metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{6,6′-Dimeth­­oxy-2,2′-[(cyclo­hexane-1,2-di­yl)bis­­(nitrilio­methyl­­idyne)]diphenolato}trinitratolanthanum(III) methanol monosolvate

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gmli_2000@163.com

(Received 15 July 2010; accepted 19 August 2010; online 28 August 2010)

In the title mononuclear complex, [La(NO3)3(C22H26N2O4)]·CH3OH, the LaIII ion is coordinated by three bidentate nitrate counter-ions and one zwitterionic 6,6′-dimeth­oxy-2,2′-[(cyclo­hexane-1,2- di­yl)bis­(nitriliomethyl­idyne)]diphenolate ligand through two phenolate and two meth­oxy O atoms, while the protonated N atoms remain uncoordinated. H atoms located on the two N atoms are involved in intra­molecular hydrogen bonds with the deprotonated phenol O atoms, indicating that proton migration occurs during the lanthanum complexation.

Related literature

For the preparation of the ligand, see: Koner et al. (2005[Koner, R., Lee, G. H., Wang, Y., Wei, H.-H. & Mohanta, S. (2005). Eur. J. Inorg. Chem. pp. 1500-1505.]). For a related structure, see: Yan et al. (2009[Yan, P.-F., Bao, Y., Li, H.-F. & Li, G.-M. (2009). Acta Cryst. E65, m832.]).

[Scheme 1]

Experimental

Crystal data
  • [La(NO3)3(C22H26N2O4)]·CH4O

  • Mr = 739.43

  • Triclinic, [P \overline 1]

  • a = 9.7809 (4) Å

  • b = 12.8783 (5) Å

  • c = 13.0904 (5) Å

  • α = 79.374 (1)°

  • β = 68.743 (1)°

  • γ = 82.270 (1)°

  • V = 1506.22 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.725, Tmax = 0.796

  • 10874 measured reflections

  • 7145 independent reflections

  • 6526 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.01

  • 7145 reflections

  • 389 parameters

  • 38 restraints

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 1.86 2.562 (3) 137
N2—H2A⋯O3 0.86 1.89 2.592 (3) 138
O14—H14⋯O5i 0.84 2.40 2.981 (7) 127
Symmetry code: (i) x, y, z-1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Salen-type ligands are capable to incorporate lanthanide ions and to form complexes in the outer coordination site. Such complexes are potentially used in magnets and optics. In continuation of our studies of salen-type lanthanide complexes (Yan et al., 2009), we present here the crystal structure of the title compound. As shown in Fig. 1, the LaIII ion is coordinated to three bidentate nitrate counterions and one ligand that utilizes two hydroxyl oxygen atoms and two methoxyl oxygen atoms, while the nitrogen atoms remain uncoordinated (Koner et al., 2005). The LaIII ion presents a narrow spread in La—O bond distances [2.406 (2)–2.787 (2) Å], and the La—N bond distances are relatively longer [3.034 (4) and 3.048 (3) Å]. Hydrogen atoms located on the two nitrogen atoms are involved in intramolecular hydrogen bonds with the deprotonated phenol oxygen atoms (Table 1), which might contribute to the stability of the whole structure.

Related literature top

For related literature [on what subject?], see: Koner et al. (2005). For a related structure, see: Yan et al. (2009).

Experimental top

To a CH2Cl2 solution (5 ml) of H2L (0.0382 g, 0.1 mmol) under stirring was slowly added a MeCN solution (5 ml) of La(NO3)3.6H2O (0.0433 g, 0.1 mmol) at room temperature. The diethylether was allowed to diffuse slowly into the filtrate at room temperature. The light yellow crystals were obtained in one week. (H2L)La(NO3)3.CH3OH. Yield: 0.0426 g (57.4 wt%). Elemental Anal. Calc. for C23H30N5O14La: C, 37.36; H, 4.09; N, 9.47 wt%, Found: C, 37.21; H, 4.15; N, 9.44 wt%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C). The N-bound H atoms were initially located in a difference Fourier map and they were refined with N—H=0.85 Å. H atoms bound to O atoms were found from the Fourier difference map, and the distance is refined in the normal range with Uiso(H) = 1.5 Ueq(O).

Structure description top

Salen-type ligands are capable to incorporate lanthanide ions and to form complexes in the outer coordination site. Such complexes are potentially used in magnets and optics. In continuation of our studies of salen-type lanthanide complexes (Yan et al., 2009), we present here the crystal structure of the title compound. As shown in Fig. 1, the LaIII ion is coordinated to three bidentate nitrate counterions and one ligand that utilizes two hydroxyl oxygen atoms and two methoxyl oxygen atoms, while the nitrogen atoms remain uncoordinated (Koner et al., 2005). The LaIII ion presents a narrow spread in La—O bond distances [2.406 (2)–2.787 (2) Å], and the La—N bond distances are relatively longer [3.034 (4) and 3.048 (3) Å]. Hydrogen atoms located on the two nitrogen atoms are involved in intramolecular hydrogen bonds with the deprotonated phenol oxygen atoms (Table 1), which might contribute to the stability of the whole structure.

For related literature [on what subject?], see: Koner et al. (2005). For a related structure, see: Yan et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
{6,6'-Dimethoxy-2,2'-[(cyclohexane-1,2- diyl)bis(nitriliomethylidyne)]diphenolato}trinitratolanthanum(III) methanol monosolvate top
Crystal data top
[La(NO3)3(C22H26N2O4)]·CH4OZ = 2
Mr = 739.43F(000) = 744
Triclinic, P1Dx = 1.630 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7809 (4) ÅCell parameters from 6687 reflections
b = 12.8783 (5) Åθ = 2.7–28.3°
c = 13.0904 (5) ŵ = 1.49 mm1
α = 79.374 (1)°T = 293 K
β = 68.743 (1)°Block, yellow
γ = 82.270 (1)°0.23 × 0.20 × 0.16 mm
V = 1506.22 (10) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7145 independent reflections
Radiation source: fine-focus sealed tube6526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
Detector resolution: 10.000 pixels mm-1θmax = 28.3°, θmin = 2.7°
ω scanh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1710
Tmin = 0.725, Tmax = 0.796l = 1717
10874 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.052P)2 + 1.3148P]
where P = (Fo2 + 2Fc2)/3
7145 reflections(Δ/σ)max = 0.011
389 parametersΔρmax = 0.97 e Å3
38 restraintsΔρmin = 0.77 e Å3
Crystal data top
[La(NO3)3(C22H26N2O4)]·CH4Oγ = 82.270 (1)°
Mr = 739.43V = 1506.22 (10) Å3
Triclinic, P1Z = 2
a = 9.7809 (4) ÅMo Kα radiation
b = 12.8783 (5) ŵ = 1.49 mm1
c = 13.0904 (5) ÅT = 293 K
α = 79.374 (1)°0.23 × 0.20 × 0.16 mm
β = 68.743 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7145 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6526 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.796Rint = 0.010
10874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03338 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.01Δρmax = 0.97 e Å3
7145 reflectionsΔρmin = 0.77 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.172411 (19)0.227443 (12)0.702241 (13)0.04350 (7)
C10.2772 (3)0.3560 (2)0.4366 (2)0.0404 (6)
C20.2940 (3)0.2558 (2)0.4018 (3)0.0419 (6)
C30.3415 (3)0.2462 (3)0.2918 (3)0.0482 (7)
H3A0.35280.17970.27030.058*
C40.3735 (4)0.3370 (3)0.2111 (3)0.0533 (8)
H4A0.40720.32990.13640.064*
C50.3555 (4)0.4351 (3)0.2413 (3)0.0483 (7)
H5A0.37550.49460.18730.058*
C60.3065 (3)0.4467 (2)0.3548 (2)0.0392 (6)
C70.2909 (3)0.5487 (2)0.3870 (2)0.0414 (6)
H7A0.30620.60770.33240.050*
C80.2394 (3)0.6651 (2)0.5270 (2)0.0394 (6)
H8A0.26160.72000.46180.047*
C90.3472 (4)0.6692 (3)0.5844 (3)0.0532 (8)
H9A0.44680.65530.53460.064*
H9B0.32860.61530.64920.064*
C100.3307 (4)0.7787 (3)0.6190 (4)0.0651 (10)
H10A0.39640.77980.65930.078*
H10B0.35930.83140.55320.078*
C110.1746 (4)0.8071 (3)0.6911 (3)0.0562 (8)
H11A0.16660.87940.70520.067*
H11B0.15120.76100.76170.067*
C120.0645 (4)0.7966 (2)0.6370 (3)0.0497 (7)
H12A0.07800.85080.57270.060*
H12B0.03430.80860.68880.060*
C130.0799 (3)0.6883 (2)0.6012 (3)0.0408 (6)
H13A0.01620.69050.55780.049*
C140.0445 (3)0.6076 (2)0.7970 (3)0.0451 (6)
H14A0.07650.67430.81800.054*
C150.0888 (3)0.5169 (3)0.8781 (3)0.0450 (6)
C160.1899 (4)0.5304 (3)0.9847 (3)0.0554 (8)
H16A0.21880.59811.00380.066*
C170.2449 (4)0.4451 (3)1.0591 (3)0.0600 (9)
H17A0.31190.45481.12890.072*
C180.2024 (4)0.3425 (3)1.0326 (3)0.0544 (8)
H18A0.24340.28481.08380.065*
C190.1002 (3)0.3270 (3)0.9312 (3)0.0453 (6)
C200.0405 (3)0.4140 (2)0.8507 (3)0.0446 (6)
C210.1055 (5)0.1379 (3)0.9726 (4)0.0780 (13)
H21A0.18380.15971.03610.117*
H21B0.02890.09790.99570.117*
H21C0.14250.09480.93740.117*
C220.2813 (5)0.0690 (3)0.4624 (4)0.0691 (11)
H22A0.31260.07210.38350.104*
H22B0.18980.03610.49660.104*
H22C0.35440.02830.48910.104*
C230.2873 (10)0.0899 (7)0.0851 (7)0.144 (3)
H290.37820.10740.02690.216*
H300.25050.03110.06990.216*
H310.30390.07100.15440.216*
N10.2565 (3)0.56252 (19)0.4883 (2)0.0435 (5)
H1A0.24230.50700.53760.052*
N20.0379 (3)0.6013 (2)0.6959 (2)0.0444 (5)
H2A0.07320.53870.68130.053*
N30.3925 (4)0.2989 (3)0.7882 (3)0.0685 (9)
N40.3331 (4)0.0205 (2)0.7668 (3)0.0568 (7)
N50.0827 (4)0.1433 (3)0.6708 (3)0.0700 (9)
O10.2366 (3)0.36209 (17)0.54227 (18)0.0551 (6)
O20.2617 (3)0.17450 (17)0.4894 (2)0.0548 (6)
O30.0536 (3)0.39767 (17)0.75338 (19)0.0569 (6)
O40.0473 (3)0.23020 (17)0.89550 (19)0.0536 (6)
O50.2776 (4)0.2560 (3)0.8491 (2)0.0817 (9)
O60.4763 (5)0.3239 (4)0.8270 (3)0.1080 (14)
O70.4123 (4)0.3163 (3)0.6873 (3)0.0898 (10)
O80.2108 (3)0.0497 (2)0.8293 (3)0.0755 (8)
O90.4015 (4)0.0591 (3)0.7944 (3)0.0891 (10)
O100.3813 (4)0.0756 (3)0.6739 (3)0.0857 (10)
O110.0096 (3)0.0836 (2)0.7053 (3)0.0698 (7)
O120.1833 (5)0.1093 (4)0.6569 (4)0.1176 (16)
O130.0650 (3)0.2414 (2)0.6515 (3)0.0732 (8)
O140.1852 (7)0.1766 (5)0.0913 (5)0.164 (2)
H140.22290.22910.04570.246*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.05179 (11)0.03034 (9)0.03740 (10)0.00171 (7)0.00476 (7)0.00129 (6)
C10.0391 (13)0.0398 (14)0.0375 (14)0.0013 (11)0.0082 (11)0.0056 (11)
C20.0384 (13)0.0390 (14)0.0446 (15)0.0008 (11)0.0106 (11)0.0073 (12)
C30.0464 (15)0.0504 (16)0.0498 (17)0.0057 (13)0.0171 (13)0.0183 (14)
C40.0576 (18)0.065 (2)0.0374 (15)0.0006 (16)0.0155 (14)0.0125 (15)
C50.0493 (16)0.0564 (18)0.0371 (14)0.0064 (14)0.0143 (12)0.0012 (13)
C60.0370 (13)0.0406 (14)0.0367 (13)0.0040 (11)0.0099 (11)0.0028 (11)
C70.0413 (13)0.0408 (15)0.0377 (14)0.0076 (11)0.0101 (11)0.0005 (11)
C80.0426 (14)0.0314 (12)0.0422 (14)0.0062 (11)0.0130 (11)0.0013 (11)
C90.0431 (15)0.059 (2)0.059 (2)0.0016 (14)0.0205 (14)0.0083 (16)
C100.059 (2)0.064 (2)0.085 (3)0.0135 (18)0.0314 (19)0.020 (2)
C110.068 (2)0.0455 (17)0.062 (2)0.0092 (15)0.0260 (17)0.0141 (15)
C120.0541 (17)0.0343 (14)0.0599 (19)0.0000 (13)0.0207 (15)0.0055 (13)
C130.0413 (13)0.0342 (13)0.0475 (15)0.0023 (11)0.0177 (12)0.0033 (11)
C140.0431 (14)0.0388 (14)0.0508 (17)0.0008 (12)0.0128 (13)0.0105 (13)
C150.0427 (14)0.0448 (16)0.0417 (15)0.0012 (12)0.0074 (12)0.0082 (12)
C160.0562 (18)0.058 (2)0.0438 (17)0.0057 (15)0.0068 (14)0.0160 (15)
C170.0538 (18)0.074 (2)0.0383 (16)0.0018 (17)0.0002 (14)0.0112 (16)
C180.0495 (16)0.061 (2)0.0397 (16)0.0070 (15)0.0043 (13)0.0031 (14)
C190.0432 (14)0.0440 (15)0.0403 (15)0.0018 (12)0.0074 (12)0.0011 (12)
C200.0411 (14)0.0410 (15)0.0416 (15)0.0011 (12)0.0045 (12)0.0034 (12)
C210.089 (3)0.0441 (19)0.069 (3)0.0140 (19)0.004 (2)0.0125 (18)
C220.095 (3)0.0348 (16)0.068 (2)0.0024 (17)0.015 (2)0.0143 (16)
C230.162 (4)0.146 (4)0.137 (4)0.019 (3)0.061 (3)0.028 (3)
N10.0522 (13)0.0331 (11)0.0386 (12)0.0058 (10)0.0098 (10)0.0001 (9)
N20.0450 (12)0.0350 (12)0.0454 (13)0.0035 (10)0.0069 (10)0.0048 (10)
N30.076 (2)0.065 (2)0.060 (2)0.0281 (17)0.0106 (16)0.0104 (16)
N40.0677 (18)0.0447 (15)0.0576 (17)0.0093 (13)0.0234 (15)0.0126 (13)
N50.086 (2)0.069 (2)0.0593 (19)0.0215 (19)0.0333 (18)0.0070 (16)
O10.0816 (16)0.0351 (10)0.0339 (10)0.0054 (10)0.0034 (10)0.0029 (8)
O20.0737 (15)0.0334 (10)0.0478 (12)0.0012 (10)0.0102 (11)0.0093 (9)
O30.0665 (14)0.0347 (11)0.0437 (12)0.0009 (10)0.0087 (10)0.0023 (9)
O40.0587 (13)0.0373 (11)0.0471 (12)0.0066 (10)0.0015 (10)0.0048 (9)
O50.0813 (19)0.109 (3)0.0504 (15)0.0419 (19)0.0067 (14)0.0084 (16)
O60.104 (3)0.144 (4)0.089 (2)0.064 (3)0.028 (2)0.020 (2)
O70.087 (2)0.117 (3)0.0558 (17)0.048 (2)0.0052 (15)0.0010 (17)
O80.0697 (17)0.0567 (15)0.0721 (18)0.0137 (13)0.0071 (14)0.0099 (13)
O90.094 (2)0.073 (2)0.085 (2)0.0350 (17)0.0314 (18)0.0055 (17)
O100.084 (2)0.082 (2)0.0566 (16)0.0293 (16)0.0019 (14)0.0002 (15)
O110.0806 (18)0.0499 (14)0.0781 (19)0.0116 (13)0.0315 (15)0.0058 (13)
O120.138 (4)0.110 (3)0.139 (4)0.052 (3)0.093 (3)0.021 (3)
O130.0836 (19)0.0607 (17)0.0798 (19)0.0035 (14)0.0426 (16)0.0065 (14)
O140.181 (3)0.165 (3)0.146 (3)0.001 (3)0.052 (2)0.044 (3)
Geometric parameters (Å, º) top
La1—O12.406 (2)C12—H12B0.9700
La1—O32.428 (2)C13—N21.484 (4)
La1—O52.586 (3)C13—H13A0.9800
La1—O112.587 (3)C14—N21.287 (4)
La1—O102.604 (3)C14—C151.423 (4)
La1—O132.613 (3)C14—H14A0.9300
La1—O82.639 (3)C15—C201.411 (4)
La1—O42.663 (2)C15—C161.414 (4)
La1—O72.676 (3)C16—C171.352 (5)
La1—O22.787 (2)C16—H16A0.9300
La1—N53.034 (4)C17—C181.398 (5)
La1—N43.048 (3)C17—H17A0.9300
C1—O11.308 (4)C18—C191.372 (4)
C1—C61.415 (4)C18—H18A0.9300
C1—C21.416 (4)C19—O41.381 (4)
C2—C31.367 (4)C19—C201.415 (4)
C2—O21.376 (4)C20—O31.308 (4)
C3—C41.409 (5)C21—O41.441 (4)
C3—H3A0.9300C21—H21A0.9600
C4—C51.364 (5)C21—H21B0.9600
C4—H4A0.9300C21—H21C0.9600
C5—C61.415 (4)C22—O21.437 (4)
C5—H5A0.9300C22—H22A0.9600
C6—C71.425 (4)C22—H22B0.9600
C7—N11.285 (4)C22—H22C0.9600
C7—H7A0.9300C23—O141.388 (7)
C8—N11.468 (4)C23—H290.9600
C8—C91.510 (4)C23—H300.9600
C8—C131.533 (4)C23—H310.9600
C8—H8A0.9800N1—H1A0.8600
C9—C101.530 (5)N2—H2A0.8600
C9—H9A0.9700N3—O61.211 (5)
C9—H9B0.9700N3—O71.244 (5)
C10—C111.513 (5)N3—O51.249 (4)
C10—H10A0.9700N4—O91.218 (4)
C10—H10B0.9700N4—O81.235 (4)
C11—C121.518 (5)N4—O101.249 (4)
C11—H11A0.9700N5—O121.213 (5)
C11—H11B0.9700N5—O111.261 (5)
C12—C131.523 (4)N5—O131.264 (5)
C12—H12A0.9700O14—H140.8416
O1—La1—O370.12 (7)C11—C10—C9111.9 (3)
O1—La1—O5112.10 (10)C11—C10—H10A109.2
O3—La1—O577.05 (11)C9—C10—H10A109.2
O1—La1—O11117.56 (9)C11—C10—H10B109.2
O3—La1—O11118.33 (9)C9—C10—H10B109.2
O5—La1—O11130.32 (10)H10A—C10—H10B107.9
O1—La1—O10108.80 (9)C10—C11—C12111.8 (3)
O3—La1—O10155.24 (12)C10—C11—H11A109.3
O5—La1—O1080.89 (12)C12—C11—H11A109.3
O11—La1—O1084.70 (11)C10—C11—H11B109.3
O1—La1—O1380.42 (9)C12—C11—H11B109.3
O3—La1—O1377.22 (10)H11A—C11—H11B107.9
O5—La1—O13145.03 (11)C11—C12—C13112.8 (3)
O11—La1—O1348.74 (9)C11—C12—H12A109.0
O10—La1—O13127.48 (12)C13—C12—H12A109.0
O1—La1—O8156.29 (9)C11—C12—H12B109.0
O3—La1—O8129.69 (9)C13—C12—H12B109.0
O5—La1—O867.36 (12)H12A—C12—H12B107.8
O11—La1—O867.92 (10)N2—C13—C12113.2 (3)
O10—La1—O847.55 (9)N2—C13—C8109.2 (2)
O13—La1—O8114.12 (10)C12—C13—C8109.2 (2)
O1—La1—O4129.58 (7)N2—C13—H13A108.4
O3—La1—O461.66 (7)C12—C13—H13A108.4
O5—La1—O471.42 (9)C8—C13—H13A108.4
O11—La1—O476.31 (9)N2—C14—C15122.9 (3)
O10—La1—O4121.04 (8)N2—C14—H14A118.5
O13—La1—O475.68 (9)C15—C14—H14A118.5
O8—La1—O473.68 (8)C20—C15—C16120.0 (3)
O1—La1—O770.19 (10)C20—C15—C14120.5 (3)
O3—La1—O782.23 (11)C16—C15—C14119.4 (3)
O5—La1—O747.34 (9)C17—C16—C15120.2 (3)
O11—La1—O7159.25 (12)C17—C16—H16A119.9
O10—La1—O774.55 (13)C15—C16—H16A119.9
O13—La1—O7148.50 (11)C16—C17—C18120.9 (3)
O8—La1—O797.37 (11)C16—C17—H17A119.5
O4—La1—O7114.71 (9)C18—C17—H17A119.5
O1—La1—O259.31 (7)C19—C18—C17120.1 (3)
O3—La1—O2124.53 (8)C19—C18—H18A120.0
O5—La1—O2141.26 (9)C17—C18—H18A120.0
O11—La1—O271.75 (9)C18—C19—O4125.9 (3)
O10—La1—O268.96 (9)C18—C19—C20120.8 (3)
O13—La1—O273.57 (9)O4—C19—C20113.3 (3)
O8—La1—O2105.25 (9)O3—C20—C15122.1 (3)
O4—La1—O2145.47 (8)O3—C20—C19119.9 (3)
O7—La1—O299.75 (9)C15—C20—C19117.9 (3)
O1—La1—N599.24 (9)O4—C21—H21A109.5
O3—La1—N598.20 (10)O4—C21—H21B109.5
O5—La1—N5143.84 (9)H21A—C21—H21B109.5
O11—La1—N524.29 (9)O4—C21—H21C109.5
O10—La1—N5106.26 (12)H21A—C21—H21C109.5
O13—La1—N524.45 (9)H21B—C21—H21C109.5
O8—La1—N591.04 (10)O2—C22—H22A109.5
O4—La1—N574.87 (9)O2—C22—H22B109.5
O7—La1—N5168.70 (10)H22A—C22—H22B109.5
O2—La1—N570.62 (9)O2—C22—H22C109.5
O1—La1—N4132.60 (9)H22A—C22—H22C109.5
O3—La1—N4146.68 (9)H22B—C22—H22C109.5
O5—La1—N471.57 (11)O14—C23—H29109.5
O11—La1—N476.25 (9)O14—C23—H30109.5
O10—La1—N423.91 (9)H29—C23—H30109.5
O13—La1—N4124.87 (9)O14—C23—H31109.5
O8—La1—N423.70 (8)H29—C23—H31109.5
O4—La1—N497.16 (8)H30—C23—H31109.5
O7—La1—N484.69 (11)C7—N1—C8125.6 (2)
O2—La1—N487.83 (7)C7—N1—H1A117.2
N5—La1—N4100.47 (10)C8—N1—H1A117.2
O1—C1—C6122.1 (3)C14—N2—C13128.3 (3)
O1—C1—C2119.6 (3)C14—N2—H2A115.8
C6—C1—C2118.3 (3)C13—N2—H2A115.8
C3—C2—O2126.5 (3)O6—N3—O7123.0 (4)
C3—C2—C1121.1 (3)O6—N3—O5120.9 (4)
O2—C2—C1112.4 (3)O7—N3—O5116.0 (3)
C2—C3—C4120.0 (3)O9—N4—O8121.2 (3)
C2—C3—H3A120.0O9—N4—O10122.1 (3)
C4—C3—H3A120.0O8—N4—O10116.7 (3)
C5—C4—C3120.7 (3)O9—N4—La1176.5 (3)
C5—C4—H4A119.6O8—N4—La159.21 (17)
C3—C4—H4A119.6O10—N4—La157.69 (17)
C4—C5—C6120.1 (3)O12—N5—O11122.3 (4)
C4—C5—H5A119.9O12—N5—O13121.3 (4)
C6—C5—H5A119.9O11—N5—O13116.3 (3)
C1—C6—C5119.8 (3)O12—N5—La1179.1 (4)
C1—C6—C7119.7 (3)O11—N5—La157.56 (19)
C5—C6—C7120.5 (3)O13—N5—La158.80 (19)
N1—C7—C6122.8 (3)C1—O1—La1131.06 (19)
N1—C7—H7A118.6C2—O2—C22116.7 (3)
C6—C7—H7A118.6C2—O2—La1117.55 (17)
N1—C8—C9111.1 (2)C22—O2—La1125.7 (2)
N1—C8—C13110.4 (2)C20—O3—La1125.86 (19)
C9—C8—C13112.1 (3)C19—O4—C21116.4 (3)
N1—C8—H8A107.7C19—O4—La1117.93 (17)
C9—C8—H8A107.7C21—O4—La1125.3 (2)
C13—C8—H8A107.7N3—O5—La1100.4 (2)
C8—C9—C10109.5 (3)N3—O7—La196.1 (2)
C8—C9—H9A109.8N4—O8—La197.1 (2)
C10—C9—H9A109.8N4—O10—La198.4 (2)
C8—C9—H9B109.8N5—O11—La198.1 (2)
C10—C9—H9B109.8N5—O13—La196.8 (2)
H9A—C9—H9B108.2C23—O14—H14111.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.862.562 (3)137
N2—H2A···O30.861.892.592 (3)138
O14—H14···O5i0.842.402.981 (7)127
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formula[La(NO3)3(C22H26N2O4)]·CH4O
Mr739.43
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7809 (4), 12.8783 (5), 13.0904 (5)
α, β, γ (°)79.374 (1), 68.743 (1), 82.270 (1)
V3)1506.22 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.23 × 0.20 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.725, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
10874, 7145, 6526
Rint0.010
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.01
No. of reflections7145
No. of parameters389
No. of restraints38
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.77

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.862.562 (3)137.2
N2—H2A···O30.861.892.592 (3)138.2
O14—H14···O5i0.842.402.981 (7)127.0
Symmetry code: (i) x, y, z1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402 and 2010 t d03) and Heilongjiang University.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKoner, R., Lee, G. H., Wang, Y., Wei, H.-H. & Mohanta, S. (2005). Eur. J. Inorg. Chem. pp. 1500–1505.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, P.-F., Bao, Y., Li, H.-F. & Li, G.-M. (2009). Acta Cryst. E65, m832.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds