organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,5-Dimeth­­oxy­phen­yl)-N′-[4-(2-hy­dr­oxy­eth­yl)phen­yl]urea

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 17 August 2010; accepted 19 August 2010; online 25 August 2010)

In the title compound, C17H20N2O4, the 2,5-dimeth­oxy­phenyl unit is essentially planar, with an r.m.s. deviation of 0.015 Å. The dihedral angle between the benzene rings is 43.66 (4)°. The mol­ecular structure is stabilized by a short intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For general background to melanin synthesis, melanogenesis and tyrosinase, see: Francisco et al. (2006[Francisco, S., Stefania, B., Mauro, P. & Ghanem, G. (2006). Pigm. Cell Res. 19, 550-571.]); Hearing & Jimenez (1987[Hearing, V. J. & Jimenez, M. (1987). Int. J. Biochem. 19, 1141-1147.]); Prota (1988[Prota, G. (1988). Med. Res. Rev. 8, 525-556.]); Grimes et al. (2006[Grimes, P., Nordlund, J. J., Pandya, A. G., Taylor, S., Rendon, M. & Ortonne, J. P. (2006). J. Am. Acad. Dermatol. 54, 255-261.]); Maeda & Fukuda (1991[Maeda, K. & Fukuda, M. (1991). J. Soc. Cosmet. Chem. 42, 361-368.]). For the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Ohguchi et al. (2003[Ohguchi, K., Tanaka, T., Ito, T., Iinuma, M., Matsumoto, K., Akao, Y. & Nozawa, Y. (2003). Biosci. Biotechnol. Biochem. 67, 1587-1589.]); Lemic-Stojcevic et al. (1995[Lemic-Stojcevic, L., Nias, A. H. & Breathnach, A. S. (1995). Exp. Dermatol. 4, 79-81.]); Battaini et al. (2000[Battaini, G., Monzani, E., Casella, L., Santagostini, L. & Pagliarin, R. (2000). J. Biol. Inorg. Chem. 5, 262-268.]); Cabanes et al. (1994[Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982-985.]); Liangli (2003[Liangli, Y. (2003). J. Agric. Food Chem. 51, 2344-2347.]); Thanigaimalai et al. (2010[Thanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991-2993.]); Hong et al. (2008[Hong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49.]); Lee et al. (2007[Lee, C. W., Son, E. M., Kim, H. S. & Xu, P. (2007). Bioorg. Med. Chem. Lett. 17, 5462-5464.]); Yi et al. (2009[Yi, W., Cao, R., Chen, Z. Y., Yu, L., Ma, L. & Song, H. C. (2009). Chem. Pharm. Bull. 7, 1273-1277.], 2010[Yi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. C. (2010). Eur. J. Med. Chem. 45, 639-646.]); Kwak et al. (2010[Kwak, S. Y., Noh, J. M., Park, S. H., Byun, J. W. & Choi, H. R. (2010). Bioorg. Med. Chem. Lett. 20, 738-742.]); Choi et al. (2010[Choi, H., Lee, T., Han, B. H., Kang, S. K. & Sung, C. K. (2010). Acta Cryst. E66, o2088-o2089.]); Germanas et al. (2007[Germanas, J. P., Wang, S., Miner, A., Hao, W. & Ready, J. M. (2007). Bioorg. Med. Chem. Lett. 17, 6871-6875.]); Briganti et al. (2003[Briganti, S., Camera, E. & Picardo, M. (2003). Pigm. Cell Res. 16, 101-110.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O4

  • Mr = 316.35

  • Monoclinic, P 21 /c

  • a = 18.7551 (18) Å

  • b = 6.8095 (6) Å

  • c = 12.6881 (12) Å

  • β = 98.930 (3)°

  • V = 1600.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.31 × 0.28 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 13398 measured reflections

  • 3563 independent reflections

  • 2473 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.03

  • 3563 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O20 0.865 (15) 2.227 (14) 2.6113 (16) 106.7 (11)
O19—H19⋯O9i 0.867 (18) 1.841 (19) 2.7080 (14) 178.0 (17)
N10—H10⋯O19ii 0.867 (14) 2.161 (14) 2.9799 (15) 157.4 (12)
N7—H7⋯O19ii 0.865 (15) 2.189 (15) 2.9837 (15) 152.6 (13)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Melanin synthesis is the major source of skin color and plays an important role in protection against ultraviolet rays from the sun (Francisco et al., 2006). Melanogenesis is initiated with the first step of tyrosine oxidation to dopaquinone catalyzed by tyrosinase (Hearing & Jimenez, 1987). Tyrosinase known as a polyphenol oxidase (PPO), is a multifunctional copper-containing enzyme widely distributed in nature, including bacteria, fungi, higher plants and animals (Prota, 1988). However, overproduction of melanin posed not only an esthetic problem but also a dermatological issue (Grimes et al., 2006). Therefore, tyrosinase inhibitors have become increasingly important for medicinal, food and cosmetic products that may be used to prevent or treat pigmentation disorders (Maeda & Fukuda, 1991). In this regard, diverse tyrosinase inhibitors have been actively discovered such as hydroxystilbene compounds like resveratrol (Ohguchi et al., 2003), azelaic acid (Lemic-Stojcevic et al., 1995), kojic acid (Battaini et al., 2000), albutin (Cabanes et al., 1994), (R)-HTCCA (Liangli, 2003) and N-phenylthiourea (Thanigaimalai et al., 2010). They contain aromatic, methoxy, hydroxyl (Hong et al., 2008; Lee et al., 2007), aldehyde (Yi et al., 2010), amide (Kwak et al., 2010; Choi et al., 2010), thiosemicarbazone (Yi et al., 2009) and thiazole (Germanas et al., 2007) groups in their structure, and act as a specific functional group to make the skin whiter by inhibiting the production of melanin. Although numerous compounds have been reported as skin whitening depigmenting agents, most of them have been utilized for the treatment of hyperpigmentation disorders, but none are completely satisfactory owing to adverse effects such as toxicity and/or safety concerns (Briganti et al., 2003). In our continuing search for tyrosinase inhibitors, we have synthesized the title compound, (I), from the reaction of 4-aminophenethyl alcohol and 2,5-dimethoxyphenyl isocyanate under ambient condition. Here, the crystal structure of (I) is described (Fig.1).

The 2,5-dimethoxyphenyl moiety is essentially planar, with r.m.s. deviation of 0.015 Å from the corresponding least-squares plane defined by the eleven constituent atoms. The dihedral angle between the benzene rings is 43.66 (4) °. The molecular structure is stabilized by a short intramolecular N7—H7···O20 hydrogen bond (Fig. 1). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network (Fig. 2, Table 1).

Related literature top

For general background to melanin synthesis, melanogenesis and tyrosinase, see: Francisco et al. (2006); Hearing & Jimenez (1987); Prota (1988); Grimes et al. (2006); Maeda & Fukuda (1991). For the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Ohguchi et al. (2003); Lemic-Stojcevic et al. (1995); Battaini et al. (2000); Cabanes et al. (1994); Liangli (2003); Thanigaimalai et al. (2010); Hong et al. (2008); Lee et al. (2007); Yi et al. (2009, 2010); Kwak et al. (2010); Choi et al. (2010); Germanas et al. (2007); Briganti et al. (2003).

Experimental top

4-aminophenethyl alcohol and 2,5-dimethoxyphenyl isocyanate were purchased from Sigma Chemical Co. Solvents used for organic synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and were used without further purification. The title compound (I) was prepared from the reaction of 4-aminophenethyl alcohol (0.18 g, 1.2 mmol) with 2,5-dimethoxyphenyl isocyanate (0.2 g, 1 mmol) in acetonitrile (6 ml). The reaction was completed within 30 min at room temperature. The reaction mixture was filtered, the solids collected and washed with dried hexane. Removal of the solvent gave a white solid (90%, m.p. 427 K). Single crystals were obtained by slow evaporation in ethanol at room temperature.

Refinement top

The H atoms of the NH and OH groups were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic and metylene, and 1.5Ueq(C) for methyl H atoms.

Structure description top

Melanin synthesis is the major source of skin color and plays an important role in protection against ultraviolet rays from the sun (Francisco et al., 2006). Melanogenesis is initiated with the first step of tyrosine oxidation to dopaquinone catalyzed by tyrosinase (Hearing & Jimenez, 1987). Tyrosinase known as a polyphenol oxidase (PPO), is a multifunctional copper-containing enzyme widely distributed in nature, including bacteria, fungi, higher plants and animals (Prota, 1988). However, overproduction of melanin posed not only an esthetic problem but also a dermatological issue (Grimes et al., 2006). Therefore, tyrosinase inhibitors have become increasingly important for medicinal, food and cosmetic products that may be used to prevent or treat pigmentation disorders (Maeda & Fukuda, 1991). In this regard, diverse tyrosinase inhibitors have been actively discovered such as hydroxystilbene compounds like resveratrol (Ohguchi et al., 2003), azelaic acid (Lemic-Stojcevic et al., 1995), kojic acid (Battaini et al., 2000), albutin (Cabanes et al., 1994), (R)-HTCCA (Liangli, 2003) and N-phenylthiourea (Thanigaimalai et al., 2010). They contain aromatic, methoxy, hydroxyl (Hong et al., 2008; Lee et al., 2007), aldehyde (Yi et al., 2010), amide (Kwak et al., 2010; Choi et al., 2010), thiosemicarbazone (Yi et al., 2009) and thiazole (Germanas et al., 2007) groups in their structure, and act as a specific functional group to make the skin whiter by inhibiting the production of melanin. Although numerous compounds have been reported as skin whitening depigmenting agents, most of them have been utilized for the treatment of hyperpigmentation disorders, but none are completely satisfactory owing to adverse effects such as toxicity and/or safety concerns (Briganti et al., 2003). In our continuing search for tyrosinase inhibitors, we have synthesized the title compound, (I), from the reaction of 4-aminophenethyl alcohol and 2,5-dimethoxyphenyl isocyanate under ambient condition. Here, the crystal structure of (I) is described (Fig.1).

The 2,5-dimethoxyphenyl moiety is essentially planar, with r.m.s. deviation of 0.015 Å from the corresponding least-squares plane defined by the eleven constituent atoms. The dihedral angle between the benzene rings is 43.66 (4) °. The molecular structure is stabilized by a short intramolecular N7—H7···O20 hydrogen bond (Fig. 1). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network (Fig. 2, Table 1).

For general background to melanin synthesis, melanogenesis and tyrosinase, see: Francisco et al. (2006); Hearing & Jimenez (1987); Prota (1988); Grimes et al. (2006); Maeda & Fukuda (1991). For the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Ohguchi et al. (2003); Lemic-Stojcevic et al. (1995); Battaini et al. (2000); Cabanes et al. (1994); Liangli (2003); Thanigaimalai et al. (2010); Hong et al. (2008); Lee et al. (2007); Yi et al. (2009, 2010); Kwak et al. (2010); Choi et al. (2010); Germanas et al. (2007); Briganti et al. (2003).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 50% probability ellipsoids. Intramolecular N—H···O bond is shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing 3-D network of molecules linked by intermolecular N—H···O and O—H···O hydrogen bonds.
N-(2,5-Dimethoxyphenyl)-N'-[4-(2-hydroxyethyl)phenyl]urea top
Crystal data top
C17H20N2O4F(000) = 672
Mr = 316.35Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4670 reflections
a = 18.7551 (18) Åθ = 2.9–28.0°
b = 6.8095 (6) ŵ = 0.09 mm1
c = 12.6881 (12) ÅT = 296 K
β = 98.930 (3)°Plate, colourless
V = 1600.8 (3) Å30.31 × 0.28 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.045
φ and ω scansθmax = 27.5°, θmin = 2.2°
13398 measured reflectionsh = 2024
3563 independent reflectionsk = 85
2473 reflections with I > 2σ(I)l = 167
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.087P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.15 e Å3
3563 reflectionsΔρmin = 0.16 e Å3
222 parameters
Crystal data top
C17H20N2O4V = 1600.8 (3) Å3
Mr = 316.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.7551 (18) ŵ = 0.09 mm1
b = 6.8095 (6) ÅT = 296 K
c = 12.6881 (12) Å0.31 × 0.28 × 0.08 mm
β = 98.930 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2473 reflections with I > 2σ(I)
13398 measured reflectionsRint = 0.045
3563 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.15 e Å3
3563 reflectionsΔρmin = 0.16 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81571 (7)0.4546 (2)0.70224 (10)0.0478 (3)
C20.85245 (8)0.6263 (2)0.68225 (10)0.0512 (3)
C30.91672 (8)0.6722 (2)0.74533 (12)0.0594 (4)
H30.94150.78520.73150.071*
C40.94471 (8)0.5516 (2)0.82909 (12)0.0603 (4)
H40.98770.58480.87230.072*
C50.90884 (8)0.3820 (2)0.84865 (11)0.0533 (3)
C60.84471 (8)0.3320 (2)0.78530 (11)0.0515 (3)
H60.82110.21660.79830.062*
N70.75121 (7)0.41428 (19)0.63308 (9)0.0557 (3)
H70.7438 (8)0.482 (2)0.5747 (12)0.061 (4)*
C80.69226 (7)0.31819 (18)0.65892 (10)0.0456 (3)
O90.69222 (6)0.23814 (17)0.74516 (8)0.0696 (3)
N100.63478 (6)0.32245 (17)0.58002 (9)0.0483 (3)
H100.6403 (7)0.3846 (19)0.5222 (11)0.049 (4)*
C110.56284 (7)0.26392 (17)0.58430 (10)0.0420 (3)
C120.51483 (8)0.26886 (18)0.48941 (10)0.0461 (3)
H120.53140.30140.42630.055*
C130.44293 (8)0.22611 (18)0.48762 (11)0.0475 (3)
H130.41180.22950.4230.057*
C140.41582 (7)0.17787 (17)0.58034 (11)0.0460 (3)
C150.46477 (8)0.1691 (2)0.67378 (11)0.0542 (4)
H150.44830.1340.73660.065*
C160.53723 (8)0.2105 (2)0.67713 (10)0.0519 (3)
H160.56870.20260.74130.062*
C170.33652 (8)0.1382 (2)0.57897 (12)0.0567 (4)
H17A0.33090.00880.60860.068*
H17B0.31240.13730.50560.068*
C180.30012 (9)0.2874 (2)0.64108 (12)0.0585 (4)
H18A0.25030.24940.64160.07*
H18B0.32450.29210.71430.07*
O190.30252 (6)0.47658 (15)0.59305 (8)0.0582 (3)
H190.3042 (9)0.563 (3)0.6438 (15)0.085 (6)*
O200.81964 (6)0.73557 (16)0.59742 (9)0.0684 (3)
C210.85404 (10)0.9101 (3)0.57235 (14)0.0816 (5)
H21A0.85960.99670.63280.122*
H21B0.82530.97310.51270.122*
H21C0.90070.87920.55450.122*
O220.94077 (6)0.27125 (18)0.93408 (9)0.0717 (3)
C230.90471 (10)0.1000 (3)0.96033 (14)0.0786 (5)
H23A0.85690.13360.97250.118*
H23B0.9310.04221.02370.118*
H23C0.90170.00770.90260.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0455 (8)0.0566 (8)0.0415 (7)0.0014 (6)0.0072 (6)0.0008 (6)
C20.0520 (9)0.0562 (8)0.0455 (7)0.0027 (7)0.0075 (7)0.0017 (6)
C30.0537 (9)0.0628 (9)0.0619 (9)0.0110 (7)0.0099 (8)0.0016 (7)
C40.0474 (9)0.0749 (10)0.0567 (9)0.0025 (7)0.0017 (7)0.0022 (8)
C50.0476 (8)0.0672 (9)0.0445 (7)0.0075 (7)0.0051 (6)0.0014 (7)
C60.0512 (9)0.0565 (8)0.0468 (7)0.0010 (6)0.0073 (7)0.0019 (6)
N70.0557 (8)0.0655 (8)0.0434 (6)0.0115 (6)0.0001 (6)0.0129 (6)
C80.0517 (8)0.0435 (7)0.0408 (7)0.0000 (6)0.0049 (6)0.0041 (5)
O90.0631 (7)0.0879 (8)0.0550 (6)0.0102 (5)0.0000 (5)0.0303 (6)
N100.0527 (7)0.0535 (6)0.0381 (6)0.0037 (5)0.0048 (5)0.0070 (5)
C110.0501 (8)0.0355 (6)0.0400 (6)0.0001 (5)0.0053 (6)0.0010 (5)
C120.0579 (9)0.0431 (7)0.0368 (6)0.0010 (6)0.0062 (6)0.0032 (5)
C130.0566 (9)0.0420 (6)0.0409 (7)0.0016 (6)0.0017 (6)0.0002 (5)
C140.0530 (8)0.0362 (6)0.0482 (7)0.0004 (6)0.0057 (6)0.0019 (5)
C150.0608 (10)0.0614 (8)0.0416 (7)0.0048 (7)0.0118 (7)0.0031 (6)
C160.0558 (9)0.0613 (8)0.0369 (7)0.0025 (7)0.0012 (6)0.0023 (6)
C170.0572 (9)0.0500 (7)0.0623 (9)0.0067 (7)0.0070 (7)0.0022 (7)
C180.0607 (10)0.0674 (9)0.0497 (8)0.0025 (7)0.0154 (7)0.0092 (7)
O190.0772 (7)0.0569 (6)0.0417 (5)0.0039 (5)0.0133 (5)0.0018 (5)
O200.0651 (7)0.0690 (7)0.0666 (7)0.0169 (5)0.0045 (6)0.0212 (5)
C210.0899 (13)0.0691 (10)0.0816 (12)0.0219 (9)0.0003 (10)0.0213 (9)
O220.0582 (7)0.0874 (8)0.0647 (7)0.0025 (6)0.0060 (5)0.0186 (6)
C230.0776 (12)0.0815 (12)0.0741 (11)0.0069 (9)0.0035 (9)0.0232 (10)
Geometric parameters (Å, º) top
C1—C61.3875 (19)C13—C141.3913 (18)
C1—C21.4000 (19)C13—H130.93
C1—N71.4069 (18)C14—C151.3835 (19)
C2—O201.3731 (17)C14—C171.5090 (19)
C2—C31.375 (2)C15—C161.382 (2)
C3—C41.381 (2)C15—H150.93
C3—H30.93C16—H160.93
C4—C51.378 (2)C17—C181.512 (2)
C4—H40.93C17—H17A0.97
C5—O221.3787 (17)C17—H17B0.97
C5—C61.381 (2)C18—O191.4286 (17)
C6—H60.93C18—H18A0.97
N7—C81.3677 (17)C18—H18B0.97
N7—H70.865 (15)O19—H190.867 (18)
C8—O91.2226 (15)O20—C211.4122 (18)
C8—N101.3528 (17)C21—H21A0.96
N10—C111.4159 (17)C21—H21B0.96
N10—H100.867 (14)C21—H21C0.96
C11—C121.3874 (19)O22—C231.414 (2)
C11—C161.3878 (18)C23—H23A0.96
C12—C131.3764 (19)C23—H23B0.96
C12—H120.93C23—H23C0.96
C6—C1—C2119.60 (13)C15—C14—C13116.99 (13)
C6—C1—N7123.65 (13)C15—C14—C17121.59 (12)
C2—C1—N7116.72 (12)C13—C14—C17121.42 (13)
O20—C2—C3125.36 (13)C16—C15—C14122.41 (12)
O20—C2—C1114.92 (12)C16—C15—H15118.8
C3—C2—C1119.72 (13)C14—C15—H15118.8
C2—C3—C4120.47 (14)C15—C16—C11119.71 (13)
C2—C3—H3119.8C15—C16—H16120.1
C4—C3—H3119.8C11—C16—H16120.1
C5—C4—C3119.93 (14)C14—C17—C18113.43 (12)
C5—C4—H4120C14—C17—H17A108.9
C3—C4—H4120C18—C17—H17A108.9
C4—C5—O22115.81 (13)C14—C17—H17B108.9
C4—C5—C6120.46 (14)C18—C17—H17B108.9
O22—C5—C6123.73 (14)H17A—C17—H17B107.7
C5—C6—C1119.80 (13)O19—C18—C17109.69 (11)
C5—C6—H6120.1O19—C18—H18A109.7
C1—C6—H6120.1C17—C18—H18A109.7
C8—N7—C1126.35 (11)O19—C18—H18B109.7
C8—N7—H7115.6 (10)C17—C18—H18B109.7
C1—N7—H7116.0 (10)H18A—C18—H18B108.2
O9—C8—N10124.10 (13)C18—O19—H19107.0 (12)
O9—C8—N7122.73 (13)C2—O20—C21117.91 (12)
N10—C8—N7113.16 (11)O20—C21—H21A109.5
C8—N10—C11128.33 (11)O20—C21—H21B109.5
C8—N10—H10116.8 (9)H21A—C21—H21B109.5
C11—N10—H10114.2 (9)O20—C21—H21C109.5
C12—C11—C16118.65 (12)H21A—C21—H21C109.5
C12—C11—N10116.99 (11)H21B—C21—H21C109.5
C16—C11—N10124.31 (12)C5—O22—C23118.12 (12)
C13—C12—C11120.76 (12)O22—C23—H23A109.5
C13—C12—H12119.6O22—C23—H23B109.5
C11—C12—H12119.6H23A—C23—H23B109.5
C12—C13—C14121.44 (13)O22—C23—H23C109.5
C12—C13—H13119.3H23A—C23—H23C109.5
C14—C13—H13119.3H23B—C23—H23C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O200.865 (15)2.227 (14)2.6113 (16)106.7 (11)
O19—H19···O9i0.867 (18)1.841 (19)2.7080 (14)178.0 (17)
N10—H10···O19ii0.867 (14)2.161 (14)2.9799 (15)157.4 (12)
N7—H7···O19ii0.865 (15)2.189 (15)2.9837 (15)152.6 (13)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H20N2O4
Mr316.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.7551 (18), 6.8095 (6), 12.6881 (12)
β (°) 98.930 (3)
V3)1600.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.31 × 0.28 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13398, 3563, 2473
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.03
No. of reflections3563
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O200.865 (15)2.227 (14)2.6113 (16)106.7 (11)
O19—H19···O9i0.867 (18)1.841 (19)2.7080 (14)178.0 (17)
N10—H10···O19ii0.867 (14)2.161 (14)2.9799 (15)157.4 (12)
N7—H7···O19ii0.865 (15)2.189 (15)2.9837 (15)152.6 (13)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work is the result of a study on the "Human Resource Development Center for Economic Region Leading Industry" Project, supported by the Ministry of Education, Science & Technology (MEST) and the National Research Foundation of Korea (NRF).

References

First citationBattaini, G., Monzani, E., Casella, L., Santagostini, L. & Pagliarin, R. (2000). J. Biol. Inorg. Chem. 5, 262–268.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBriganti, S., Camera, E. & Picardo, M. (2003). Pigm. Cell Res. 16, 101–110.  Web of Science CrossRef Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985.  CrossRef CAS PubMed Google Scholar
First citationChoi, H., Lee, T., Han, B. H., Kang, S. K. & Sung, C. K. (2010). Acta Cryst. E66, o2088–o2089.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrancisco, S., Stefania, B., Mauro, P. & Ghanem, G. (2006). Pigm. Cell Res. 19, 550–571.  Google Scholar
First citationGermanas, J. P., Wang, S., Miner, A., Hao, W. & Ready, J. M. (2007). Bioorg. Med. Chem. Lett. 17, 6871–6875.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrimes, P., Nordlund, J. J., Pandya, A. G., Taylor, S., Rendon, M. & Ortonne, J. P. (2006). J. Am. Acad. Dermatol. 54, 255–261.  Web of Science CrossRef Google Scholar
First citationHearing, V. J. & Jimenez, M. (1987). Int. J. Biochem. 19, 1141–1147.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKwak, S. Y., Noh, J. M., Park, S. H., Byun, J. W. & Choi, H. R. (2010). Bioorg. Med. Chem. Lett. 20, 738–742.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, C. W., Son, E. M., Kim, H. S. & Xu, P. (2007). Bioorg. Med. Chem. Lett. 17, 5462–5464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLemic-Stojcevic, L., Nias, A. H. & Breathnach, A. S. (1995). Exp. Dermatol. 4, 79–81.  CrossRef CAS PubMed Google Scholar
First citationLiangli, Y. (2003). J. Agric. Food Chem. 51, 2344–2347.  Web of Science PubMed Google Scholar
First citationMaeda, K. & Fukuda, M. (1991). J. Soc. Cosmet. Chem. 42, 361–368.  CAS Google Scholar
First citationOhguchi, K., Tanaka, T., Ito, T., Iinuma, M., Matsumoto, K., Akao, Y. & Nozawa, Y. (2003). Biosci. Biotechnol. Biochem. 67, 1587–1589.  CrossRef PubMed CAS Google Scholar
First citationProta, G. (1988). Med. Res. Rev. 8, 525–556.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991–2993.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYi, W., Cao, R., Chen, Z. Y., Yu, L., Ma, L. & Song, H. C. (2009). Chem. Pharm. Bull. 7, 1273–1277.  CrossRef Google Scholar
First citationYi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. C. (2010). Eur. J. Med. Chem. 45, 639–646.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds