organic compounds
N-(2,5-Dimethoxyphenyl)-N′-[4-(2-hydroxyethyl)phenyl]urea
aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr
In the title compound, C17H20N2O4, the 2,5-dimethoxyphenyl unit is essentially planar, with an r.m.s. deviation of 0.015 Å. The dihedral angle between the benzene rings is 43.66 (4)°. The molecular structure is stabilized by a short intramolecular N—H⋯O hydrogen bond. In the crystal, intermolecular N—H⋯O and O—H⋯O hydrogen bonds link the molecules into a three-dimensional network.
Related literature
For general background to melanin synthesis, melanogenesis and tyrosinase, see: Francisco et al. (2006); Hearing & Jimenez (1987); Prota (1988); Grimes et al. (2006); Maeda & Fukuda (1991). For the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Ohguchi et al. (2003); Lemic-Stojcevic et al. (1995); Battaini et al. (2000); Cabanes et al. (1994); Liangli (2003); Thanigaimalai et al. (2010); Hong et al. (2008); Lee et al. (2007); Yi et al. (2009, 2010); Kwak et al. (2010); Choi et al. (2010); Germanas et al. (2007); Briganti et al. (2003).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810033520/vm2041sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810033520/vm2041Isup2.hkl
4-aminophenethyl alcohol and 2,5-dimethoxyphenyl isocyanate were purchased from Sigma Chemical Co. Solvents used for organic synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and were used without further purification. The title compound (I) was prepared from the reaction of 4-aminophenethyl alcohol (0.18 g, 1.2 mmol) with 2,5-dimethoxyphenyl isocyanate (0.2 g, 1 mmol) in acetonitrile (6 ml). The reaction was completed within 30 min at room temperature. The reaction mixture was filtered, the solids collected and washed with dried hexane. Removal of the solvent gave a white solid (90%, m.p. 427 K). Single crystals were obtained by slow evaporation in ethanol at room temperature.
The H atoms of the NH and OH groups were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic and metylene, and 1.5Ueq(C) for methyl H atoms.
Melanin synthesis is the major source of skin color and plays an important role in protection against ultraviolet rays from the sun (Francisco et al., 2006). Melanogenesis is initiated with the first step of tyrosine oxidation to dopaquinone catalyzed by tyrosinase (Hearing & Jimenez, 1987). Tyrosinase known as a polyphenol oxidase (PPO), is a multifunctional copper-containing enzyme widely distributed in nature, including bacteria, fungi, higher plants and animals (Prota, 1988). However, overproduction of melanin posed not only an esthetic problem but also a dermatological issue (Grimes et al., 2006). Therefore, tyrosinase inhibitors have become increasingly important for medicinal, food and cosmetic products that may be used to prevent or treat pigmentation disorders (Maeda & Fukuda, 1991). In this regard, diverse tyrosinase inhibitors have been actively discovered such as hydroxystilbene compounds like resveratrol (Ohguchi et al., 2003), azelaic acid (Lemic-Stojcevic et al., 1995), kojic acid (Battaini et al., 2000), albutin (Cabanes et al., 1994), (R)-HTCCA (Liangli, 2003) and N-phenylthiourea (Thanigaimalai et al., 2010). They contain aromatic, methoxy, hydroxyl (Hong et al., 2008; Lee et al., 2007), aldehyde (Yi et al., 2010), amide (Kwak et al., 2010; Choi et al., 2010), thiosemicarbazone (Yi et al., 2009) and thiazole (Germanas et al., 2007) groups in their structure, and act as a specific
to make the skin whiter by inhibiting the production of melanin. Although numerous compounds have been reported as skin whitening depigmenting agents, most of them have been utilized for the treatment of hyperpigmentation disorders, but none are completely satisfactory owing to adverse effects such as toxicity and/or safety concerns (Briganti et al., 2003). In our continuing search for tyrosinase inhibitors, we have synthesized the title compound, (I), from the reaction of 4-aminophenethyl alcohol and 2,5-dimethoxyphenyl isocyanate under ambient condition. Here, the of (I) is described (Fig.1).The 2,5-dimethoxyphenyl moiety is essentially planar, with r.m.s. deviation of 0.015 Å from the corresponding least-squares plane defined by the eleven constituent atoms. The dihedral angle between the benzene rings is 43.66 (4) °. The molecular structure is stabilized by a short intramolecular N7—H7···O20 hydrogen bond (Fig. 1). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network (Fig. 2, Table 1).
For general background to melanin synthesis, melanogenesis and tyrosinase, see: Francisco et al. (2006); Hearing & Jimenez (1987); Prota (1988); Grimes et al. (2006); Maeda & Fukuda (1991). For the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Ohguchi et al. (2003); Lemic-Stojcevic et al. (1995); Battaini et al. (2000); Cabanes et al. (1994); Liangli (2003); Thanigaimalai et al. (2010); Hong et al. (2008); Lee et al. (2007); Yi et al. (2009, 2010); Kwak et al. (2010); Choi et al. (2010); Germanas et al. (2007); Briganti et al. (2003).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 1999).C17H20N2O4 | F(000) = 672 |
Mr = 316.35 | Dx = 1.313 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4670 reflections |
a = 18.7551 (18) Å | θ = 2.9–28.0° |
b = 6.8095 (6) Å | µ = 0.09 mm−1 |
c = 12.6881 (12) Å | T = 296 K |
β = 98.930 (3)° | Plate, colourless |
V = 1600.8 (3) Å3 | 0.31 × 0.28 × 0.08 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | Rint = 0.045 |
φ and ω scans | θmax = 27.5°, θmin = 2.2° |
13398 measured reflections | h = −20→24 |
3563 independent reflections | k = −8→5 |
2473 reflections with I > 2σ(I) | l = −16→7 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0527P)2 + 0.087P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.108 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.15 e Å−3 |
3563 reflections | Δρmin = −0.16 e Å−3 |
222 parameters |
C17H20N2O4 | V = 1600.8 (3) Å3 |
Mr = 316.35 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 18.7551 (18) Å | µ = 0.09 mm−1 |
b = 6.8095 (6) Å | T = 296 K |
c = 12.6881 (12) Å | 0.31 × 0.28 × 0.08 mm |
β = 98.930 (3)° |
Bruker SMART CCD area-detector diffractometer | 2473 reflections with I > 2σ(I) |
13398 measured reflections | Rint = 0.045 |
3563 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.15 e Å−3 |
3563 reflections | Δρmin = −0.16 e Å−3 |
222 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.81571 (7) | 0.4546 (2) | 0.70224 (10) | 0.0478 (3) | |
C2 | 0.85245 (8) | 0.6263 (2) | 0.68225 (10) | 0.0512 (3) | |
C3 | 0.91672 (8) | 0.6722 (2) | 0.74533 (12) | 0.0594 (4) | |
H3 | 0.9415 | 0.7852 | 0.7315 | 0.071* | |
C4 | 0.94471 (8) | 0.5516 (2) | 0.82909 (12) | 0.0603 (4) | |
H4 | 0.9877 | 0.5848 | 0.8723 | 0.072* | |
C5 | 0.90884 (8) | 0.3820 (2) | 0.84865 (11) | 0.0533 (3) | |
C6 | 0.84471 (8) | 0.3320 (2) | 0.78530 (11) | 0.0515 (3) | |
H6 | 0.8211 | 0.2166 | 0.7983 | 0.062* | |
N7 | 0.75121 (7) | 0.41428 (19) | 0.63308 (9) | 0.0557 (3) | |
H7 | 0.7438 (8) | 0.482 (2) | 0.5747 (12) | 0.061 (4)* | |
C8 | 0.69226 (7) | 0.31819 (18) | 0.65892 (10) | 0.0456 (3) | |
O9 | 0.69222 (6) | 0.23814 (17) | 0.74516 (8) | 0.0696 (3) | |
N10 | 0.63478 (6) | 0.32245 (17) | 0.58002 (9) | 0.0483 (3) | |
H10 | 0.6403 (7) | 0.3846 (19) | 0.5222 (11) | 0.049 (4)* | |
C11 | 0.56284 (7) | 0.26392 (17) | 0.58430 (10) | 0.0420 (3) | |
C12 | 0.51483 (8) | 0.26886 (18) | 0.48941 (10) | 0.0461 (3) | |
H12 | 0.5314 | 0.3014 | 0.4263 | 0.055* | |
C13 | 0.44293 (8) | 0.22611 (18) | 0.48762 (11) | 0.0475 (3) | |
H13 | 0.4118 | 0.2295 | 0.423 | 0.057* | |
C14 | 0.41582 (7) | 0.17787 (17) | 0.58034 (11) | 0.0460 (3) | |
C15 | 0.46477 (8) | 0.1691 (2) | 0.67378 (11) | 0.0542 (4) | |
H15 | 0.4483 | 0.134 | 0.7366 | 0.065* | |
C16 | 0.53723 (8) | 0.2105 (2) | 0.67713 (10) | 0.0519 (3) | |
H16 | 0.5687 | 0.2026 | 0.7413 | 0.062* | |
C17 | 0.33652 (8) | 0.1382 (2) | 0.57897 (12) | 0.0567 (4) | |
H17A | 0.3309 | 0.0088 | 0.6086 | 0.068* | |
H17B | 0.3124 | 0.1373 | 0.5056 | 0.068* | |
C18 | 0.30012 (9) | 0.2874 (2) | 0.64108 (12) | 0.0585 (4) | |
H18A | 0.2503 | 0.2494 | 0.6416 | 0.07* | |
H18B | 0.3245 | 0.2921 | 0.7143 | 0.07* | |
O19 | 0.30252 (6) | 0.47658 (15) | 0.59305 (8) | 0.0582 (3) | |
H19 | 0.3042 (9) | 0.563 (3) | 0.6438 (15) | 0.085 (6)* | |
O20 | 0.81964 (6) | 0.73557 (16) | 0.59742 (9) | 0.0684 (3) | |
C21 | 0.85404 (10) | 0.9101 (3) | 0.57235 (14) | 0.0816 (5) | |
H21A | 0.8596 | 0.9967 | 0.6328 | 0.122* | |
H21B | 0.8253 | 0.9731 | 0.5127 | 0.122* | |
H21C | 0.9007 | 0.8792 | 0.5545 | 0.122* | |
O22 | 0.94077 (6) | 0.27125 (18) | 0.93408 (9) | 0.0717 (3) | |
C23 | 0.90471 (10) | 0.1000 (3) | 0.96033 (14) | 0.0786 (5) | |
H23A | 0.8569 | 0.1336 | 0.9725 | 0.118* | |
H23B | 0.931 | 0.0422 | 1.0237 | 0.118* | |
H23C | 0.9017 | 0.0077 | 0.9026 | 0.118* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0455 (8) | 0.0566 (8) | 0.0415 (7) | −0.0014 (6) | 0.0072 (6) | −0.0008 (6) |
C2 | 0.0520 (9) | 0.0562 (8) | 0.0455 (7) | −0.0027 (7) | 0.0075 (7) | 0.0017 (6) |
C3 | 0.0537 (9) | 0.0628 (9) | 0.0619 (9) | −0.0110 (7) | 0.0099 (8) | −0.0016 (7) |
C4 | 0.0474 (9) | 0.0749 (10) | 0.0567 (9) | −0.0025 (7) | 0.0017 (7) | −0.0022 (8) |
C5 | 0.0476 (8) | 0.0672 (9) | 0.0445 (7) | 0.0075 (7) | 0.0051 (6) | 0.0014 (7) |
C6 | 0.0512 (9) | 0.0565 (8) | 0.0468 (7) | −0.0010 (6) | 0.0073 (7) | 0.0019 (6) |
N7 | 0.0557 (8) | 0.0655 (8) | 0.0434 (6) | −0.0115 (6) | −0.0001 (6) | 0.0129 (6) |
C8 | 0.0517 (8) | 0.0435 (7) | 0.0408 (7) | 0.0000 (6) | 0.0049 (6) | 0.0041 (5) |
O9 | 0.0631 (7) | 0.0879 (8) | 0.0550 (6) | −0.0102 (5) | 0.0000 (5) | 0.0303 (6) |
N10 | 0.0527 (7) | 0.0535 (6) | 0.0381 (6) | −0.0037 (5) | 0.0048 (5) | 0.0070 (5) |
C11 | 0.0501 (8) | 0.0355 (6) | 0.0400 (6) | 0.0001 (5) | 0.0053 (6) | −0.0010 (5) |
C12 | 0.0579 (9) | 0.0431 (7) | 0.0368 (6) | 0.0010 (6) | 0.0062 (6) | 0.0032 (5) |
C13 | 0.0566 (9) | 0.0420 (6) | 0.0409 (7) | 0.0016 (6) | −0.0017 (6) | −0.0002 (5) |
C14 | 0.0530 (8) | 0.0362 (6) | 0.0482 (7) | −0.0004 (6) | 0.0057 (6) | −0.0019 (5) |
C15 | 0.0608 (10) | 0.0614 (8) | 0.0416 (7) | −0.0048 (7) | 0.0118 (7) | 0.0031 (6) |
C16 | 0.0558 (9) | 0.0613 (8) | 0.0369 (7) | −0.0025 (7) | 0.0012 (6) | 0.0023 (6) |
C17 | 0.0572 (9) | 0.0500 (7) | 0.0623 (9) | −0.0067 (7) | 0.0070 (7) | 0.0022 (7) |
C18 | 0.0607 (10) | 0.0674 (9) | 0.0497 (8) | −0.0025 (7) | 0.0154 (7) | 0.0092 (7) |
O19 | 0.0772 (7) | 0.0569 (6) | 0.0417 (5) | 0.0039 (5) | 0.0133 (5) | −0.0018 (5) |
O20 | 0.0651 (7) | 0.0690 (7) | 0.0666 (7) | −0.0169 (5) | −0.0045 (6) | 0.0212 (5) |
C21 | 0.0899 (13) | 0.0691 (10) | 0.0816 (12) | −0.0219 (9) | 0.0003 (10) | 0.0213 (9) |
O22 | 0.0582 (7) | 0.0874 (8) | 0.0647 (7) | 0.0025 (6) | −0.0060 (5) | 0.0186 (6) |
C23 | 0.0776 (12) | 0.0815 (12) | 0.0741 (11) | 0.0069 (9) | 0.0035 (9) | 0.0232 (10) |
C1—C6 | 1.3875 (19) | C13—C14 | 1.3913 (18) |
C1—C2 | 1.4000 (19) | C13—H13 | 0.93 |
C1—N7 | 1.4069 (18) | C14—C15 | 1.3835 (19) |
C2—O20 | 1.3731 (17) | C14—C17 | 1.5090 (19) |
C2—C3 | 1.375 (2) | C15—C16 | 1.382 (2) |
C3—C4 | 1.381 (2) | C15—H15 | 0.93 |
C3—H3 | 0.93 | C16—H16 | 0.93 |
C4—C5 | 1.378 (2) | C17—C18 | 1.512 (2) |
C4—H4 | 0.93 | C17—H17A | 0.97 |
C5—O22 | 1.3787 (17) | C17—H17B | 0.97 |
C5—C6 | 1.381 (2) | C18—O19 | 1.4286 (17) |
C6—H6 | 0.93 | C18—H18A | 0.97 |
N7—C8 | 1.3677 (17) | C18—H18B | 0.97 |
N7—H7 | 0.865 (15) | O19—H19 | 0.867 (18) |
C8—O9 | 1.2226 (15) | O20—C21 | 1.4122 (18) |
C8—N10 | 1.3528 (17) | C21—H21A | 0.96 |
N10—C11 | 1.4159 (17) | C21—H21B | 0.96 |
N10—H10 | 0.867 (14) | C21—H21C | 0.96 |
C11—C12 | 1.3874 (19) | O22—C23 | 1.414 (2) |
C11—C16 | 1.3878 (18) | C23—H23A | 0.96 |
C12—C13 | 1.3764 (19) | C23—H23B | 0.96 |
C12—H12 | 0.93 | C23—H23C | 0.96 |
C6—C1—C2 | 119.60 (13) | C15—C14—C13 | 116.99 (13) |
C6—C1—N7 | 123.65 (13) | C15—C14—C17 | 121.59 (12) |
C2—C1—N7 | 116.72 (12) | C13—C14—C17 | 121.42 (13) |
O20—C2—C3 | 125.36 (13) | C16—C15—C14 | 122.41 (12) |
O20—C2—C1 | 114.92 (12) | C16—C15—H15 | 118.8 |
C3—C2—C1 | 119.72 (13) | C14—C15—H15 | 118.8 |
C2—C3—C4 | 120.47 (14) | C15—C16—C11 | 119.71 (13) |
C2—C3—H3 | 119.8 | C15—C16—H16 | 120.1 |
C4—C3—H3 | 119.8 | C11—C16—H16 | 120.1 |
C5—C4—C3 | 119.93 (14) | C14—C17—C18 | 113.43 (12) |
C5—C4—H4 | 120 | C14—C17—H17A | 108.9 |
C3—C4—H4 | 120 | C18—C17—H17A | 108.9 |
C4—C5—O22 | 115.81 (13) | C14—C17—H17B | 108.9 |
C4—C5—C6 | 120.46 (14) | C18—C17—H17B | 108.9 |
O22—C5—C6 | 123.73 (14) | H17A—C17—H17B | 107.7 |
C5—C6—C1 | 119.80 (13) | O19—C18—C17 | 109.69 (11) |
C5—C6—H6 | 120.1 | O19—C18—H18A | 109.7 |
C1—C6—H6 | 120.1 | C17—C18—H18A | 109.7 |
C8—N7—C1 | 126.35 (11) | O19—C18—H18B | 109.7 |
C8—N7—H7 | 115.6 (10) | C17—C18—H18B | 109.7 |
C1—N7—H7 | 116.0 (10) | H18A—C18—H18B | 108.2 |
O9—C8—N10 | 124.10 (13) | C18—O19—H19 | 107.0 (12) |
O9—C8—N7 | 122.73 (13) | C2—O20—C21 | 117.91 (12) |
N10—C8—N7 | 113.16 (11) | O20—C21—H21A | 109.5 |
C8—N10—C11 | 128.33 (11) | O20—C21—H21B | 109.5 |
C8—N10—H10 | 116.8 (9) | H21A—C21—H21B | 109.5 |
C11—N10—H10 | 114.2 (9) | O20—C21—H21C | 109.5 |
C12—C11—C16 | 118.65 (12) | H21A—C21—H21C | 109.5 |
C12—C11—N10 | 116.99 (11) | H21B—C21—H21C | 109.5 |
C16—C11—N10 | 124.31 (12) | C5—O22—C23 | 118.12 (12) |
C13—C12—C11 | 120.76 (12) | O22—C23—H23A | 109.5 |
C13—C12—H12 | 119.6 | O22—C23—H23B | 109.5 |
C11—C12—H12 | 119.6 | H23A—C23—H23B | 109.5 |
C12—C13—C14 | 121.44 (13) | O22—C23—H23C | 109.5 |
C12—C13—H13 | 119.3 | H23A—C23—H23C | 109.5 |
C14—C13—H13 | 119.3 | H23B—C23—H23C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7···O20 | 0.865 (15) | 2.227 (14) | 2.6113 (16) | 106.7 (11) |
O19—H19···O9i | 0.867 (18) | 1.841 (19) | 2.7080 (14) | 178.0 (17) |
N10—H10···O19ii | 0.867 (14) | 2.161 (14) | 2.9799 (15) | 157.4 (12) |
N7—H7···O19ii | 0.865 (15) | 2.189 (15) | 2.9837 (15) | 152.6 (13) |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C17H20N2O4 |
Mr | 316.35 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 18.7551 (18), 6.8095 (6), 12.6881 (12) |
β (°) | 98.930 (3) |
V (Å3) | 1600.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.31 × 0.28 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13398, 3563, 2473 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.108, 1.03 |
No. of reflections | 3563 |
No. of parameters | 222 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.15, −0.16 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7···O20 | 0.865 (15) | 2.227 (14) | 2.6113 (16) | 106.7 (11) |
O19—H19···O9i | 0.867 (18) | 1.841 (19) | 2.7080 (14) | 178.0 (17) |
N10—H10···O19ii | 0.867 (14) | 2.161 (14) | 2.9799 (15) | 157.4 (12) |
N7—H7···O19ii | 0.865 (15) | 2.189 (15) | 2.9837 (15) | 152.6 (13) |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
This work is the result of a study on the "Human Resource Development Center for Economic Region Leading Industry" Project, supported by the Ministry of Education, Science & Technology (MEST) and the National Research Foundation of Korea (NRF).
References
Battaini, G., Monzani, E., Casella, L., Santagostini, L. & Pagliarin, R. (2000). J. Biol. Inorg. Chem. 5, 262–268. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Briganti, S., Camera, E. & Picardo, M. (2003). Pigm. Cell Res. 16, 101–110. Web of Science CrossRef Google Scholar
Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985. CrossRef CAS PubMed Google Scholar
Choi, H., Lee, T., Han, B. H., Kang, S. K. & Sung, C. K. (2010). Acta Cryst. E66, o2088–o2089. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Francisco, S., Stefania, B., Mauro, P. & Ghanem, G. (2006). Pigm. Cell Res. 19, 550–571. Google Scholar
Germanas, J. P., Wang, S., Miner, A., Hao, W. & Ready, J. M. (2007). Bioorg. Med. Chem. Lett. 17, 6871–6875. Web of Science CrossRef PubMed CAS Google Scholar
Grimes, P., Nordlund, J. J., Pandya, A. G., Taylor, S., Rendon, M. & Ortonne, J. P. (2006). J. Am. Acad. Dermatol. 54, 255–261. Web of Science CrossRef Google Scholar
Hearing, V. J. & Jimenez, M. (1987). Int. J. Biochem. 19, 1141–1147. CrossRef CAS PubMed Web of Science Google Scholar
Hong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kwak, S. Y., Noh, J. M., Park, S. H., Byun, J. W. & Choi, H. R. (2010). Bioorg. Med. Chem. Lett. 20, 738–742. Web of Science CrossRef PubMed CAS Google Scholar
Lee, C. W., Son, E. M., Kim, H. S. & Xu, P. (2007). Bioorg. Med. Chem. Lett. 17, 5462–5464. Web of Science CrossRef PubMed CAS Google Scholar
Lemic-Stojcevic, L., Nias, A. H. & Breathnach, A. S. (1995). Exp. Dermatol. 4, 79–81. CrossRef CAS PubMed Google Scholar
Liangli, Y. (2003). J. Agric. Food Chem. 51, 2344–2347. Web of Science PubMed Google Scholar
Maeda, K. & Fukuda, M. (1991). J. Soc. Cosmet. Chem. 42, 361–368. CAS Google Scholar
Ohguchi, K., Tanaka, T., Ito, T., Iinuma, M., Matsumoto, K., Akao, Y. & Nozawa, Y. (2003). Biosci. Biotechnol. Biochem. 67, 1587–1589. CrossRef PubMed CAS Google Scholar
Prota, G. (1988). Med. Res. Rev. 8, 525–556. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991–2993. Web of Science CrossRef CAS PubMed Google Scholar
Yi, W., Cao, R., Chen, Z. Y., Yu, L., Ma, L. & Song, H. C. (2009). Chem. Pharm. Bull. 7, 1273–1277. CrossRef Google Scholar
Yi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. C. (2010). Eur. J. Med. Chem. 45, 639–646. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Melanin synthesis is the major source of skin color and plays an important role in protection against ultraviolet rays from the sun (Francisco et al., 2006). Melanogenesis is initiated with the first step of tyrosine oxidation to dopaquinone catalyzed by tyrosinase (Hearing & Jimenez, 1987). Tyrosinase known as a polyphenol oxidase (PPO), is a multifunctional copper-containing enzyme widely distributed in nature, including bacteria, fungi, higher plants and animals (Prota, 1988). However, overproduction of melanin posed not only an esthetic problem but also a dermatological issue (Grimes et al., 2006). Therefore, tyrosinase inhibitors have become increasingly important for medicinal, food and cosmetic products that may be used to prevent or treat pigmentation disorders (Maeda & Fukuda, 1991). In this regard, diverse tyrosinase inhibitors have been actively discovered such as hydroxystilbene compounds like resveratrol (Ohguchi et al., 2003), azelaic acid (Lemic-Stojcevic et al., 1995), kojic acid (Battaini et al., 2000), albutin (Cabanes et al., 1994), (R)-HTCCA (Liangli, 2003) and N-phenylthiourea (Thanigaimalai et al., 2010). They contain aromatic, methoxy, hydroxyl (Hong et al., 2008; Lee et al., 2007), aldehyde (Yi et al., 2010), amide (Kwak et al., 2010; Choi et al., 2010), thiosemicarbazone (Yi et al., 2009) and thiazole (Germanas et al., 2007) groups in their structure, and act as a specific functional group to make the skin whiter by inhibiting the production of melanin. Although numerous compounds have been reported as skin whitening depigmenting agents, most of them have been utilized for the treatment of hyperpigmentation disorders, but none are completely satisfactory owing to adverse effects such as toxicity and/or safety concerns (Briganti et al., 2003). In our continuing search for tyrosinase inhibitors, we have synthesized the title compound, (I), from the reaction of 4-aminophenethyl alcohol and 2,5-dimethoxyphenyl isocyanate under ambient condition. Here, the crystal structure of (I) is described (Fig.1).
The 2,5-dimethoxyphenyl moiety is essentially planar, with r.m.s. deviation of 0.015 Å from the corresponding least-squares plane defined by the eleven constituent atoms. The dihedral angle between the benzene rings is 43.66 (4) °. The molecular structure is stabilized by a short intramolecular N7—H7···O20 hydrogen bond (Fig. 1). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network (Fig. 2, Table 1).