668 (6)
H70.41930.37790.05190.08*
C80.61357 (11)0.40291 (11)0.4257 (4)0.0624 (6)
C20.40700 (10)0.29575 (10)0.1652 (4)0.0580 (5)
C60.50509 (12)0.39375 (12)0.1556 (4)0.0674 (6)
H60.52550.43650.08760.081*
C30.44105 (12)0.27021 (12)0.3468 (4)0.0837 (8)
H30.420.22810.41630.1*
C90.62982 (15)0.48273 (14)0.3328 (5)0.0951 (9)
H9A0.6340.47890.18270.143*
H9B0.67710.50230.38960.143*
H9C0.58850.5170.36820.143*
C100.68066 (12)0.35026 (15)0.3687 (5)0.0992 (9)
H10A0.6720.30010.42690.149*
H10B0.72750.37110.42490.149*
H10C0.68480.34650.21860.149*
C110.60896 (17)0.41111 (18)0.6619 (5)0.1047 (9)
H11A0.56740.4450.69770.157*
H11B0.65640.4320.7140.157*
H11C0.60020.36160.72410.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si0.0473 (4)0.0473 (4)0.0852 (9)000
C40.0612 (12)0.0722 (13)0.101 (2)0.0089 (11)0.0143 (12)0.0413 (13)
C10.0543 (11)0.0616 (11)0.0863 (18)0.0010 (9)0.0016 (11)0.0004 (11)
C50.0496 (10)0.0501 (10)0.0609 (12)0.0033 (8)0.0116 (10)0.0070 (9)
C70.0658 (12)0.0750 (13)0.0596 (15)0.0063 (10)0.0042 (10)0.0141 (11)
C80.0584 (11)0.0644 (12)0.0645 (15)0.0057 (9)0.0067 (10)0.0059 (10)
C20.0477 (10)0.0504 (10)0.0759 (14)0.0042 (8)0.0086 (10)0.0056 (10)
C60.0688 (12)0.0698 (13)0.0638 (14)0.0169 (10)0.0105 (12)0.0169 (11)
C30.0617 (12)0.0677 (13)0.122 (2)0.0127 (10)0.0093 (14)0.0472 (14)
C90.0946 (17)0.0790 (15)0.112 (2)0.0315 (13)0.0090 (16)0.0155 (15)
C100.0538 (12)0.111 (2)0.133 (3)0.0025 (13)0.0030 (14)0.0136 (19)
C110.118 (2)0.120 (2)0.0760 (19)0.0328 (17)0.0054 (17)0.0061 (17)
Geometric parameters (Å, º) top
Si—C1i1.882 (2)C8—C111.512 (3)
Si—C1ii1.882 (2)C8—C101.527 (3)
Si—C1iii1.882 (2)C8—C91.535 (3)
Si—C11.882 (2)C2—C31.372 (3)
C4—C31.377 (3)C6—H60.93
C4—C51.382 (3)C3—H30.93
C4—H40.93C9—H9A0.96
C1—C21.504 (3)C9—H9B0.96
C1—H1A0.97C9—H9C0.96
C1—H1B0.97C10—H10A0.96
C5—C61.375 (3)C10—H10B0.96
C5—C81.526 (3)C10—H10C0.96
C7—C21.374 (3)C11—H11A0.96
C7—C61.387 (3)C11—H11B0.96
C7—H70.93C11—H11C0.96
C1i—Si—C1ii110.68 (7)C3—C2—C7116.09 (19)
C1i—Si—C1iii107.08 (14)C3—C2—C1122.34 (18)
C1ii—Si—C1iii110.68 (7)C7—C2—C1121.6 (2)
C1i—Si—C1110.68 (7)C5—C6—C7122.44 (19)
C1ii—Si—C1107.08 (14)C5—C6—H6118.8
C1iii—Si—C1110.68 (7)C7—C6—H6118.8
C3—C4—C5122.7 (2)C2—C3—C4121.94 (19)
C3—C4—H4118.7C2—C3—H3119
C5—C4—H4118.7C4—C3—H3119
C2—C1—Si117.14 (16)C8—C9—H9A109.5
C2—C1—H1A108C8—C9—H9B109.5
Si—C1—H1A108H9A—C9—H9B109.5
C2—C1—H1B108C8—C9—H9C109.5
Si—C1—H1B108H9A—C9—H9C109.5
H1A—C1—H1B107.3H9B—C9—H9C109.5
C6—C5—C4115.05 (19)C8—C10—H10A109.5
C6—C5—C8123.50 (17)C8—C10—H10B109.5
C4—C5—C8121.4 (2)H10A—C10—H10B109.5
C2—C7—C6121.8 (2)C8—C10—H10C109.5
C2—C7—H7119.1H10A—C10—H10C109.5
C6—C7—H7119.1H10B—C10—H10C109.5
C11—C8—C5111.41 (19)C8—C11—H11A109.5
C11—C8—C10109.4 (2)C8—C11—H11B109.5
C5—C8—C10108.13 (17)H11A—C11—H11B109.5
C11—C8—C9107.9 (2)C8—C11—H11C109.5
C5—C8—C9111.83 (18)H11A—C11—H11C109.5
C10—C8—C9108.09 (19)H11B—C11—H11C109.5
Symmetry codes: (i) y+1/2, x, z+1/2; (ii) x+1/2, y+1/2, z; (iii) y, x+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC44H60Si
Mr617.01
Crystal system, space groupTetragonal, P42/n
Temperature (K)295
a, c (Å)17.394 (2), 6.3613 (6)
V3)1924.7 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.31 × 0.15 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5204, 1738, 1056
Rint0.036
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.135, 1.02
No. of reflections1738
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.11

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported in part by funds provided by the University of North Carolina at Charlotte. Support for REU participant RMK was provided by the National Science Foundation, award number CHE-0851797. Many helpful discussions with T. Blake Monroe are gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLaliberté, D., Maris, T. & Wuest, J. (2004). Can. J. Chem. 82, 386–398.  Google Scholar
First citationLi, D., Kagan, G., Hopson, R. & Williard, P. G. (2009). J. Am. Chem. Soc. 131, 5627–5634.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiao, Y., Baskett, M., Lahti, P. & Palacio, F. (2002). Chem. Commun. pp. 252–253.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMonroe, T. B., Thomas, A. A., Jones, D. S. & Ogle, C. A. (2010). Acta Cryst. E66, o132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds