metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dicyanidobis(N,N′-dimethythio­urea-κS)mercury(II)

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, bDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, and cInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: saeed_a786@hotmail.com

(Received 29 July 2010; accepted 30 July 2010; online 4 August 2010)

In the title complex, [Hg(CN)2(C3H8N2S)2], the HgII atom is located on a twofold rotation axis. It is four-coordinate having an irregular tetra­hedral geometry composed of two cyanide C atoms [Hg—C = 2.090 (6) Å] and two thione S atoms of N,N′-dimethyl­thio­urea (dmtu) [Hg—S = 2.7114 (9) Å]. The NC—Hg—CN bond angle of 148.83 (13)° has the greatest deviation from the ideal tetra­hedral geometry. The mol­ecular structure is stabilized by intra­molecular N—H⋯S inter­actions involving dmtu units related by the twofold symmetry. In the crystal, inter­molecular N—H⋯N(CN) hydrogen-bonding inter­actions link symmetry-related mol­ecules into a two-dimensional network in (110).

Related literature

For the biological applications of mercury(II) complexes of thi­o­nes, see: Akrivos (2001[Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.]); Bell et al. (2001[Bell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130-136.]); Popovic et al. (2000[Popovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., M. Rajic, M. Vikic-Topic, D., Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142-152.]). For background to mercury(II) complexes of thio­urea and its derivatives, see: Ahmad et al. (2009[Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191-m1192.]); Jiang et al. (2001[Jiang, X. N., Xu, D., Yuan, D. R. & Yu, W. T. (2001). Chin. Chem. Lett. 12, 279-282.]); Lobana et al. (2008[Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718-723.]); Mufakkar et al. (2010[Mufakkar, M., Tahir, M. N., Sadaf, H., Ahmad, S. & Waheed, A. (2010). Acta Cryst. E66, m1001-m1002.]); Nawaz et al. (2010[Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m952.]); Popovic et al. (2000[Popovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., M. Rajic, M. Vikic-Topic, D., Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142-152.]); Wu et al. (2004[Wu, Z.-Y., Xu, D.-J. & Hung, C.-H. (2004). J. Coord. Chem. 57, 791-796.]). For the crystal structures of cyanide complexes of d10 metals, see: Ahmad et al. (2009[Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191-m1192.]); Altaf et al. (2010[Altaf, M., Stoeckli-Evans, H., Ahmad, S., Isab, A. A., Al-Arfaj, A. R., Malik, M. R. & S. Ali, (2010). J. Chem. Crystallogr. 40. In the press.]); Fettouhi et al. (2010[Fettouhi, M., Riaz Malik, M., Ali, S. A., Isab, A. & Ahmad, S. (2010). Acta Cryst. E66, m997.]); Hanif et al. (2007[Hanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(CN)2(C3H8N2S)2]

  • Mr = 460.98

  • Monoclinic, C 2/c

  • a = 18.1161 (11) Å

  • b = 7.7533 (5) Å

  • c = 14.0553 (8) Å

  • β = 128.533 (3)°

  • V = 1544.32 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.23 mm−1

  • T = 173 K

  • 0.40 × 0.31 × 0.25 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: multi-scan (MULscanABS embedded in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.270, Tmax = 1.000

  • 8116 measured reflections

  • 1451 independent reflections

  • 1411 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.036

  • S = 1.14

  • 1451 reflections

  • 88 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −1.97 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.80 (6) 2.67 (5) 3.415 (4) 157 (4)
N2—H2N⋯N3ii 0.79 (5) 2.21 (6) 2.951 (7) 155 (4)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The structural characterization of mercury(II) complexes of thioamides is an important aspect of inorganic chemistry because such complexes can be used as models for metal-sulfur interactions in biological systems (Akrivos, 2001; Bell et al., 2001; Popovic et al., 2000). Several crystallographic reports about mercury(II) complexes of the type, L2HgX2 (L = thiourea or its derivatives) reveal that these complexes usually consist of discrete monomeric molecules with tetrahedral (somewhat distorted) coordination environments around mercury(II) (Ahmad et al., 2009; Bell et al., 2001; Jiang et al., 2001; Lobana et al., 2008; Mufakkar et al., 2010; Nawaz et al., 2010; Popovic et al., 2000; Wu et al., 2004). Recently, we have reported the crystal structures of a number of cyanido complexes of d10 metal ions with L-type ligands, including the crystal structure of a trinuclear complex, [{(tmtu)2Hg(CN)2}2.Hg(CN)2] (tmtu = tetramethylthiourea), which presents a unique example of a Hg(CN)2 bridged mercury(II)-thione complex (Ahmad et al., 2009; Altaf et al., 2010; Fettouhi et al. 2010; Hanif et al., 2007). Herein, we report on the crystal structure of the title mercury cyanide complex of N,N'-dimethylthiourea, [Hg(dmtu)2(CN)2].

The title monomeric complex is composed of an Hg(CN)2 unit with two N,N'-dimethylthiourea (dmtu) ligands coordinated to the Hg atom via the S atom (Fig. 1). The four-coordinate mercury atom is located on a two-fold rotation axis and adopts a severely distorted tetrahedral geometry, the bond angles being in the range of 94.31 (3) - 148.83 (13)°. The molecular structure is stabilized by intramolecular N-H···S interactions involving dmtu units related by the two-fold symmetry (Fig. 1, Table 1). The bond distances and bond angles are in agreement with those reported for related compounds (Ahmad et al., 2009; Altaf et al., 2010; Jiang et al., 2001; Lobana et al., 2008; Mufakkar et al., 2010; Nawaz et al., 2010; Popovic et al., 2000; Wu et al., 2004). The SCN2 moiety of dmtu is planar [to within 0.002 (1) Å] with the C—N and C—S bond lengths corresponding to the values intermediate between single and double bonds. The Hg-CN unit is nearly linear with a bond angle of 175.3 (3)°. The compound is closely related with [Hg(N,N'-dibutylthiourea)2(CN)2] (Ahmad et al., 2009).

In the crystal packing of the title complex, symmetry-related molecules are connected via intermolecular N—H···N hydrogen bonds, involving the thiourea NH atoms and the N atom of the CN- anions (Fig. 2, Table 1). This gives rise to the formation of a two-dimensional network in (110). This is the same arrangement as observed previously for the dibutylthiourea compound mentioned above.

Related literature top

For biological applications of mercury(II) complexes of thiones, see: Akrivos (2001); Bell et al. (2001); Popovic et al. (2000). For background to mercury(II) complexes of thiourea and its derivatives, see: Ahmad et al. (2009); Jiang et al. (2001); Lobana et al. (2008); Mufakkar et al. (2010); Nawaz et al. (2010); Popovic et al. (2000); Wu et al. (2004). For the crystal structures of cyanide complexes of d10 metals, see: Ahmad et al. (2009); Altaf et al. (2010); Fettouhi et al. (2010); Hanif et al. (2007).

Experimental top

To 0.25 g (1.0 mmol) mercury(II) cyanide in 10 ml methanol was added 2 equivalents of N,N'-dimethylthiourea in methanol. On mixing, a clear solution was obtained. It was then stirred for 30 minutes after which it was filtered and the filtrate kept at RT for crystallization by slow evaporation of the solvent. As a result, colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained.

Refinement top

The NH H-atoms were located in difference electron-density maps and were freely refined: N—H = 0.80 (6) & 0.79 (5) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(parent C-atom).

Structure description top

The structural characterization of mercury(II) complexes of thioamides is an important aspect of inorganic chemistry because such complexes can be used as models for metal-sulfur interactions in biological systems (Akrivos, 2001; Bell et al., 2001; Popovic et al., 2000). Several crystallographic reports about mercury(II) complexes of the type, L2HgX2 (L = thiourea or its derivatives) reveal that these complexes usually consist of discrete monomeric molecules with tetrahedral (somewhat distorted) coordination environments around mercury(II) (Ahmad et al., 2009; Bell et al., 2001; Jiang et al., 2001; Lobana et al., 2008; Mufakkar et al., 2010; Nawaz et al., 2010; Popovic et al., 2000; Wu et al., 2004). Recently, we have reported the crystal structures of a number of cyanido complexes of d10 metal ions with L-type ligands, including the crystal structure of a trinuclear complex, [{(tmtu)2Hg(CN)2}2.Hg(CN)2] (tmtu = tetramethylthiourea), which presents a unique example of a Hg(CN)2 bridged mercury(II)-thione complex (Ahmad et al., 2009; Altaf et al., 2010; Fettouhi et al. 2010; Hanif et al., 2007). Herein, we report on the crystal structure of the title mercury cyanide complex of N,N'-dimethylthiourea, [Hg(dmtu)2(CN)2].

The title monomeric complex is composed of an Hg(CN)2 unit with two N,N'-dimethylthiourea (dmtu) ligands coordinated to the Hg atom via the S atom (Fig. 1). The four-coordinate mercury atom is located on a two-fold rotation axis and adopts a severely distorted tetrahedral geometry, the bond angles being in the range of 94.31 (3) - 148.83 (13)°. The molecular structure is stabilized by intramolecular N-H···S interactions involving dmtu units related by the two-fold symmetry (Fig. 1, Table 1). The bond distances and bond angles are in agreement with those reported for related compounds (Ahmad et al., 2009; Altaf et al., 2010; Jiang et al., 2001; Lobana et al., 2008; Mufakkar et al., 2010; Nawaz et al., 2010; Popovic et al., 2000; Wu et al., 2004). The SCN2 moiety of dmtu is planar [to within 0.002 (1) Å] with the C—N and C—S bond lengths corresponding to the values intermediate between single and double bonds. The Hg-CN unit is nearly linear with a bond angle of 175.3 (3)°. The compound is closely related with [Hg(N,N'-dibutylthiourea)2(CN)2] (Ahmad et al., 2009).

In the crystal packing of the title complex, symmetry-related molecules are connected via intermolecular N—H···N hydrogen bonds, involving the thiourea NH atoms and the N atom of the CN- anions (Fig. 2, Table 1). This gives rise to the formation of a two-dimensional network in (110). This is the same arrangement as observed previously for the dibutylthiourea compound mentioned above.

For biological applications of mercury(II) complexes of thiones, see: Akrivos (2001); Bell et al. (2001); Popovic et al. (2000). For background to mercury(II) complexes of thiourea and its derivatives, see: Ahmad et al. (2009); Jiang et al. (2001); Lobana et al. (2008); Mufakkar et al. (2010); Nawaz et al. (2010); Popovic et al. (2000); Wu et al. (2004). For the crystal structures of cyanide complexes of d10 metals, see: Ahmad et al. (2009); Altaf et al. (2010); Fettouhi et al. (2010); Hanif et al. (2007).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···S interactions are shown as double dashed lines (see Table 1 for details). [Symmetry code (a) -x+1, y, -z+1/2.]
[Figure 2] Fig. 2. A crystal packing diagram of the title complex showing the N—H···S and N—H···N hydrogen bonding interactions (dashed lines; see Table 1 for details).
Dicyanidobis(N,N'-dimethythiourea-κS)mercury(II) top
Crystal data top
[Hg(CN)2(C3H8N2S)2]F(000) = 872
Mr = 460.98Dx = 1.983 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 12331 reflections
a = 18.1161 (11) Åθ = 1.9–26.1°
b = 7.7533 (5) ŵ = 10.23 mm1
c = 14.0553 (8) ÅT = 173 K
β = 128.533 (3)°Block, colourless
V = 1544.32 (16) Å30.40 × 0.31 × 0.25 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
1451 independent reflections
Radiation source: fine-focus sealed tube1411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ– + ω– scansθmax = 25.6°, θmin = 2.9°
Absorption correction: multi-scan
(MULscanABS embedded in PLATON; Spek, 2009)
h = 2121
Tmin = 0.270, Tmax = 1.000k = 99
8116 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.036H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0129P)2 + 2.6833P]
where P = (Fo2 + 2Fc2)/3
1451 reflections(Δ/σ)max < 0.001
88 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 1.97 e Å3
Crystal data top
[Hg(CN)2(C3H8N2S)2]V = 1544.32 (16) Å3
Mr = 460.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.1161 (11) ŵ = 10.23 mm1
b = 7.7533 (5) ÅT = 173 K
c = 14.0553 (8) Å0.40 × 0.31 × 0.25 mm
β = 128.533 (3)°
Data collection top
Stoe IPDS 2
diffractometer
1451 independent reflections
Absorption correction: multi-scan
(MULscanABS embedded in PLATON; Spek, 2009)
1411 reflections with I > 2σ(I)
Tmin = 0.270, Tmax = 1.000Rint = 0.049
8116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.036H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.68 e Å3
1451 reflectionsΔρmin = 1.97 e Å3
88 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.500000.21587 (2)0.250000.0231 (1)
S10.37952 (6)0.02195 (11)0.08082 (7)0.0255 (3)
N10.3941 (2)0.1650 (4)0.2640 (3)0.0277 (9)
N20.2450 (2)0.0856 (4)0.1004 (2)0.0241 (8)
N30.3776 (3)0.3173 (4)0.3370 (3)0.0441 (12)
C10.3355 (2)0.0948 (4)0.1535 (3)0.0210 (9)
C20.3657 (3)0.2174 (5)0.3367 (3)0.0386 (13)
C30.1748 (2)0.0052 (5)0.0168 (3)0.0306 (11)
C40.4229 (3)0.2883 (4)0.3084 (3)0.0295 (10)
H1N0.449 (3)0.161 (5)0.296 (3)0.024 (10)*
H2A0.319700.311500.295400.0580*
H2B0.421200.256900.416800.0580*
H2C0.337100.119100.346800.0580*
H2N0.227 (3)0.128 (5)0.134 (3)0.030 (10)*
H3A0.178700.055100.077700.0460*
H3B0.111800.025300.041100.0460*
H3C0.186800.119200.010600.0460*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0209 (1)0.0274 (1)0.0294 (1)0.00000.0197 (1)0.0000
S10.0249 (5)0.0344 (4)0.0242 (4)0.0067 (3)0.0188 (4)0.0020 (3)
N10.0244 (18)0.0359 (17)0.0275 (13)0.0008 (14)0.0185 (14)0.0045 (12)
N20.0225 (16)0.0279 (15)0.0273 (13)0.0015 (11)0.0181 (12)0.0035 (11)
N30.040 (2)0.058 (2)0.054 (2)0.0070 (17)0.0389 (19)0.0028 (16)
C10.0236 (18)0.0192 (15)0.0255 (14)0.0042 (12)0.0179 (14)0.0031 (11)
C20.041 (3)0.050 (2)0.0352 (18)0.0019 (18)0.0288 (19)0.0128 (16)
C30.022 (2)0.0341 (19)0.0336 (16)0.0025 (15)0.0163 (16)0.0047 (14)
C40.028 (2)0.0288 (17)0.0344 (16)0.0018 (15)0.0207 (16)0.0009 (14)
Geometric parameters (Å, º) top
Hg1—S12.7114 (9)N3—C41.139 (8)
Hg1—C42.090 (6)N1—H1N0.80 (6)
Hg1—S1i2.7114 (9)N2—H2N0.79 (5)
Hg1—C4i2.090 (6)C2—H2A0.9800
S1—C11.736 (4)C2—H2B0.9800
N1—C11.335 (5)C2—H2C0.9800
N1—C21.459 (7)C3—H3A0.9800
N2—C11.314 (6)C3—H3B0.9800
N2—C31.452 (4)C3—H3C0.9800
S1—Hg1—C499.05 (11)S1—C1—N1119.6 (3)
S1—Hg1—S1i94.31 (3)Hg1—C4—N3175.3 (3)
S1—Hg1—C4i102.01 (9)N1—C2—H2A109.00
S1i—Hg1—C4102.01 (9)N1—C2—H2B110.00
C4—Hg1—C4i148.83 (13)N1—C2—H2C109.00
S1i—Hg1—C4i99.05 (11)H2A—C2—H2B109.00
Hg1—S1—C196.84 (11)H2A—C2—H2C109.00
C1—N1—C2123.8 (4)H2B—C2—H2C109.00
C1—N2—C3124.7 (3)N2—C3—H3A109.00
C1—N1—H1N117 (3)N2—C3—H3B110.00
C2—N1—H1N118 (3)N2—C3—H3C109.00
C3—N2—H2N117 (3)H3A—C3—H3B110.00
C1—N2—H2N118 (3)H3A—C3—H3C109.00
S1—C1—N2121.1 (3)H3B—C3—H3C109.00
N1—C1—N2119.3 (4)
C4—Hg1—S1—C132.52 (15)C2—N1—C1—S1174.9 (3)
S1i—Hg1—S1—C170.39 (13)C2—N1—C1—N26.6 (5)
C4i—Hg1—S1—C1170.60 (16)C3—N2—C1—S14.6 (5)
Hg1—S1—C1—N160.6 (3)C3—N2—C1—N1177.0 (3)
Hg1—S1—C1—N2121.0 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.80 (6)2.67 (5)3.415 (4)157 (4)
N2—H2N···N3ii0.79 (5)2.21 (6)2.951 (7)155 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Hg(CN)2(C3H8N2S)2]
Mr460.98
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)18.1161 (11), 7.7533 (5), 14.0553 (8)
β (°) 128.533 (3)
V3)1544.32 (16)
Z4
Radiation typeMo Kα
µ (mm1)10.23
Crystal size (mm)0.40 × 0.31 × 0.25
Data collection
DiffractometerStoe IPDS 2
Absorption correctionMulti-scan
(MULscanABS embedded in PLATON; Spek, 2009)
Tmin, Tmax0.270, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8116, 1451, 1411
Rint0.049
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.036, 1.14
No. of reflections1451
No. of parameters88
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 1.97

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXL97 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.80 (6)2.67 (5)3.415 (4)157 (4)
N2—H2N···N3ii0.79 (5)2.21 (6)2.951 (7)155 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the staff of the X-ray Application Lab, CSEM, Neuchâtel, for access to the X-ray diffractometer.

References

First citationAhmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191–m1192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkrivos, P. D. (2001). Coord. Chem. Rev. 213, 181–210.  Web of Science CrossRef CAS Google Scholar
First citationAltaf, M., Stoeckli-Evans, H., Ahmad, S., Isab, A. A., Al-Arfaj, A. R., Malik, M. R. & S. Ali, (2010). J. Chem. Crystallogr. 40. In the press.  Google Scholar
First citationBell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationFettouhi, M., Riaz Malik, M., Ali, S. A., Isab, A. & Ahmad, S. (2010). Acta Cryst. E66, m997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, X. N., Xu, D., Yuan, D. R. & Yu, W. T. (2001). Chin. Chem. Lett. 12, 279–282.  Google Scholar
First citationLobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718–723.  Web of Science CSD CrossRef CAS Google Scholar
First citationMufakkar, M., Tahir, M. N., Sadaf, H., Ahmad, S. & Waheed, A. (2010). Acta Cryst. E66, m1001–m1002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m952.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPopovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., M. Rajic, M. Vikic-Topic, D., Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWu, Z.-Y., Xu, D.-J. & Hung, C.-H. (2004). J. Coord. Chem. 57, 791–796.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds