metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acridine-κN)(di­methyl sulfoxide-κS)di­iodidoplatinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 2 August 2010; accepted 5 August 2010; online 11 August 2010)

In the title complex, [PtI2(C13H9N)(C2H6OS)], the PtII atom is four-coordinated in an essentially square-planar environment defined by the N atom of the acridine ligand, the S atom of dimethyl sulfoxide, and two iodide ions. The dihedral angle between the nearly planar PtI2NS unit [maximum deviation = 0.083 (2) Å] and the acridine ligand [maximum deviation = 0.038 (6) Å] is 89.29 (7)°. In the crystal structure, the complex mol­ecules are arranged in a V-shaped packing pattern along the c axis and linked by inter­molecular C—H⋯O contacts into supra­molecular chains. There are also several inter­molecular ππ inter­actions between the six-membered rings, with a shortest ring centroid–centroid distance of 3.804 (5) Å.

Related literature

For the crystal structures of [PtCl2(acr)2] (acr = acridine) and [PtCl(pic)(DMSO)] (pic = pyridine-2-carboxyl­ate, DMSO = dimethyl sulfoxide), see: Ha (2010a[Ha, K. (2010a). Z. Kristallogr. New Cryst. Struct. 225, 323-324.],b[Ha, K. (2010b). Acta Cryst. E66, m295.]).

[Scheme 1]

Experimental

Crystal data
  • [PtI2(C13H9N)(C2H6OS)]

  • Mr = 706.23

  • Monoclinic, P 21 /c

  • a = 8.4800 (6) Å

  • b = 23.8181 (17) Å

  • c = 9.9036 (7) Å

  • β = 114.492 (1)°

  • V = 1820.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.21 mm−1

  • T = 200 K

  • 0.20 × 0.19 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.468, Tmax = 1.000

  • 11217 measured reflections

  • 3573 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.083

  • S = 1.03

  • 3573 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 2.10 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—N1 2.083 (6)
Pt1—S1 2.222 (2)
Pt1—I1 2.6082 (6)
Pt1—I2 2.6160 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O1i 0.98 2.36 3.209 (10) 145
C15—H15B⋯O1i 0.98 2.37 3.241 (10) 147
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Single crystals of the title complex, [PtI2(C13H9N)(C2H6OS)] (where C13H9N is acridine (acr) and C2H6OS is dimethyl sulfoxide (DMSO)), were unexpectedly obtained from a DMSO solution of the dark-yellow reaction product [PtI2(acr)2] held at 353 K. It seems that an acridine ligand of the complex [PtI2(acr)2] was replaced by a DMSO molecule during crystallization, whereas the analogous Pt complex [PtCl2(acr)2] crystallized without substitution in a DMSO solution at 353 K (Ha, 2010a). In the title complex, the PtII atom is four-coordinated in an essentially square-planar environment defined by the N atom of the acridine ligand, the S atom of the dimethyl sulfoxide molecule and two iodide ions (Table 1 and Fig. 1). The dihedral angle between the nearly planar PtI2NS moiety and acridine ligand is 89.29 (7)°. The I atoms are in trans conformation with respect to each other (<I1—Pt1—I2 = 174.03 (2)°) and almost perpendicular to the acridine ligand, with N1—Pt1—I1/2 bond angles of 85.75 (16)° and 89.21 (16)°. The Pt—S bond length (2.222 (2) Å) is comparable to those observed in the Pt-DMSO complex [PtCl(pic)(DMSO)] (2.202 (2) Å, where pic is pyridine-2-carboxylate (Ha, 2010b). In the crystal structure, the complexes are arranged in a V-shaped packing pattern along the c axis and linked by intermolecular C—H···O contacts into one-dimensional supramolecular chains (Table 2 and Fig. 2). There are also numerous intermolecular π-π interactions between six-membered rings, with the shortest ring centroid-centroid distance being 3.804 (5) Å.

Related literature top

For the crystal structures of [PtCl2(acr)2] (acr = acridine) and [PtCl(pic)(DMSO)] (pic = pyridine-2-carboxylate, DMSO = dimethyl sulfoxide), see: Ha (2010a,b).

Experimental top

To a solution of K2PtCl4 (0.2017 g, 0.486 mmol) and KI (0.6410 g, 3.861 mmol) in H2O (30 ml) was added acridine (0.1903 g, 1.062 mmol) followed by refluxing for 3 h. The precipitate was then separated by filtration, washed with H2O and EtOH, and dried under vacuum, to give a dark-yellow powder (0.2772 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a dimethyl sulfoxide at 353 K.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl-C)]. The highest peak (2.10 e Å-3) and the deepest hole (-1.16 e Å-3) in the difference Fourier map were located 1.05 and 1.64 Å from the atoms Pt1 and I2, respectively.

Structure description top

Single crystals of the title complex, [PtI2(C13H9N)(C2H6OS)] (where C13H9N is acridine (acr) and C2H6OS is dimethyl sulfoxide (DMSO)), were unexpectedly obtained from a DMSO solution of the dark-yellow reaction product [PtI2(acr)2] held at 353 K. It seems that an acridine ligand of the complex [PtI2(acr)2] was replaced by a DMSO molecule during crystallization, whereas the analogous Pt complex [PtCl2(acr)2] crystallized without substitution in a DMSO solution at 353 K (Ha, 2010a). In the title complex, the PtII atom is four-coordinated in an essentially square-planar environment defined by the N atom of the acridine ligand, the S atom of the dimethyl sulfoxide molecule and two iodide ions (Table 1 and Fig. 1). The dihedral angle between the nearly planar PtI2NS moiety and acridine ligand is 89.29 (7)°. The I atoms are in trans conformation with respect to each other (<I1—Pt1—I2 = 174.03 (2)°) and almost perpendicular to the acridine ligand, with N1—Pt1—I1/2 bond angles of 85.75 (16)° and 89.21 (16)°. The Pt—S bond length (2.222 (2) Å) is comparable to those observed in the Pt-DMSO complex [PtCl(pic)(DMSO)] (2.202 (2) Å, where pic is pyridine-2-carboxylate (Ha, 2010b). In the crystal structure, the complexes are arranged in a V-shaped packing pattern along the c axis and linked by intermolecular C—H···O contacts into one-dimensional supramolecular chains (Table 2 and Fig. 2). There are also numerous intermolecular π-π interactions between six-membered rings, with the shortest ring centroid-centroid distance being 3.804 (5) Å.

For the crystal structures of [PtCl2(acr)2] (acr = acridine) and [PtCl(pic)(DMSO)] (pic = pyridine-2-carboxylate, DMSO = dimethyl sulfoxide), see: Ha (2010a,b).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing atom labelling. Displacement ellipsoids drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Hydrogen-bond interactions are drawn with dashed lines.
(Acridine-κN)(dimethyl sulfoxide-κS)diiodidoplatinum(II) top
Crystal data top
[PtI2(C13H9N)(C2H6OS)]F(000) = 1280
Mr = 706.23Dx = 2.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5088 reflections
a = 8.4800 (6) Åθ = 2.6–26.0°
b = 23.8181 (17) ŵ = 11.21 mm1
c = 9.9036 (7) ÅT = 200 K
β = 114.492 (1)°Block, yellow
V = 1820.3 (2) Å30.20 × 0.19 × 0.06 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3573 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 107
Tmin = 0.468, Tmax = 1.000k = 2829
11217 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0324P)2]
where P = (Fo2 + 2Fc2)/3
3573 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 2.10 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[PtI2(C13H9N)(C2H6OS)]V = 1820.3 (2) Å3
Mr = 706.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4800 (6) ŵ = 11.21 mm1
b = 23.8181 (17) ÅT = 200 K
c = 9.9036 (7) Å0.20 × 0.19 × 0.06 mm
β = 114.492 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3573 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2809 reflections with I > 2σ(I)
Tmin = 0.468, Tmax = 1.000Rint = 0.051
11217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.03Δρmax = 2.10 e Å3
3573 reflectionsΔρmin = 1.16 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.22004 (4)0.152591 (13)0.21512 (3)0.02504 (11)
I10.44358 (8)0.19167 (3)0.12073 (8)0.04961 (19)
I20.02342 (7)0.10938 (2)0.33373 (6)0.03254 (15)
S10.0408 (2)0.22130 (9)0.0922 (2)0.0282 (4)
O10.0003 (7)0.2220 (3)0.0675 (6)0.0410 (15)
N10.3965 (8)0.0876 (3)0.3075 (7)0.0282 (15)
C10.5309 (9)0.0945 (3)0.4428 (8)0.0247 (17)
C20.5382 (11)0.1408 (4)0.5345 (9)0.036 (2)
H20.44740.16780.50200.043*
C30.6736 (11)0.1471 (4)0.6683 (10)0.039 (2)
H30.67540.17800.72950.047*
C40.8130 (11)0.1081 (4)0.7186 (10)0.046 (3)
H40.90810.11360.81180.056*
C50.8103 (10)0.0635 (4)0.6344 (10)0.042 (2)
H50.90440.03780.66860.050*
C60.6695 (10)0.0543 (4)0.4955 (9)0.034 (2)
C70.6615 (10)0.0093 (4)0.4048 (10)0.039 (2)
H70.75480.01670.43670.047*
C80.5221 (10)0.0007 (3)0.2686 (9)0.0313 (19)
C90.5072 (11)0.0455 (4)0.1740 (11)0.042 (2)
H90.59580.07320.20450.050*
C100.3711 (12)0.0513 (4)0.0421 (10)0.045 (2)
H100.36490.08210.02070.054*
C110.2376 (11)0.0108 (4)0.0020 (9)0.037 (2)
H110.14030.01520.09430.044*
C120.2453 (10)0.0344 (4)0.0852 (9)0.035 (2)
H120.15380.06100.05290.042*
C130.3888 (10)0.0418 (3)0.2234 (9)0.0296 (18)
C140.1268 (10)0.2874 (4)0.1699 (9)0.036 (2)
H14A0.23940.29280.16610.055*
H14B0.14150.28870.27340.055*
H14C0.04710.31720.11340.055*
C150.1582 (10)0.2226 (4)0.1040 (9)0.038 (2)
H15A0.22750.25400.04530.057*
H15B0.13950.22720.20790.057*
H15C0.21970.18720.06550.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02442 (17)0.0238 (2)0.02705 (18)0.00111 (12)0.01078 (13)0.00131 (13)
I10.0400 (4)0.0479 (4)0.0741 (5)0.0065 (3)0.0368 (3)0.0194 (3)
I20.0375 (3)0.0295 (3)0.0353 (3)0.0020 (2)0.0198 (2)0.0003 (2)
S10.0316 (11)0.0290 (12)0.0239 (10)0.0046 (8)0.0113 (8)0.0022 (8)
O10.050 (4)0.052 (4)0.020 (3)0.011 (3)0.014 (3)0.005 (3)
N10.028 (4)0.019 (4)0.039 (4)0.000 (3)0.015 (3)0.003 (3)
C10.017 (4)0.021 (5)0.029 (4)0.002 (3)0.002 (3)0.009 (3)
C20.039 (5)0.028 (5)0.035 (5)0.000 (4)0.009 (4)0.006 (4)
C30.042 (5)0.034 (6)0.032 (5)0.011 (4)0.007 (4)0.004 (4)
C40.035 (5)0.054 (7)0.033 (5)0.012 (5)0.003 (4)0.013 (5)
C50.027 (5)0.047 (7)0.040 (5)0.001 (4)0.002 (4)0.013 (5)
C60.031 (5)0.037 (6)0.037 (5)0.005 (4)0.016 (4)0.008 (4)
C70.034 (5)0.033 (6)0.053 (6)0.009 (4)0.020 (4)0.016 (4)
C80.028 (4)0.021 (5)0.048 (5)0.000 (3)0.018 (4)0.008 (4)
C90.047 (6)0.028 (6)0.062 (6)0.004 (4)0.034 (5)0.006 (5)
C100.070 (7)0.027 (6)0.051 (6)0.008 (5)0.037 (5)0.013 (4)
C110.036 (5)0.037 (6)0.033 (5)0.003 (4)0.011 (4)0.002 (4)
C120.035 (5)0.028 (5)0.042 (5)0.001 (4)0.015 (4)0.001 (4)
C130.035 (5)0.024 (5)0.035 (5)0.007 (4)0.020 (4)0.006 (4)
C140.042 (5)0.029 (6)0.035 (5)0.002 (4)0.013 (4)0.003 (4)
C150.031 (5)0.034 (6)0.043 (5)0.006 (4)0.009 (4)0.006 (4)
Geometric parameters (Å, º) top
Pt1—N12.083 (6)C6—C71.381 (12)
Pt1—S12.222 (2)C7—C81.392 (11)
Pt1—I12.6082 (6)C7—H70.9500
Pt1—I22.6160 (6)C8—C91.417 (12)
S1—O11.472 (5)C8—C131.420 (10)
S1—C151.740 (8)C9—C101.344 (13)
S1—C141.771 (9)C9—H90.9500
N1—C131.358 (10)C10—C111.410 (12)
N1—C11.362 (9)C10—H100.9500
C1—C21.414 (11)C11—C121.364 (11)
C1—C61.435 (11)C11—H110.9500
C2—C31.355 (11)C12—C131.415 (11)
C2—H20.9500C12—H120.9500
C3—C41.420 (12)C14—H14A0.9800
C3—H30.9500C14—H14B0.9800
C4—C51.345 (13)C14—H14C0.9800
C4—H40.9500C15—H15A0.9800
C5—C61.416 (11)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
N1—Pt1—S1172.71 (17)C6—C7—C8122.5 (8)
N1—Pt1—I185.75 (16)C6—C7—H7118.7
S1—Pt1—I188.55 (5)C8—C7—H7118.7
N1—Pt1—I289.21 (16)C7—C8—C9124.3 (8)
S1—Pt1—I296.73 (5)C7—C8—C13116.7 (8)
I1—Pt1—I2174.03 (2)C9—C8—C13119.0 (8)
O1—S1—C15105.5 (4)C10—C9—C8121.8 (8)
O1—S1—C14109.1 (4)C10—C9—H9119.1
C15—S1—C14101.0 (4)C8—C9—H9119.1
O1—S1—Pt1113.6 (3)C9—C10—C11119.1 (8)
C15—S1—Pt1116.0 (3)C9—C10—H10120.4
C14—S1—Pt1110.6 (3)C11—C10—H10120.4
C13—N1—C1120.5 (7)C12—C11—C10121.4 (8)
C13—N1—Pt1119.0 (5)C12—C11—H11119.3
C1—N1—Pt1119.9 (5)C10—C11—H11119.3
N1—C1—C2121.4 (7)C11—C12—C13120.4 (8)
N1—C1—C6120.2 (7)C11—C12—H12119.8
C2—C1—C6118.4 (7)C13—C12—H12119.8
C3—C2—C1120.5 (8)N1—C13—C12119.8 (7)
C3—C2—H2119.7N1—C13—C8122.0 (7)
C1—C2—H2119.7C12—C13—C8118.2 (8)
C2—C3—C4121.0 (9)S1—C14—H14A109.5
C2—C3—H3119.5S1—C14—H14B109.5
C4—C3—H3119.5H14A—C14—H14B109.5
C5—C4—C3120.0 (8)S1—C14—H14C109.5
C5—C4—H4120.0H14A—C14—H14C109.5
C3—C4—H4120.0H14B—C14—H14C109.5
C4—C5—C6121.1 (8)S1—C15—H15A109.5
C4—C5—H5119.5S1—C15—H15B109.5
C6—C5—H5119.5H15A—C15—H15B109.5
C7—C6—C5123.1 (8)S1—C15—H15C109.5
C7—C6—C1117.9 (7)H15A—C15—H15C109.5
C5—C6—C1118.9 (8)H15B—C15—H15C109.5
I1—Pt1—S1—O157.2 (3)C2—C1—C6—C7179.7 (7)
I2—Pt1—S1—O1125.6 (3)N1—C1—C6—C5177.9 (7)
I1—Pt1—S1—C15179.8 (3)C2—C1—C6—C52.1 (11)
I2—Pt1—S1—C153.0 (3)C5—C6—C7—C8179.9 (8)
I1—Pt1—S1—C1465.9 (3)C1—C6—C7—C82.6 (12)
I2—Pt1—S1—C14111.3 (3)C6—C7—C8—C9178.6 (7)
I1—Pt1—N1—C1387.4 (5)C6—C7—C8—C132.2 (12)
I2—Pt1—N1—C1395.8 (5)C7—C8—C9—C10178.7 (8)
I1—Pt1—N1—C184.1 (5)C13—C8—C9—C100.6 (12)
I2—Pt1—N1—C192.8 (5)C8—C9—C10—C111.4 (13)
C13—N1—C1—C2177.6 (7)C9—C10—C11—C121.2 (13)
Pt1—N1—C1—C211.0 (9)C10—C11—C12—C130.1 (13)
C13—N1—C1—C62.4 (11)C1—N1—C13—C12178.0 (7)
Pt1—N1—C1—C6169.0 (5)Pt1—N1—C13—C1210.6 (9)
N1—C1—C2—C3179.6 (7)C1—N1—C13—C82.9 (11)
C6—C1—C2—C30.4 (12)Pt1—N1—C13—C8168.6 (6)
C1—C2—C3—C41.3 (13)C11—C12—C13—N1178.5 (7)
C2—C3—C4—C51.3 (14)C11—C12—C13—C80.7 (12)
C3—C4—C5—C60.4 (13)C7—C8—C13—N10.6 (11)
C4—C5—C6—C7179.6 (8)C9—C8—C13—N1178.7 (7)
C4—C5—C6—C12.1 (12)C7—C8—C13—C12179.8 (7)
N1—C1—C6—C70.3 (11)C9—C8—C13—C120.5 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.982.363.209 (10)145
C15—H15B···O1i0.982.373.241 (10)147
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PtI2(C13H9N)(C2H6OS)]
Mr706.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)8.4800 (6), 23.8181 (17), 9.9036 (7)
β (°) 114.492 (1)
V3)1820.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)11.21
Crystal size (mm)0.20 × 0.19 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.468, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11217, 3573, 2809
Rint0.051
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.083, 1.03
No. of reflections3573
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.10, 1.16

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—N12.083 (6)Pt1—I12.6082 (6)
Pt1—S12.222 (2)Pt1—I22.6160 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.982.363.209 (10)144.7
C15—H15B···O1i0.982.373.241 (10)147.4
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2010a). Z. Kristallogr. New Cryst. Struct. 225, 323–324.  CAS Google Scholar
First citationHa, K. (2010b). Acta Cryst. E66, m295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds