metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2,2′-bi­pyridine)­nickel(II) hexa­molybdate

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 24 July 2010; accepted 10 August 2010; online 18 August 2010)

The asymmetric unit of the title compound, [Ni(C10H8N2)3][Mo6O19], consists of one complex [(Ni(C10H8N2)3]2+ cation and one Lindqvist-type [Mo6O19]2− polyanion. The Ni2+ ion is in a distorted octa­hedral coordination by six N atoms from three chelating 2,2′-bipyridine ligands. The Lindqvist-type anion exhibits the characteristic Mo—O bond-length distribution, with the shortest bonds being the Mo—O(terminal) bonds [mean = 1.679 (2) Å] and the longest being those to the central O atom [mean = 2.318 (7) Å]. A number of C—H⋯O inter­actions contribute to the crystal packing.

Related literature

For background to polyoxidometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxidometalates modified with amines, see: Zhang et al. (2009a[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009a). Cryst. Growth Des. 9, 4424-4428.],b[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009b). Inorg. Chim. Acta, 362, 3325-3332.]). For other Lindqvist-type [Mo6O19]2− anions, see: Che et al. (1979[Che, M., Fournier, M. & Launay, J. P. (1979). J. Chem. Phys. 71, 1954-1959.]); Pope (1983[Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin, Heidelberg, New York: Springer-Verlag.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H8N2)3][Mo6O19]

  • Mr = 1406.90

  • Monoclinic, P 21 /n

  • a = 12.3549 (7) Å

  • b = 18.9866 (10) Å

  • c = 17.1974 (9) Å

  • β = 101.114 (1)°

  • V = 3958.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.39 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.762, Tmax = 0.832

  • 27627 measured reflections

  • 6968 independent reflections

  • 5819 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.072

  • S = 1.00

  • 6968 reflections

  • 559 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

N4—Ni1 2.066 (3)
N3—Ni1 2.078 (3)
N2—Ni1 2.082 (3)
N6—Ni1 2.095 (3)
N1—Ni1 2.101 (3)
N5—Ni1 2.105 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29⋯O11i 0.93 2.48 3.293 (5) 146
C2—H2⋯O1ii 0.93 2.66 3.381 (5) 134
C14—H14⋯O5ii 0.93 2.67 3.386 (4) 135
C14—H14⋯O11ii 0.93 2.75 3.396 (4) 127
C8—H8⋯O2iii 0.93 2.66 3.228 (5) 120
C7—H7⋯O2iii 0.93 2.53 3.169 (4) 126
C12—H12⋯O16iv 0.93 2.54 3.241 (4) 132
C9—H9⋯O15v 0.93 2.36 3.165 (4) 144
C21—H21⋯O3vi 0.93 2.54 3.163 (5) 124
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) [x-{\script{1\over 2}}], [-y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxidometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxidomolybdates under hydrothermal conditions (Zhang et al., 2009a,b). Here, we describe the synthesis and structural characterization of the title compound, [(Ni(C10H8N2)3][Mo6O19].

The title compound consists of one complex [(Ni(C10H8N2)3]2+ cation and one Lindqvist-type [Mo6O19]2- polyanion, as shown in Figure 1. The nickel(II) ion is in a distorted octahedral coordination by six N atoms from three chelating 2,2'-bipyridine ligands. The Ni—N bond lengths are in the normal range of 2.066 (3)—2.101 (3) Å and are also in agreement with previous studies (Zhang et al., 2009a). The rms deviations of the three bipyridine groups from planarity are 0.0779, 0.0178, and 0.0806 Å, respectively.

The hexamolybdate anion is of the Lindqvist-type (Pope, 1983; Che et al., 1979) and typically consists of six molybdenum atoms arranged octahedrally around a central oxygen atom. Each molybdenum is then bonded peripherally to neighboring molybdenum atoms through oxygen bridges. One terminal oxygen atom is attached to each molybdenum atom. Alternatively, the structure can be visualized as formed from six MoO6 octahedra that have condensed so that they all share a common vertex.

Multipoint C—H···O interactions between the hydrogen atoms from the organic amines and the terminal oxygen atoms of the anion make a contribution to stabilize the packing of the crystal, as shown in Figure 2 and Table 2.

Related literature top

For background to polyoxidometalates, see: Pope & Müller (1991). For polyoxidometalates modified with amines, see: Zhang et al. (2009a,b). For other Lindqvist-type [Mo6O19]2- anions, see: Che et al. (1979); Pope (1983).

Experimental top

A mixture of sodium molybdate dihydrate (0.04 mmol, 0.10 g), 2,2'-bipyridine (0.32 mmol, 0.05 g), nickel dichloride hexahydrate (0.21 mmol, 0.05 g), and 2-(3'-carboxy-phenoxy)benzoic acid (0.20 mmoL, 0.05 g), and 14 ml H2O was sealed in a 25 ml Teflon-lined stainless steel autoclave at 433 K for three days. Green crystals suitable for the X-ray experiment were obtained. Anal. Calc. for C30H24Mo6N6NiO19: C 25.59, H 1.71, N 5.97%; Found: C 25.48, H 1.65, N 5.88%.

Refinement top

All hydrogen atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The design and synthesis of polyoxidometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxidomolybdates under hydrothermal conditions (Zhang et al., 2009a,b). Here, we describe the synthesis and structural characterization of the title compound, [(Ni(C10H8N2)3][Mo6O19].

The title compound consists of one complex [(Ni(C10H8N2)3]2+ cation and one Lindqvist-type [Mo6O19]2- polyanion, as shown in Figure 1. The nickel(II) ion is in a distorted octahedral coordination by six N atoms from three chelating 2,2'-bipyridine ligands. The Ni—N bond lengths are in the normal range of 2.066 (3)—2.101 (3) Å and are also in agreement with previous studies (Zhang et al., 2009a). The rms deviations of the three bipyridine groups from planarity are 0.0779, 0.0178, and 0.0806 Å, respectively.

The hexamolybdate anion is of the Lindqvist-type (Pope, 1983; Che et al., 1979) and typically consists of six molybdenum atoms arranged octahedrally around a central oxygen atom. Each molybdenum is then bonded peripherally to neighboring molybdenum atoms through oxygen bridges. One terminal oxygen atom is attached to each molybdenum atom. Alternatively, the structure can be visualized as formed from six MoO6 octahedra that have condensed so that they all share a common vertex.

Multipoint C—H···O interactions between the hydrogen atoms from the organic amines and the terminal oxygen atoms of the anion make a contribution to stabilize the packing of the crystal, as shown in Figure 2 and Table 2.

For background to polyoxidometalates, see: Pope & Müller (1991). For polyoxidometalates modified with amines, see: Zhang et al. (2009a,b). For other Lindqvist-type [Mo6O19]2- anions, see: Che et al. (1979); Pope (1983).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cation and anion of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with C—H···O hydrogen bonds as dashed lines.
Tris(2,2'-bipyridine)nickel(II) hexamolybdate top
Crystal data top
[Ni(C10H8N2)3][Mo6O19]F(000) = 2712
Mr = 1406.90Dx = 2.361 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9988 reflections
a = 12.3549 (7) Åθ = 2.3–26.7°
b = 18.9866 (10) ŵ = 2.39 mm1
c = 17.1974 (9) ÅT = 296 K
β = 101.114 (1)°Block, green
V = 3958.5 (4) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6968 independent reflections
Radiation source: fine-focus sealed tube5819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.762, Tmax = 0.832k = 2222
27627 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.047P)2 + 0.0562P]
where P = (Fo2 + 2Fc2)/3
6968 reflections(Δ/σ)max = 0.009
559 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Ni(C10H8N2)3][Mo6O19]V = 3958.5 (4) Å3
Mr = 1406.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.3549 (7) ŵ = 2.39 mm1
b = 18.9866 (10) ÅT = 296 K
c = 17.1974 (9) Å0.12 × 0.10 × 0.08 mm
β = 101.114 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6968 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5819 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.832Rint = 0.027
27627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.00Δρmax = 0.47 e Å3
6968 reflectionsΔρmin = 0.54 e Å3
559 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2047 (3)0.7484 (2)0.7553 (2)0.0372 (8)
H10.18320.78610.78340.045*
C20.1962 (3)0.6817 (2)0.7838 (2)0.0427 (9)
H20.16960.67430.83020.051*
C30.2280 (3)0.6259 (2)0.7419 (2)0.0477 (10)
H30.22290.57990.75960.057*
C40.2672 (3)0.63901 (19)0.6741 (2)0.0437 (9)
H40.28830.60190.64500.052*
C50.2752 (3)0.70811 (17)0.6490 (2)0.0313 (8)
C60.3212 (3)0.72633 (18)0.5787 (2)0.0342 (8)
C70.3484 (3)0.6771 (2)0.5263 (2)0.0471 (10)
H70.33580.62950.53340.057*
C80.3943 (4)0.6991 (2)0.4636 (2)0.0530 (11)
H80.41270.66660.42790.064*
C90.4126 (3)0.7691 (2)0.4546 (2)0.0469 (10)
H90.44410.78500.41290.056*
C100.3838 (3)0.8157 (2)0.5080 (2)0.0405 (9)
H100.39620.86350.50130.049*
C110.5056 (3)0.85816 (19)0.7315 (2)0.0409 (9)
H110.52330.84180.68450.049*
C120.5877 (3)0.8614 (2)0.7979 (3)0.0469 (10)
H120.65940.84790.79560.056*
C130.5618 (3)0.8847 (2)0.8674 (3)0.0478 (10)
H130.61580.88730.91320.057*
C140.4549 (3)0.90433 (19)0.8687 (2)0.0427 (9)
H140.43560.91930.91570.051*
C150.3769 (3)0.90155 (17)0.7999 (2)0.0310 (7)
C160.2599 (3)0.92287 (16)0.7947 (2)0.0301 (7)
C170.2196 (3)0.94944 (19)0.8589 (2)0.0411 (9)
H170.26620.95550.90780.049*
C180.1088 (3)0.9667 (2)0.8489 (2)0.0447 (9)
H180.08020.98440.89120.054*
C190.0415 (3)0.9576 (2)0.7760 (2)0.0459 (10)
H190.03290.96930.76780.055*
C200.0872 (3)0.93069 (19)0.7155 (2)0.0407 (9)
H200.04180.92430.66620.049*
C210.3602 (3)1.00319 (19)0.5998 (2)0.0455 (9)
H210.41280.99620.64570.055*
C220.3655 (4)1.0633 (2)0.5560 (3)0.0539 (11)
H220.42101.09620.57190.065*
C230.2880 (4)1.0738 (2)0.4886 (3)0.0653 (13)
H230.28981.11400.45810.078*
C240.2077 (4)1.0237 (2)0.4670 (3)0.0570 (11)
H240.15401.03030.42160.068*
C250.2060 (3)0.96389 (18)0.5121 (2)0.0360 (8)
C260.1217 (3)0.90776 (18)0.4935 (2)0.0349 (8)
C270.0483 (3)0.9037 (2)0.4220 (2)0.0529 (11)
H270.04940.93740.38280.064*
C280.0262 (4)0.8494 (3)0.4097 (2)0.0641 (13)
H280.07640.84610.36200.077*
C290.0265 (3)0.8002 (2)0.4676 (2)0.0554 (11)
H290.07720.76340.46020.066*
C300.0501 (3)0.8061 (2)0.5371 (2)0.0439 (9)
H300.05040.77250.57650.053*
Mo10.78107 (3)0.201308 (17)0.957341 (19)0.03791 (9)
Mo20.66433 (3)0.063859 (18)0.733433 (19)0.03975 (10)
Mo30.82030 (2)0.038531 (16)0.907938 (19)0.03494 (9)
Mo40.56817 (2)0.097421 (17)0.894435 (19)0.03583 (9)
Mo50.62406 (3)0.227585 (18)0.78320 (2)0.04239 (10)
Mo60.87528 (2)0.167533 (17)0.795574 (19)0.03537 (9)
N10.2427 (2)0.76195 (14)0.68892 (16)0.0305 (6)
N20.3387 (2)0.79591 (15)0.56930 (16)0.0328 (7)
N30.4013 (2)0.87750 (14)0.73126 (16)0.0320 (6)
N40.1938 (2)0.91327 (14)0.72410 (17)0.0329 (6)
N50.1243 (2)0.85861 (15)0.55014 (16)0.0336 (6)
N60.2817 (2)0.95434 (14)0.57853 (17)0.0336 (7)
Ni10.26519 (3)0.86154 (2)0.64110 (2)0.02895 (11)
O10.8233 (2)0.25281 (15)1.03673 (16)0.0553 (7)
O20.8935 (2)0.02945 (14)0.95332 (18)0.0530 (7)
O30.6193 (2)0.01285 (17)0.65399 (17)0.0612 (8)
O40.5487 (2)0.29421 (16)0.73646 (19)0.0661 (9)
O50.4599 (2)0.07256 (15)0.93400 (16)0.0505 (7)
O60.9841 (2)0.19293 (15)0.75756 (17)0.0508 (7)
O70.7549 (2)0.00033 (12)0.80675 (15)0.0426 (6)
O80.92547 (19)0.08525 (12)0.85333 (15)0.0382 (6)
O90.85473 (18)0.11392 (13)0.98427 (14)0.0385 (6)
O100.68230 (19)0.02940 (12)0.93946 (14)0.0380 (6)
O110.6499 (2)0.16021 (13)0.97714 (14)0.0406 (6)
O120.89135 (19)0.21893 (12)0.89103 (15)0.0388 (6)
O130.55100 (19)0.04720 (13)0.79866 (15)0.0400 (6)
O140.7956 (2)0.10435 (14)0.71345 (14)0.0444 (6)
O150.5892 (2)0.15067 (14)0.70706 (14)0.0457 (6)
O160.7612 (2)0.23554 (13)0.75091 (15)0.0452 (6)
O170.51973 (19)0.18101 (13)0.83857 (15)0.0428 (6)
O180.6892 (2)0.26559 (12)0.88422 (16)0.0466 (6)
O190.72228 (16)0.13273 (10)0.84515 (12)0.0287 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (19)0.045 (2)0.031 (2)0.0048 (16)0.0068 (16)0.0007 (16)
C20.043 (2)0.049 (2)0.035 (2)0.0051 (18)0.0053 (17)0.0113 (18)
C30.052 (2)0.038 (2)0.052 (3)0.0061 (18)0.007 (2)0.0122 (19)
C40.052 (2)0.031 (2)0.047 (2)0.0004 (17)0.0077 (19)0.0009 (17)
C50.0310 (18)0.0308 (18)0.0292 (18)0.0004 (14)0.0018 (14)0.0009 (15)
C60.0374 (19)0.034 (2)0.0293 (19)0.0038 (15)0.0024 (15)0.0001 (15)
C70.070 (3)0.033 (2)0.041 (2)0.0031 (19)0.017 (2)0.0066 (17)
C80.072 (3)0.049 (3)0.042 (2)0.010 (2)0.019 (2)0.0105 (19)
C90.053 (2)0.059 (3)0.031 (2)0.012 (2)0.0124 (18)0.0000 (18)
C100.049 (2)0.041 (2)0.035 (2)0.0021 (17)0.0152 (18)0.0047 (16)
C110.037 (2)0.039 (2)0.049 (2)0.0037 (16)0.0136 (18)0.0044 (17)
C120.0312 (19)0.042 (2)0.065 (3)0.0029 (17)0.0023 (19)0.005 (2)
C130.039 (2)0.043 (2)0.054 (3)0.0010 (18)0.0102 (19)0.0046 (19)
C140.048 (2)0.043 (2)0.035 (2)0.0041 (18)0.0024 (17)0.0071 (17)
C150.0348 (18)0.0252 (17)0.0335 (19)0.0018 (14)0.0080 (15)0.0007 (14)
C160.0398 (19)0.0212 (16)0.0306 (19)0.0001 (14)0.0101 (15)0.0036 (14)
C170.049 (2)0.040 (2)0.035 (2)0.0059 (17)0.0096 (17)0.0043 (16)
C180.048 (2)0.047 (2)0.043 (2)0.0073 (18)0.0213 (19)0.0042 (18)
C190.036 (2)0.048 (2)0.056 (3)0.0133 (18)0.0144 (19)0.0000 (19)
C200.039 (2)0.045 (2)0.036 (2)0.0075 (17)0.0029 (17)0.0038 (17)
C210.045 (2)0.041 (2)0.051 (2)0.0072 (18)0.0105 (19)0.0045 (19)
C220.065 (3)0.034 (2)0.067 (3)0.014 (2)0.022 (2)0.005 (2)
C230.094 (4)0.037 (2)0.070 (3)0.006 (2)0.027 (3)0.014 (2)
C240.070 (3)0.045 (2)0.052 (3)0.002 (2)0.002 (2)0.016 (2)
C250.043 (2)0.0325 (19)0.034 (2)0.0056 (16)0.0113 (16)0.0015 (15)
C260.0335 (19)0.040 (2)0.0321 (19)0.0030 (15)0.0080 (15)0.0051 (16)
C270.048 (2)0.072 (3)0.037 (2)0.009 (2)0.0019 (19)0.012 (2)
C280.048 (3)0.105 (4)0.035 (2)0.019 (3)0.0030 (19)0.001 (2)
C290.042 (2)0.075 (3)0.048 (3)0.023 (2)0.007 (2)0.006 (2)
C300.038 (2)0.051 (2)0.044 (2)0.0113 (18)0.0117 (18)0.0042 (18)
Mo10.03947 (19)0.03603 (18)0.03897 (19)0.00078 (14)0.00938 (15)0.00888 (14)
Mo20.03436 (18)0.0506 (2)0.03378 (19)0.00618 (14)0.00537 (14)0.00796 (15)
Mo30.03277 (17)0.03014 (17)0.04154 (19)0.00591 (13)0.00619 (14)0.00551 (13)
Mo40.02880 (17)0.04349 (19)0.03698 (19)0.00007 (13)0.01082 (13)0.00503 (14)
Mo50.03764 (19)0.0421 (2)0.0484 (2)0.01227 (14)0.01073 (15)0.01602 (15)
Mo60.03013 (17)0.03729 (18)0.04096 (19)0.00224 (13)0.01251 (14)0.00231 (14)
N10.0344 (15)0.0301 (15)0.0261 (15)0.0028 (12)0.0033 (12)0.0019 (12)
N20.0369 (16)0.0336 (16)0.0287 (16)0.0019 (13)0.0080 (13)0.0001 (12)
N30.0312 (15)0.0300 (15)0.0344 (16)0.0018 (12)0.0054 (13)0.0015 (12)
N40.0319 (15)0.0318 (15)0.0350 (17)0.0048 (12)0.0064 (13)0.0019 (12)
N50.0311 (15)0.0364 (16)0.0335 (16)0.0016 (13)0.0069 (13)0.0005 (13)
N60.0352 (16)0.0285 (15)0.0378 (17)0.0021 (12)0.0089 (13)0.0007 (13)
Ni10.0297 (2)0.0287 (2)0.0287 (2)0.00063 (18)0.00644 (18)0.00019 (18)
O10.0588 (18)0.0545 (17)0.0537 (18)0.0036 (14)0.0139 (15)0.0208 (14)
O20.0491 (16)0.0368 (14)0.071 (2)0.0091 (12)0.0052 (14)0.0127 (14)
O30.0499 (17)0.083 (2)0.0496 (18)0.0156 (16)0.0074 (14)0.0250 (16)
O40.0562 (18)0.0578 (19)0.083 (2)0.0200 (15)0.0104 (17)0.0318 (17)
O50.0364 (15)0.0683 (19)0.0500 (17)0.0068 (13)0.0166 (13)0.0075 (14)
O60.0387 (15)0.0616 (18)0.0562 (18)0.0080 (13)0.0190 (13)0.0004 (14)
O70.0456 (15)0.0323 (13)0.0498 (16)0.0011 (11)0.0088 (12)0.0086 (12)
O80.0291 (12)0.0359 (13)0.0509 (16)0.0035 (10)0.0107 (11)0.0012 (12)
O90.0338 (13)0.0443 (14)0.0343 (14)0.0037 (11)0.0011 (11)0.0012 (11)
O100.0367 (13)0.0373 (14)0.0397 (14)0.0002 (11)0.0069 (11)0.0099 (11)
O110.0406 (14)0.0464 (15)0.0374 (14)0.0032 (11)0.0138 (12)0.0033 (12)
O120.0347 (13)0.0365 (13)0.0460 (15)0.0058 (11)0.0095 (11)0.0041 (11)
O130.0340 (13)0.0445 (15)0.0409 (15)0.0064 (11)0.0055 (11)0.0028 (12)
O140.0385 (14)0.0629 (17)0.0352 (14)0.0063 (13)0.0155 (12)0.0075 (13)
O150.0370 (14)0.0622 (17)0.0351 (14)0.0028 (12)0.0001 (11)0.0132 (13)
O160.0437 (15)0.0428 (15)0.0516 (16)0.0004 (12)0.0153 (13)0.0189 (12)
O170.0329 (13)0.0500 (15)0.0471 (15)0.0098 (12)0.0117 (12)0.0082 (12)
O180.0501 (16)0.0320 (13)0.0602 (18)0.0073 (12)0.0165 (13)0.0011 (12)
O190.0266 (12)0.0287 (12)0.0313 (12)0.0019 (9)0.0069 (10)0.0021 (10)
Geometric parameters (Å, º) top
C1—N11.341 (4)C26—N51.344 (4)
C1—C21.369 (5)C26—C271.382 (5)
C1—H10.9300C27—C281.371 (6)
C2—C31.381 (5)C27—H270.9300
C2—H20.9300C28—C291.367 (6)
C3—C41.369 (5)C28—H280.9300
C3—H30.9300C29—C301.379 (5)
C4—C51.391 (5)C29—H290.9300
C4—H40.9300C30—N51.343 (4)
C5—N11.336 (4)C30—H300.9300
C5—C61.472 (5)Mo1—O11.679 (3)
C6—N21.353 (4)Mo1—O111.888 (2)
C6—C71.383 (5)Mo1—O91.906 (2)
C7—C81.377 (6)Mo1—O181.952 (3)
C7—H70.9300Mo1—O121.967 (2)
C8—C91.361 (6)Mo1—O192.325 (2)
C8—H80.9300Mo2—O31.680 (3)
C9—C101.371 (5)Mo2—O141.885 (2)
C9—H90.9300Mo2—O151.903 (3)
C10—N21.338 (4)Mo2—O71.937 (2)
C10—H100.9300Mo2—O131.981 (2)
C11—N31.339 (4)Mo2—O192.320 (2)
C11—C121.374 (5)Mo3—O21.680 (2)
C11—H110.9300Mo3—O101.894 (2)
C12—C131.370 (6)Mo3—O71.914 (2)
C12—H120.9300Mo3—O91.933 (2)
C13—C141.377 (5)Mo3—O81.956 (2)
C13—H130.9300Mo3—O192.308 (2)
C14—C151.375 (5)Mo4—O51.681 (2)
C14—H140.9300Mo4—O131.879 (2)
C15—N31.353 (4)Mo4—O171.892 (2)
C15—C161.487 (5)Mo4—O101.958 (2)
C16—N41.339 (4)Mo4—O111.977 (2)
C16—C171.390 (5)Mo4—O192.327 (2)
C17—C181.385 (5)Mo5—O41.680 (3)
C17—H170.9300Mo5—O161.888 (2)
C18—C191.376 (5)Mo5—O181.910 (3)
C18—H180.9300Mo5—O151.953 (3)
C19—C201.372 (5)Mo5—O171.955 (3)
C19—H190.9300Mo5—O192.314 (2)
C20—N41.338 (4)Mo6—O61.675 (3)
C20—H200.9300Mo6—O121.887 (2)
C21—N61.341 (4)Mo6—O81.891 (2)
C21—C221.376 (5)Mo6—O161.956 (2)
C21—H210.9300Mo6—O141.966 (2)
C22—C231.368 (6)Mo6—O192.315 (2)
C22—H220.9300N4—Ni12.066 (3)
C23—C241.372 (6)N3—Ni12.078 (3)
C23—H230.9300N2—Ni12.082 (3)
C24—C251.378 (5)N6—Ni12.095 (3)
C24—H240.9300N1—Ni12.101 (3)
C25—N61.342 (4)N5—Ni12.105 (3)
C25—C261.481 (5)
N1—C1—C2123.1 (4)O2—Mo3—O10103.34 (12)
N1—C1—H1118.5O2—Mo3—O7103.09 (13)
C2—C1—H1118.5O10—Mo3—O788.85 (11)
C1—C2—C3118.3 (4)O2—Mo3—O9103.01 (12)
C1—C2—H2120.8O10—Mo3—O988.04 (10)
C3—C2—H2120.8O7—Mo3—O9153.73 (10)
C4—C3—C2119.2 (4)O2—Mo3—O8102.91 (12)
C4—C3—H3120.4O10—Mo3—O8153.73 (10)
C2—C3—H3120.4O7—Mo3—O886.47 (11)
C3—C4—C5119.6 (4)O9—Mo3—O884.87 (10)
C3—C4—H4120.2O2—Mo3—O19179.07 (11)
C5—C4—H4120.2O10—Mo3—O1977.57 (8)
N1—C5—C4121.0 (3)O7—Mo3—O1977.10 (9)
N1—C5—C6116.4 (3)O9—Mo3—O1976.76 (9)
C4—C5—C6122.6 (3)O8—Mo3—O1976.19 (8)
N2—C6—C7121.1 (3)O5—Mo4—O13104.36 (12)
N2—C6—C5115.0 (3)O5—Mo4—O17104.04 (12)
C7—C6—C5123.8 (3)O13—Mo4—O1790.54 (11)
C8—C7—C6119.6 (4)O5—Mo4—O10102.90 (12)
C8—C7—H7120.2O13—Mo4—O1087.88 (11)
C6—C7—H7120.2O17—Mo4—O10152.54 (10)
C9—C8—C7119.2 (4)O5—Mo4—O11102.35 (12)
C9—C8—H8120.4O13—Mo4—O11153.12 (10)
C7—C8—H8120.4O17—Mo4—O1185.82 (11)
C10—C9—C8118.9 (4)O10—Mo4—O1183.35 (10)
C10—C9—H9120.5O5—Mo4—O19177.53 (11)
C8—C9—H9120.5O13—Mo4—O1977.82 (9)
N2—C10—C9123.2 (4)O17—Mo4—O1976.96 (9)
N2—C10—H10118.4O10—Mo4—O1975.92 (8)
C9—C10—H10118.4O11—Mo4—O1975.41 (9)
N3—C11—C12123.1 (4)O4—Mo5—O16104.16 (13)
N3—C11—H11118.4O4—Mo5—O18104.37 (14)
C12—C11—H11118.4O16—Mo5—O1889.58 (11)
C13—C12—C11118.7 (4)O4—Mo5—O15102.23 (14)
C13—C12—H12120.7O16—Mo5—O1587.55 (11)
C11—C12—H12120.7O18—Mo5—O15153.14 (10)
C12—C13—C14119.2 (4)O4—Mo5—O17102.54 (13)
C12—C13—H13120.4O16—Mo5—O17153.20 (10)
C14—C13—H13120.4O18—Mo5—O1785.97 (11)
C15—C14—C13119.4 (4)O15—Mo5—O1784.68 (11)
C15—C14—H14120.3O4—Mo5—O19177.68 (13)
C13—C14—H14120.3O16—Mo5—O1977.11 (9)
N3—C15—C14121.8 (3)O18—Mo5—O1977.50 (9)
N3—C15—C16114.7 (3)O15—Mo5—O1975.82 (9)
C14—C15—C16123.5 (3)O17—Mo5—O1976.12 (9)
N4—C16—C17121.3 (3)O6—Mo6—O12103.46 (12)
N4—C16—C15115.7 (3)O6—Mo6—O8103.67 (12)
C17—C16—C15123.0 (3)O12—Mo6—O890.08 (10)
C18—C17—C16118.9 (4)O6—Mo6—O16103.22 (12)
C18—C17—H17120.5O12—Mo6—O1686.98 (11)
C16—C17—H17120.5O8—Mo6—O16152.90 (10)
C19—C18—C17119.4 (3)O6—Mo6—O14102.92 (12)
C19—C18—H18120.3O12—Mo6—O14153.44 (10)
C17—C18—H18120.3O8—Mo6—O1486.64 (11)
C18—C19—C20118.3 (3)O16—Mo6—O1484.12 (11)
C18—C19—H19120.9O6—Mo6—O19178.63 (11)
C20—C19—H19120.9O12—Mo6—O1977.51 (9)
N4—C20—C19123.2 (3)O8—Mo6—O1977.24 (9)
N4—C20—H20118.4O16—Mo6—O1975.83 (9)
C19—C20—H20118.4O14—Mo6—O1976.06 (9)
N6—C21—C22122.2 (4)C1—N1—C5118.7 (3)
N6—C21—H21118.9C1—N1—Ni1126.9 (2)
C22—C21—H21118.9C5—N1—Ni1114.3 (2)
C23—C22—C21119.0 (4)C10—N2—C6118.0 (3)
C23—C22—H22120.5C10—N2—Ni1126.5 (2)
C21—C22—H22120.5C6—N2—Ni1114.5 (2)
C22—C23—C24118.7 (4)C11—N3—C15117.8 (3)
C22—C23—H23120.7C11—N3—Ni1127.0 (2)
C24—C23—H23120.7C15—N3—Ni1114.6 (2)
C23—C24—C25120.5 (4)C20—N4—C16118.8 (3)
C23—C24—H24119.8C20—N4—Ni1125.7 (2)
C25—C24—H24119.8C16—N4—Ni1115.1 (2)
N6—C25—C24120.5 (4)C30—N5—C26118.3 (3)
N6—C25—C26115.6 (3)C30—N5—Ni1125.7 (2)
C24—C25—C26123.9 (3)C26—N5—Ni1114.9 (2)
N5—C26—C27121.7 (3)C21—N6—C25119.2 (3)
N5—C26—C25115.2 (3)C21—N6—Ni1125.4 (3)
C27—C26—C25123.0 (3)C25—N6—Ni1115.5 (2)
C28—C27—C26119.0 (4)N4—Ni1—N378.88 (11)
C28—C27—H27120.5N4—Ni1—N2171.03 (11)
C26—C27—H27120.5N3—Ni1—N298.46 (11)
C29—C28—C27119.9 (4)N4—Ni1—N692.97 (11)
C29—C28—H28120.0N3—Ni1—N696.64 (11)
C27—C28—H28120.1N2—Ni1—N695.86 (11)
C28—C29—C30118.5 (4)N4—Ni1—N192.93 (11)
C28—C29—H29120.7N3—Ni1—N189.33 (10)
C30—C29—H29120.7N2—Ni1—N178.42 (11)
N5—C30—C29122.5 (4)N6—Ni1—N1172.31 (11)
N5—C30—H30118.7N4—Ni1—N597.11 (11)
C29—C30—H30118.7N3—Ni1—N5173.07 (11)
O1—Mo1—O11103.71 (12)N2—Ni1—N586.35 (11)
O1—Mo1—O9104.51 (12)N6—Ni1—N577.82 (11)
O11—Mo1—O989.01 (10)N1—Ni1—N596.56 (11)
O1—Mo1—O18102.16 (13)Mo3—O7—Mo2116.45 (12)
O11—Mo1—O1887.81 (11)Mo6—O8—Mo3116.48 (11)
O9—Mo1—O18153.14 (10)Mo1—O9—Mo3116.57 (11)
O1—Mo1—O12103.36 (12)Mo3—O10—Mo4116.47 (12)
O11—Mo1—O12152.83 (10)Mo1—O11—Mo4117.16 (12)
O9—Mo1—O1286.40 (10)Mo6—O12—Mo1116.61 (11)
O18—Mo1—O1284.37 (11)Mo4—O13—Mo2116.26 (12)
O1—Mo1—O19178.41 (12)Mo2—O14—Mo6116.55 (12)
O11—Mo1—O1977.08 (9)Mo2—O15—Mo5116.95 (12)
O9—Mo1—O1976.84 (9)Mo5—O16—Mo6116.83 (12)
O18—Mo1—O1976.45 (9)Mo4—O17—Mo5116.94 (12)
O12—Mo1—O1975.79 (8)Mo5—O18—Mo1116.14 (12)
O3—Mo2—O14104.40 (13)Mo3—O19—Mo5179.53 (11)
O3—Mo2—O15103.63 (13)Mo3—O19—Mo690.08 (7)
O14—Mo2—O1590.04 (12)Mo5—O19—Mo690.07 (7)
O3—Mo2—O7103.27 (13)Mo3—O19—Mo290.06 (7)
O14—Mo2—O787.90 (11)Mo5—O19—Mo290.38 (7)
O15—Mo2—O7152.67 (10)Mo6—O19—Mo289.97 (7)
O3—Mo2—O13102.07 (12)Mo3—O19—Mo189.65 (7)
O14—Mo2—O13153.52 (10)Mo5—O19—Mo189.91 (7)
O15—Mo2—O1384.70 (11)Mo6—O19—Mo189.95 (7)
O7—Mo2—O1385.10 (11)Mo2—O19—Mo1179.69 (11)
O3—Mo2—O19178.16 (11)Mo3—O19—Mo489.93 (7)
O14—Mo2—O1977.42 (9)Mo5—O19—Mo489.92 (7)
O15—Mo2—O1976.57 (9)Mo6—O19—Mo4179.72 (12)
O7—Mo2—O1976.39 (8)Mo2—O19—Mo489.75 (7)
O13—Mo2—O1976.12 (9)Mo1—O19—Mo490.33 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O11i0.932.483.293 (5)146
C2—H2···O1ii0.932.663.381 (5)134
C14—H14···O5ii0.932.673.386 (4)135
C14—H14···O11ii0.932.753.396 (4)127
C8—H8···O2iii0.932.663.228 (5)120
C7—H7···O2iii0.932.533.169 (4)126
C12—H12···O16iv0.932.543.241 (4)132
C9—H9···O15v0.932.363.165 (4)144
C21—H21···O3vi0.932.543.163 (5)124
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y+1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C10H8N2)3][Mo6O19]
Mr1406.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.3549 (7), 18.9866 (10), 17.1974 (9)
β (°) 101.114 (1)
V3)3958.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.39
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.762, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
27627, 6968, 5819
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.072, 1.00
No. of reflections6968
No. of parameters559
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.54

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
N4—Ni12.066 (3)N6—Ni12.095 (3)
N3—Ni12.078 (3)N1—Ni12.101 (3)
N2—Ni12.082 (3)N5—Ni12.105 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O11i0.932.483.293 (5)145.5
C2—H2···O1ii0.932.663.381 (5)134.4
C14—H14···O5ii0.932.673.386 (4)134.7
C14—H14···O11ii0.932.753.396 (4)127.3
C8—H8···O2iii0.932.663.228 (5)120.1
C7—H7···O2iii0.932.533.169 (4)126.0
C12—H12···O16iv0.932.543.241 (4)132.2
C9—H9···O15v0.932.363.165 (4)144.3
C21—H21···O3vi0.932.543.163 (5)124.2
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y+1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x, y+1, z.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (20873160), Shandong Provincial Education Department and Qilu Normal University are gratefully acknowledged.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, M., Fournier, M. & Launay, J. P. (1979). J. Chem. Phys. 71, 1954–1959.  CrossRef CAS Web of Science Google Scholar
First citationPope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin, Heidelberg, New York: Springer-Verlag.  Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009b). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009a). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds