organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl­pyridinium 2-carb­­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 26 July 2010; accepted 28 July 2010; online 4 August 2010)

In the title salt, C6H9N2+·C8H5O4, the hydrogen phthalate anion is essentially planar, with a maximum deviation of 0.011 (2) Å. In the crystal structure, the protonated N atom of the pyridine ring and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. In the hydrogen phthalate anion, there is a very strong, almost symmetric, intra­molecular O—H⋯O hydrogen bond, generating an S(7) motif [O⋯O = 2.382 (3) Å]. Furthermore, these two molecular motif rings are connected by a bifurcated N—H⋯(O,O) hydrogen-bonded motif R12(4), forming a supra­molecular ribbon along the b axis. The crystal structure is further stabilized by ππ inter­actions between the cations and anions [centroid–centroid distance = 3.6999 (10) Å].

Related literature

For the crystal structure of phthalic acid, see: Nowacki & Jaggi (1957[Nowacki, W. & Jaggi, H. (1957). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 64, 272-283.]); Küppers (1981[Küppers, H. (1981). Cryst. Struct. Commun. B10, 989-992.]); Ermer (1981[Ermer, O. (1981). Helv. Chim. Acta, 64, 1902-1909.]). For the crystal structures of hydrogen phthalates, see: Jessen (1990[Jessen, S. M. (1990). Acta Cryst. C46, 1513-1515.]); Jin et al. (2003[Jin, Z. M., Pan, Y. J., He, L., Li, Z. G. & Yu, K. B. (2003). Anal. Sci. 19, 333-334.]); Küppers (1978[Küppers, H. (1978). Acta Cryst. B34, 3763-3765.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C8H5O4

  • Mr = 274.27

  • Monoclinic, P 21 /n

  • a = 11.3853 (2) Å

  • b = 8.8203 (2) Å

  • c = 13.4617 (3) Å

  • β = 101.540 (2)°

  • V = 1324.52 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.47 × 0.33 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.980

  • 12332 measured reflections

  • 3049 independent reflections

  • 2054 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.136

  • S = 1.03

  • 3049 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.928 (19) 1.786 (19) 2.713 (2) 175.7 (17)
N2—H2N2⋯O1i 0.95 (2) 1.97 (2) 2.907 (3) 173 (2)
N2—H1N2⋯O3ii 0.90 (3) 2.39 (3) 3.161 (2) 143 (2)
N2—H1N2⋯O4ii 0.90 (3) 2.28 (3) 3.151 (3) 162 (2)
O1—H1O1⋯O3 1.16 (2) 1.22 (2) 2.382 (3) 175 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structure of phthalic acid (Nowacki & Jaggi, 1957; Küppers, 1981; Ermer, 1981) has been reported several times. Analysis of the structures archived in the Cambridge Structural Database (Version 5.28; Allen, 2002) shows that the hydrogen phthalate ions of phthalate salts occur in two different forms: (i) non-planar, where both the carboxyl (COOH) and the carboxylate (COO-) groups are twisted out of the plane of the benzene ring (Jessen, 1990; Jin et al., 2003), and (ii) planar, in which both the COOH and the COO- groups are coplanar with the benzene plane (Küppers, 1978). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound (Fig 1), contains a protonated 2-amino-5-methylpyridinium cation and a hydrogen phthalate anion. In the 2-amino-5-methylpyridinium cation, a wide angle (122.45 (16)°) is subtended at the protonated N1 atom. The hydrogen phthalate anion is almost planar, with a maximum deviation of 0.011 (2) Å for atom C5. The bond lengths are normal (Allen et al., 1987).

In the crystal structure (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O (Table 1) hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). In the hydrogen phthalate anion, there is a very strong intramolecular O—H···O hydrogen bond, generating an S(7) motif [O1···O3 = 2.382 (3) Å]. Furthermore, these two molecular motif rings are connected by a bifurcated hydrogen bonded motif R21(4), involving H1N2 of the 2-amino group and carboxyl atoms O3 and O4 to form a supramolecular ribbon along the b-axis. The crystal structure is further stabilized by ππ interactions between the cations and anions [centroid-centroid distance = 3.6999 (10) Å ; symmetry code: -1/2+x, 1/2-y, 1/2+z].

Related literature top

For the crystal structure of phthalic acid, see: Nowacki & Jaggi (1957); Küppers (1981); Ermer (1981). For the crystal structures of hydrogen phthalates, see: Jessen (1990); Jin et al. (2003); Küppers (1978). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (27 mg, Aldrich) and phthalic acid (41 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

Atoms H1N1, H2N2, H1N2 and H1O1 were located from a difference Fourier map and were refined freely [N—H= 0.90 (3) – 0.95 (2) Å and O—H = 1.16 (3) – 1.22 (3) Å]. The remaining hydrogen atoms were positioned geometrically [C—H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was used for the methyl group.

Structure description top

The crystal structure of phthalic acid (Nowacki & Jaggi, 1957; Küppers, 1981; Ermer, 1981) has been reported several times. Analysis of the structures archived in the Cambridge Structural Database (Version 5.28; Allen, 2002) shows that the hydrogen phthalate ions of phthalate salts occur in two different forms: (i) non-planar, where both the carboxyl (COOH) and the carboxylate (COO-) groups are twisted out of the plane of the benzene ring (Jessen, 1990; Jin et al., 2003), and (ii) planar, in which both the COOH and the COO- groups are coplanar with the benzene plane (Küppers, 1978). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound (Fig 1), contains a protonated 2-amino-5-methylpyridinium cation and a hydrogen phthalate anion. In the 2-amino-5-methylpyridinium cation, a wide angle (122.45 (16)°) is subtended at the protonated N1 atom. The hydrogen phthalate anion is almost planar, with a maximum deviation of 0.011 (2) Å for atom C5. The bond lengths are normal (Allen et al., 1987).

In the crystal structure (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O (Table 1) hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). In the hydrogen phthalate anion, there is a very strong intramolecular O—H···O hydrogen bond, generating an S(7) motif [O1···O3 = 2.382 (3) Å]. Furthermore, these two molecular motif rings are connected by a bifurcated hydrogen bonded motif R21(4), involving H1N2 of the 2-amino group and carboxyl atoms O3 and O4 to form a supramolecular ribbon along the b-axis. The crystal structure is further stabilized by ππ interactions between the cations and anions [centroid-centroid distance = 3.6999 (10) Å ; symmetry code: -1/2+x, 1/2-y, 1/2+z].

For the crystal structure of phthalic acid, see: Nowacki & Jaggi (1957); Küppers (1981); Ermer (1981). For the crystal structures of hydrogen phthalates, see: Jessen (1990); Jin et al. (2003); Küppers (1978). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. A solid line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. A view, down the a-axis, of supramolecular ribbons made up of cations and anions. The dashed lines indicate hydrogen bonds.
2-Amino-5-methylpyridinium 2-carboxybenzoate top
Crystal data top
C6H9N2+·C8H5O4F(000) = 576
Mr = 274.27Dx = 1.375 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3124 reflections
a = 11.3853 (2) Åθ = 2.6–28.6°
b = 8.8203 (2) ŵ = 0.10 mm1
c = 13.4617 (3) ÅT = 296 K
β = 101.540 (2)°Block, colourless
V = 1324.52 (5) Å30.47 × 0.33 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3049 independent reflections
Radiation source: fine-focus sealed tube2054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.953, Tmax = 0.980k = 1111
12332 measured reflectionsl = 1712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.230P]
where P = (Fo2 + 2Fc2)/3
3049 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C6H9N2+·C8H5O4V = 1324.52 (5) Å3
Mr = 274.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3853 (2) ŵ = 0.10 mm1
b = 8.8203 (2) ÅT = 296 K
c = 13.4617 (3) Å0.47 × 0.33 × 0.20 mm
β = 101.540 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3049 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2054 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.980Rint = 0.028
12332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
3049 reflectionsΔρmin = 0.14 e Å3
197 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22365 (18)0.0844 (2)0.56803 (13)0.1122 (6)
O20.11271 (15)0.09799 (18)0.41687 (11)0.0907 (5)
O30.39091 (17)0.0516 (2)0.66089 (11)0.1042 (6)
O40.51382 (17)0.2270 (2)0.63733 (13)0.1129 (6)
C10.24378 (17)0.09471 (19)0.33146 (12)0.0560 (4)
H1A0.17620.04560.29560.067*
C20.30478 (17)0.1928 (2)0.28048 (13)0.0609 (5)
H2A0.27770.21070.21160.073*
C30.40493 (17)0.2635 (2)0.33145 (15)0.0689 (5)
H3A0.44810.32770.29730.083*
C40.44221 (17)0.2395 (2)0.43406 (16)0.0675 (5)
H4A0.51040.28940.46820.081*
C50.38123 (16)0.14284 (19)0.48854 (12)0.0547 (4)
C60.27973 (15)0.06614 (17)0.43513 (12)0.0508 (4)
C70.4338 (2)0.1418 (3)0.60205 (16)0.0719 (6)
C80.1997 (2)0.0461 (2)0.47582 (15)0.0644 (5)
N10.55034 (14)0.21351 (16)0.02651 (10)0.0539 (4)
N20.46340 (18)0.2514 (2)0.14144 (14)0.0712 (5)
C90.54553 (16)0.18327 (18)0.07217 (12)0.0532 (4)
C100.62974 (17)0.0798 (2)0.09620 (14)0.0611 (5)
H10A0.62900.05520.16350.073*
C110.71156 (17)0.0164 (2)0.02130 (14)0.0619 (5)
H11A0.76710.05110.03830.074*
C120.71554 (16)0.04912 (19)0.08173 (13)0.0573 (4)
C130.63244 (16)0.14845 (19)0.10155 (13)0.0581 (4)
H13A0.63160.17290.16860.070*
C140.80669 (19)0.0225 (3)0.16415 (16)0.0798 (6)
H14A0.79530.01330.22890.120*
H14B0.88580.00390.15530.120*
H14C0.79750.13070.16110.120*
H1N10.4931 (17)0.279 (2)0.0425 (14)0.067 (6)*
H2N20.404 (2)0.312 (3)0.1211 (17)0.086 (7)*
H1N20.466 (2)0.227 (3)0.206 (2)0.096 (8)*
H1O10.308 (2)0.022 (3)0.6119 (18)0.100 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1250 (15)0.1378 (15)0.0725 (10)0.0338 (12)0.0163 (10)0.0395 (10)
O20.1126 (12)0.0943 (11)0.0705 (9)0.0427 (9)0.0308 (9)0.0029 (8)
O30.1091 (13)0.1526 (16)0.0486 (8)0.0056 (12)0.0099 (9)0.0157 (10)
O40.1112 (14)0.1306 (15)0.0794 (11)0.0074 (12)0.0228 (10)0.0167 (10)
C10.0660 (11)0.0552 (9)0.0472 (9)0.0033 (8)0.0125 (8)0.0049 (7)
C20.0717 (12)0.0679 (11)0.0459 (9)0.0020 (9)0.0182 (8)0.0024 (8)
C30.0639 (12)0.0761 (12)0.0709 (12)0.0040 (10)0.0236 (10)0.0115 (10)
C40.0502 (10)0.0771 (12)0.0731 (13)0.0024 (9)0.0072 (9)0.0031 (10)
C50.0560 (10)0.0579 (9)0.0500 (9)0.0147 (8)0.0100 (8)0.0032 (7)
C60.0617 (10)0.0460 (8)0.0478 (9)0.0080 (7)0.0185 (8)0.0019 (7)
C70.0707 (13)0.0821 (14)0.0587 (11)0.0237 (11)0.0026 (10)0.0087 (10)
C80.0841 (14)0.0567 (10)0.0575 (11)0.0010 (9)0.0265 (10)0.0015 (8)
N10.0587 (9)0.0533 (8)0.0517 (8)0.0012 (7)0.0158 (7)0.0046 (6)
N20.0868 (13)0.0727 (11)0.0517 (10)0.0110 (9)0.0079 (9)0.0033 (8)
C90.0635 (11)0.0470 (8)0.0502 (9)0.0094 (8)0.0140 (8)0.0026 (7)
C100.0753 (12)0.0588 (10)0.0532 (10)0.0047 (9)0.0225 (9)0.0102 (8)
C110.0617 (11)0.0564 (10)0.0710 (11)0.0005 (8)0.0216 (9)0.0101 (9)
C120.0543 (10)0.0569 (9)0.0613 (10)0.0037 (8)0.0133 (8)0.0035 (8)
C130.0642 (11)0.0639 (10)0.0468 (9)0.0019 (9)0.0124 (8)0.0036 (8)
C140.0699 (13)0.0880 (14)0.0781 (13)0.0120 (11)0.0064 (11)0.0013 (11)
Geometric parameters (Å, º) top
O1—C81.263 (2)N1—C91.345 (2)
O1—H1O11.16 (3)N1—C131.359 (2)
O2—C81.227 (2)N1—H1N10.93 (2)
O3—C71.286 (3)N2—C91.325 (2)
O3—H1O11.22 (3)N2—H2N20.95 (2)
O4—C71.203 (3)N2—H1N20.90 (3)
C1—C21.376 (2)C9—C101.407 (3)
C1—C61.396 (2)C10—C111.350 (3)
C1—H1A0.9300C10—H10A0.9300
C2—C31.359 (3)C11—C121.409 (2)
C2—H2A0.9300C11—H11A0.9300
C3—C41.378 (3)C12—C131.355 (2)
C3—H3A0.9300C12—C141.499 (3)
C4—C51.397 (3)C13—H13A0.9300
C4—H4A0.9300C14—H14A0.9600
C5—C61.406 (2)C14—H14B0.9600
C5—C71.525 (3)C14—H14C0.9600
C6—C81.520 (3)
C8—O1—H1O1111.6 (12)C9—N1—H1N1117.5 (11)
C7—O3—H1O1110.1 (11)C13—N1—H1N1120.1 (11)
C2—C1—C6122.40 (17)C9—N2—H2N2119.9 (13)
C2—C1—H1A118.8C9—N2—H1N2114.5 (15)
C6—C1—H1A118.8H2N2—N2—H1N2125 (2)
C3—C2—C1119.53 (17)N2—C9—N1119.25 (17)
C3—C2—H2A120.2N2—C9—C10123.33 (17)
C1—C2—H2A120.2N1—C9—C10117.42 (16)
C2—C3—C4119.66 (18)C11—C10—C9119.81 (16)
C2—C3—H3A120.2C11—C10—H10A120.1
C4—C3—H3A120.2C9—C10—H10A120.1
C3—C4—C5122.31 (18)C10—C11—C12122.15 (17)
C3—C4—H4A118.8C10—C11—H11A118.9
C5—C4—H4A118.8C12—C11—H11A118.9
C4—C5—C6117.98 (16)C13—C12—C11116.12 (16)
C4—C5—C7113.14 (18)C13—C12—C14122.30 (17)
C6—C5—C7128.82 (17)C11—C12—C14121.58 (17)
C1—C6—C5118.08 (16)C12—C13—N1122.04 (16)
C1—C6—C8113.62 (16)C12—C13—H13A119.0
C5—C6—C8128.29 (16)N1—C13—H13A119.0
O4—C7—O3119.6 (2)C12—C14—H14A109.5
O4—C7—C5120.4 (2)C12—C14—H14B109.5
O3—C7—C5120.0 (2)H14A—C14—H14B109.5
O2—C8—O1121.58 (19)C12—C14—H14C109.5
O2—C8—C6118.33 (16)H14A—C14—H14C109.5
O1—C8—C6120.09 (19)H14B—C14—H14C109.5
C9—N1—C13122.45 (16)
C6—C1—C2—C31.1 (3)C1—C6—C8—O21.1 (2)
C1—C2—C3—C41.9 (3)C5—C6—C8—O2178.03 (17)
C2—C3—C4—C50.7 (3)C1—C6—C8—O1178.51 (19)
C3—C4—C5—C61.2 (3)C5—C6—C8—O12.3 (3)
C3—C4—C5—C7176.18 (17)C13—N1—C9—N2179.69 (16)
C2—C1—C6—C50.8 (3)C13—N1—C9—C100.1 (2)
C2—C1—C6—C8179.89 (16)N2—C9—C10—C11179.23 (17)
C4—C5—C6—C11.9 (2)N1—C9—C10—C110.5 (3)
C7—C5—C6—C1175.00 (16)C9—C10—C11—C120.6 (3)
C4—C5—C6—C8178.91 (16)C10—C11—C12—C130.1 (3)
C7—C5—C6—C84.1 (3)C10—C11—C12—C14179.80 (18)
C4—C5—C7—O45.3 (3)C11—C12—C13—N10.3 (3)
C6—C5—C7—O4171.79 (19)C14—C12—C13—N1179.74 (17)
C4—C5—C7—O3176.07 (19)C9—N1—C13—C120.4 (3)
C6—C5—C7—O36.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.928 (19)1.786 (19)2.713 (2)175.7 (17)
N2—H2N2···O1i0.95 (2)1.97 (2)2.907 (3)173 (2)
N2—H1N2···O3ii0.90 (3)2.39 (3)3.161 (2)143 (2)
N2—H1N2···O4ii0.90 (3)2.28 (3)3.151 (3)162 (2)
O1—H1O1···O31.16 (2)1.22 (2)2.382 (3)175 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C8H5O4
Mr274.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.3853 (2), 8.8203 (2), 13.4617 (3)
β (°) 101.540 (2)
V3)1324.52 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.47 × 0.33 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.953, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
12332, 3049, 2054
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.136, 1.03
No. of reflections3049
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.928 (19)1.786 (19)2.713 (2)175.7 (17)
N2—H2N2···O1i0.95 (2)1.97 (2)2.907 (3)173 (2)
N2—H1N2···O3ii0.90 (3)2.39 (3)3.161 (2)143 (2)
N2—H1N2···O4ii0.90 (3)2.28 (3)3.151 (3)162 (2)
O1—H1O1···O31.16 (2)1.22 (2)2.382 (3)175 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErmer, O. (1981). Helv. Chim. Acta, 64, 1902–1909.  CSD CrossRef CAS Web of Science Google Scholar
First citationJessen, S. M. (1990). Acta Cryst. C46, 1513–1515.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJin, Z. M., Pan, Y. J., He, L., Li, Z. G. & Yu, K. B. (2003). Anal. Sci. 19, 333–334.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKüppers, H. (1978). Acta Cryst. B34, 3763–3765.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKüppers, H. (1981). Cryst. Struct. Commun. B10, 989–992.  Google Scholar
First citationNowacki, W. & Jaggi, H. (1957). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 64, 272–283.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds