organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iso­propyl-5-methyl­cyclo­hexyl N-cyclo­hexyl-P-phenyl­phospho­namidate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: literabc@hotmail.com

(Received 9 June 2010; accepted 11 August 2010; online 18 August 2010)

The title compound, C22H36NO2P, features a P atom bonded to a phenyl ring, a cyclo­hexyl­amine unit and the O atom of a menthyl group. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds connect mol­ecules into a one-dimensional chain in the b direction.

Related literature

For the general synthesis of phospho­rus–amine compounds, see: Steinberg (1950[Steinberg, G. M. (1950). J. Org. Chem. 15, 637-647.]); Benamer et al. (2010[Benamer, M., Turcaud, S. & Royer, J. (2010). Tetrahedron Lett. 51, 645-648.]). For the structures of related phospho­rus–amine compounds, see: Balakrishna et al. (2001[Balakrishna, M. S., Abhyankar, R. M. & Walawalker, M. G. (2001). Tetrahedron Lett. 42, 2733-2734.]).

[Scheme 1]

Experimental

Crystal data
  • C22H36NO2P

  • Mr = 377.49

  • Orthorhombic, P 21 21 21

  • a = 10.0205 (10) Å

  • b = 10.4317 (11) Å

  • c = 22.101 (2) Å

  • V = 2310.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.40 × 0.14 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.991

  • 11780 measured reflections

  • 4064 independent reflections

  • 2537 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.083

  • S = 1.00

  • 4064 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1727 Friedel pairs

  • Flack parameter: −0.01 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.15 2.969 (3) 160
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of the P-chiral title compound consists of an O-menthyl phenylphosphinate core and cyclohexylamine (Steinberg, 1950). The absolute configuration of the central P atom is S and the four groups around the central P atom form an irregular tetrahedron (Benamer et al., 2010). In the crystal structure intermolecular N—H···O hydrogen bonds connect molecules into a one-dimensional chain in the b-direction (Table 1, Fig. 2).

Related literature top

For the general synthesis of phosphorus–amine compounds, see: Steinberg (1950); Benamer et al. (2010). For the structures of related phosphorus–amine compounds, see: Balakrishna et al. (2001).

Experimental top

Carbon tetrachloride was added to a solution of (Rp)-O-menthyl-phenyl phosphonothioate dissolved in dry ether and cyclohexylamine. The reaction mixture was stirred for 38 h at room temperature. A single crystal of the title compound suitable for X-ray diffraction was obtained by slow evaporation of an ether solution of the title compound.

Refinement top

The imino H atom was located in a differece Fourier map and refined isotropically, with the N—H distance restrained to 0.86 Å. Other H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93–0.98 Å, with Uiso(H) = 1.5 Ueq(methyl) and Uiso(H) = 1.2 Ueq(C) for all other H atoms.

Structure description top

The molecular structure of the P-chiral title compound consists of an O-menthyl phenylphosphinate core and cyclohexylamine (Steinberg, 1950). The absolute configuration of the central P atom is S and the four groups around the central P atom form an irregular tetrahedron (Benamer et al., 2010). In the crystal structure intermolecular N—H···O hydrogen bonds connect molecules into a one-dimensional chain in the b-direction (Table 1, Fig. 2).

For the general synthesis of phosphorus–amine compounds, see: Steinberg (1950); Benamer et al. (2010). For the structures of related phosphorus–amine compounds, see: Balakrishna et al. (2001).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the one-dimensional chain structure formed by N—H···O interactions in the title compound.
2-Isopropyl-5-methylcyclohexyl N-cyclohexyl-P-phenylphosphonamidate top
Crystal data top
C22H36NO2PF(000) = 824
Mr = 377.49Dx = 1.085 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2271 reflections
a = 10.0205 (10) Åθ = 3.0–25.0°
b = 10.4317 (11) ŵ = 0.13 mm1
c = 22.101 (2) ÅT = 298 K
V = 2310.2 (4) Å3Block, colourless
Z = 40.40 × 0.14 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4064 independent reflections
Radiation source: fine-focus sealed tube2537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.949, Tmax = 0.991k = 1112
11780 measured reflectionsl = 2623
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0224P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4064 reflectionsΔρmax = 0.17 e Å3
238 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1727 Friedel pairs [Please check]
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (11)
Crystal data top
C22H36NO2PV = 2310.2 (4) Å3
Mr = 377.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.0205 (10) ŵ = 0.13 mm1
b = 10.4317 (11) ÅT = 298 K
c = 22.101 (2) Å0.40 × 0.14 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4064 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2537 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.991Rint = 0.061
11780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.17 e Å3
S = 1.00Δρmin = 0.21 e Å3
4064 reflectionsAbsolute structure: Flack (1983), with 1727 Friedel pairs [Please check]
238 parametersAbsolute structure parameter: 0.01 (11)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.06771 (19)0.23385 (19)0.24171 (9)0.0499 (6)
H11.05950.31590.24050.060*
O10.83345 (16)0.21330 (17)0.19514 (8)0.0453 (5)
O20.96301 (17)0.01022 (17)0.22946 (8)0.0536 (5)
P10.93290 (8)0.14723 (7)0.24088 (3)0.0429 (2)
C10.8879 (4)0.4422 (3)0.06456 (14)0.0768 (11)
H1A0.97960.41830.05410.092*
C20.8593 (3)0.3933 (3)0.12811 (12)0.0606 (9)
H2A0.92170.43260.15610.073*
H2B0.77010.41930.13980.073*
C30.8704 (3)0.2485 (3)0.13321 (12)0.0481 (8)
H30.96290.22260.12560.058*
C40.7777 (3)0.1789 (3)0.08865 (12)0.0592 (9)
H40.68610.20410.09870.071*
C50.8062 (4)0.2286 (3)0.02431 (12)0.0774 (11)
H5A0.89560.20330.01250.093*
H5B0.74390.18940.00370.093*
C60.7939 (4)0.3748 (3)0.02013 (14)0.0895 (12)
H6A0.81470.40210.02080.107*
H6B0.70260.39970.02880.107*
C70.8768 (4)0.5885 (3)0.06108 (16)0.1226 (17)
H7A0.78750.61410.07120.184*
H7B0.89750.61650.02080.184*
H7C0.93840.62660.08910.184*
C80.7848 (3)0.0312 (3)0.09409 (14)0.0688 (10)
H80.77670.01050.13720.083*
C90.6676 (4)0.0338 (3)0.06175 (16)0.0917 (12)
H9A0.58530.00330.07540.138*
H9B0.66800.12390.07080.138*
H9C0.67620.02170.01890.138*
C100.9165 (3)0.0253 (3)0.07251 (16)0.0912 (12)
H10A0.92570.01130.02980.137*
H10B0.91780.11570.08070.137*
H10C0.98890.01540.09340.137*
C111.2028 (2)0.1796 (3)0.24442 (13)0.0552 (8)
H111.19640.09280.26110.066*
C121.2647 (3)0.1704 (4)0.18205 (14)0.0822 (11)
H12A1.20980.11570.15680.099*
H12B1.26650.25500.16380.099*
C131.4051 (4)0.1172 (5)0.1840 (2)0.134 (2)
H13A1.44260.11650.14350.161*
H13B1.40320.02970.19890.161*
C141.4916 (4)0.1989 (6)0.2252 (3)0.150 (2)
H14A1.49840.28490.20880.180*
H14B1.58070.16280.22730.180*
C151.4315 (4)0.2045 (5)0.2888 (2)0.1302 (18)
H15A1.48600.25880.31440.156*
H15B1.43000.11920.30620.156*
C161.2890 (3)0.2581 (4)0.28578 (16)0.0877 (12)
H16A1.25050.25840.32600.105*
H16B1.29180.34590.27140.105*
C170.8400 (3)0.1681 (3)0.30935 (12)0.0452 (7)
C180.8202 (3)0.2870 (3)0.33534 (14)0.0636 (9)
H180.85680.35940.31720.076*
C190.7467 (3)0.3002 (3)0.38791 (15)0.0776 (11)
H190.73450.38100.40480.093*
C200.6920 (4)0.1947 (4)0.41515 (14)0.0763 (11)
H200.64250.20380.45050.092*
C210.7103 (4)0.0758 (4)0.39042 (15)0.0832 (11)
H210.67330.00390.40880.100*
C220.7844 (3)0.0634 (3)0.33780 (14)0.0673 (10)
H220.79690.01760.32130.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0427 (11)0.0383 (14)0.0687 (15)0.0012 (12)0.0004 (14)0.0012 (12)
O10.0465 (11)0.0518 (13)0.0377 (11)0.0046 (10)0.0014 (9)0.0019 (10)
O20.0624 (12)0.0374 (12)0.0609 (13)0.0023 (10)0.0017 (10)0.0037 (10)
P10.0461 (4)0.0365 (5)0.0460 (4)0.0015 (4)0.0010 (4)0.0011 (4)
C10.115 (3)0.055 (2)0.061 (2)0.002 (2)0.006 (2)0.0105 (17)
C20.084 (2)0.048 (2)0.050 (2)0.0012 (18)0.0082 (17)0.0013 (15)
C30.0580 (18)0.047 (2)0.0387 (18)0.0040 (16)0.0001 (15)0.0008 (14)
C40.075 (2)0.057 (2)0.0455 (19)0.006 (2)0.0092 (16)0.0023 (16)
C50.115 (3)0.067 (3)0.049 (2)0.002 (2)0.010 (2)0.0007 (17)
C60.144 (3)0.071 (3)0.053 (2)0.004 (3)0.016 (2)0.0142 (19)
C70.217 (5)0.060 (3)0.091 (3)0.013 (3)0.030 (3)0.029 (2)
C80.097 (3)0.058 (2)0.052 (2)0.007 (2)0.012 (2)0.0013 (17)
C90.113 (3)0.079 (3)0.083 (3)0.023 (3)0.010 (2)0.020 (2)
C100.106 (3)0.065 (3)0.102 (3)0.017 (3)0.020 (3)0.023 (2)
C110.0372 (15)0.055 (2)0.074 (2)0.0045 (15)0.0008 (17)0.0021 (18)
C120.063 (2)0.093 (3)0.091 (3)0.007 (2)0.0164 (19)0.020 (2)
C130.071 (3)0.160 (5)0.170 (5)0.018 (3)0.031 (3)0.051 (4)
C140.060 (3)0.183 (6)0.207 (6)0.006 (3)0.011 (3)0.030 (5)
C150.074 (3)0.155 (5)0.162 (5)0.010 (4)0.045 (3)0.018 (4)
C160.055 (2)0.114 (3)0.095 (3)0.004 (2)0.0194 (19)0.008 (2)
C170.0514 (17)0.040 (2)0.0443 (17)0.0032 (17)0.0040 (14)0.0008 (15)
C180.080 (2)0.050 (2)0.060 (2)0.006 (2)0.0146 (18)0.0004 (17)
C190.106 (3)0.064 (3)0.063 (2)0.002 (2)0.024 (2)0.013 (2)
C200.105 (3)0.073 (3)0.051 (2)0.002 (3)0.026 (2)0.005 (2)
C210.124 (3)0.064 (3)0.061 (2)0.012 (3)0.027 (2)0.010 (2)
C220.098 (3)0.049 (2)0.055 (2)0.008 (2)0.015 (2)0.0009 (16)
Geometric parameters (Å, º) top
N1—C111.468 (3)C9—H9C0.9600
N1—P11.625 (2)C10—H10A0.9600
N1—H10.8600C10—H10B0.9600
O1—C31.465 (3)C10—H10C0.9600
O1—P11.5779 (17)C11—C161.501 (4)
O2—P11.4823 (19)C11—C121.515 (4)
P1—C171.790 (3)C11—H110.9800
C1—C21.522 (4)C12—C131.513 (4)
C1—C61.532 (4)C12—H12A0.9700
C1—C71.532 (4)C12—H12B0.9700
C1—H1A0.9800C13—C141.519 (6)
C2—C31.518 (3)C13—H13A0.9700
C2—H2A0.9700C13—H13B0.9700
C2—H2B0.9700C14—C151.529 (6)
C3—C41.537 (3)C14—H14A0.9700
C3—H30.9800C14—H14B0.9700
C4—C51.540 (4)C15—C161.534 (5)
C4—C81.547 (4)C15—H15A0.9700
C4—H40.9800C15—H15B0.9700
C5—C61.533 (4)C16—H16A0.9700
C5—H5A0.9700C16—H16B0.9700
C5—H5B0.9700C17—C221.378 (4)
C6—H6A0.9700C17—C181.382 (4)
C6—H6B0.9700C18—C191.382 (4)
C7—H7A0.9600C18—H180.9300
C7—H7B0.9600C19—C201.370 (4)
C7—H7C0.9600C19—H190.9300
C8—C101.521 (4)C20—C211.367 (4)
C8—C91.533 (4)C20—H200.9300
C8—H80.9800C21—C221.386 (4)
C9—H9A0.9600C21—H210.9300
C9—H9B0.9600C22—H220.9300
C11—N1—P1123.52 (17)H9A—C9—H9C109.5
C11—N1—H1118.2H9B—C9—H9C109.5
P1—N1—H1118.2C8—C10—H10A109.5
C3—O1—P1123.26 (16)C8—C10—H10B109.5
O2—P1—O1116.15 (11)H10A—C10—H10B109.5
O2—P1—N1111.64 (11)C8—C10—H10C109.5
O1—P1—N1106.81 (11)H10A—C10—H10C109.5
O2—P1—C17111.54 (12)H10B—C10—H10C109.5
O1—P1—C1799.19 (11)N1—C11—C16110.2 (2)
N1—P1—C17110.81 (12)N1—C11—C12111.4 (2)
C2—C1—C6108.8 (3)C16—C11—C12110.7 (2)
C2—C1—C7111.5 (3)N1—C11—H11108.2
C6—C1—C7112.4 (3)C16—C11—H11108.2
C2—C1—H1A108.0C12—C11—H11108.2
C6—C1—H1A108.0C13—C12—C11112.2 (3)
C7—C1—H1A108.0C13—C12—H12A109.2
C3—C2—C1112.8 (2)C11—C12—H12A109.2
C3—C2—H2A109.0C13—C12—H12B109.2
C1—C2—H2A109.0C11—C12—H12B109.2
C3—C2—H2B109.0H12A—C12—H12B107.9
C1—C2—H2B109.0C12—C13—C14110.0 (4)
H2A—C2—H2B107.8C12—C13—H13A109.7
O1—C3—C2107.5 (2)C14—C13—H13A109.7
O1—C3—C4109.1 (2)C12—C13—H13B109.7
C2—C3—C4112.2 (2)C14—C13—H13B109.7
O1—C3—H3109.3H13A—C13—H13B108.2
C2—C3—H3109.3C13—C14—C15110.3 (4)
C4—C3—H3109.3C13—C14—H14A109.6
C3—C4—C5108.7 (2)C15—C14—H14A109.6
C3—C4—C8113.1 (2)C13—C14—H14B109.6
C5—C4—C8113.5 (2)C15—C14—H14B109.6
C3—C4—H4107.1H14A—C14—H14B108.1
C5—C4—H4107.1C14—C15—C16109.9 (4)
C8—C4—H4107.1C14—C15—H15A109.7
C6—C5—C4112.1 (3)C16—C15—H15A109.7
C6—C5—H5A109.2C14—C15—H15B109.7
C4—C5—H5A109.2C16—C15—H15B109.7
C6—C5—H5B109.2H15A—C15—H15B108.2
C4—C5—H5B109.2C11—C16—C15111.3 (3)
H5A—C5—H5B107.9C11—C16—H16A109.4
C1—C6—C5111.6 (3)C15—C16—H16A109.4
C1—C6—H6A109.3C11—C16—H16B109.4
C5—C6—H6A109.3C15—C16—H16B109.4
C1—C6—H6B109.3H16A—C16—H16B108.0
C5—C6—H6B109.3C22—C17—C18117.6 (3)
H6A—C6—H6B108.0C22—C17—P1120.0 (2)
C1—C7—H7A109.5C18—C17—P1122.4 (2)
C1—C7—H7B109.5C17—C18—C19121.0 (3)
H7A—C7—H7B109.5C17—C18—H18119.5
C1—C7—H7C109.5C19—C18—H18119.5
H7A—C7—H7C109.5C20—C19—C18120.2 (3)
H7B—C7—H7C109.5C20—C19—H19119.9
C10—C8—C9110.3 (3)C18—C19—H19119.9
C10—C8—C4113.7 (3)C21—C20—C19120.0 (3)
C9—C8—C4111.6 (3)C21—C20—H20120.0
C10—C8—H8106.9C19—C20—H20120.0
C9—C8—H8106.9C20—C21—C22119.5 (3)
C4—C8—H8106.9C20—C21—H21120.3
C8—C9—H9A109.5C22—C21—H21120.3
C8—C9—H9B109.5C17—C22—C21121.7 (3)
H9A—C9—H9B109.5C17—C22—H22119.1
C8—C9—H9C109.5C21—C22—H22119.1
C3—O1—P1—O273.7 (2)P1—N1—C11—C16139.8 (2)
C3—O1—P1—N151.5 (2)P1—N1—C11—C1296.9 (3)
C3—O1—P1—C17166.7 (2)N1—C11—C12—C13178.8 (3)
C11—N1—P1—O212.7 (2)C16—C11—C12—C1355.9 (4)
C11—N1—P1—O1140.6 (2)C11—C12—C13—C1456.8 (5)
C11—N1—P1—C17112.3 (2)C12—C13—C14—C1557.5 (6)
C6—C1—C2—C355.9 (4)C13—C14—C15—C1657.7 (6)
C7—C1—C2—C3179.6 (3)N1—C11—C16—C15179.2 (3)
P1—O1—C3—C2117.1 (2)C12—C11—C16—C1555.6 (4)
P1—O1—C3—C4121.0 (2)C14—C15—C16—C1157.0 (5)
C1—C2—C3—O1176.8 (2)O2—P1—C17—C2212.2 (3)
C1—C2—C3—C456.9 (4)O1—P1—C17—C22110.8 (2)
O1—C3—C4—C5173.4 (2)N1—P1—C17—C22137.2 (2)
C2—C3—C4—C554.4 (3)O2—P1—C17—C18168.3 (2)
O1—C3—C4—C859.6 (3)O1—P1—C17—C1868.8 (3)
C2—C3—C4—C8178.6 (3)N1—P1—C17—C1843.3 (3)
C3—C4—C5—C655.0 (4)C22—C17—C18—C190.2 (5)
C8—C4—C5—C6178.2 (3)P1—C17—C18—C19179.3 (2)
C2—C1—C6—C555.9 (4)C17—C18—C19—C200.1 (5)
C7—C1—C6—C5179.9 (3)C18—C19—C20—C210.2 (6)
C4—C5—C6—C157.6 (4)C19—C20—C21—C220.0 (6)
C3—C4—C8—C1069.3 (3)C18—C17—C22—C210.4 (4)
C5—C4—C8—C1055.2 (4)P1—C17—C22—C21179.2 (3)
C3—C4—C8—C9165.2 (2)C20—C21—C22—C170.3 (5)
C5—C4—C8—C970.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.152.969 (3)160
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H36NO2P
Mr377.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)10.0205 (10), 10.4317 (11), 22.101 (2)
V3)2310.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.40 × 0.14 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
11780, 4064, 2537
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.083, 1.00
No. of reflections4064
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.21
Absolute structureFlack (1983), with 1727 Friedel pairs [Please check]
Absolute structure parameter0.01 (11)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.152.969 (3)160
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the financial support of the Natural Science Foundation of China (grant No. 20772055).

References

First citationBalakrishna, M. S., Abhyankar, R. M. & Walawalker, M. G. (2001). Tetrahedron Lett. 42, 2733–2734.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenamer, M., Turcaud, S. & Royer, J. (2010). Tetrahedron Lett. 51, 645–648.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSteinberg, G. M. (1950). J. Org. Chem. 15, 637–647.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds