organic compounds
4-Methoxybenzaldehyde (5-bromopyrimidin-2-yl)hydrazone monohydrate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my
In the title Schiff base compound, C12H11BrN4O·H2O, the organic molecule exists in an E configuration with respect to the C=N double bond. The pyrimidine ring is approximately planar, with a maximum deviation of 0.011 (2) Å, and forms a dihedral angle of 10.68 (8)° with the benzene ring. In the crystal, intermolecular O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds link the molecules into a two-dimensional network parallel to the ac plane.
Related literature
For the preparation of ). For the importance and biological activity of see: Sridhar & Perumal (2003); Rollas et al. (2002); Terzioglu & Gürsoy (2003). For the biological activity of pyrimidines and their derivatives, see: Ghorab et al. (2004). For a related structure, see: Zhang et al. (2009). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
see: Pasha & Nanjundaswamy (2004Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810033283/wn2404sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810033283/wn2404Isup2.hkl
The title compound was obtained by refluxing 5-bromo-2-hydrazinopyrimidine (0.01 mol) and 4-methoxybenzaldehyde (0.01 mol) in ethanol (30 ml), with the addition of 3 drops of concentrated sulfuric acid over a period of 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The resulting solid product was filtered, washed with ethanol and dried. Colourless single crystals suitable for X-ray analysis were obtained from the ethanol solution by slow evaporation.
All H atoms were located in a difference Fourier map and were refined freely [C—H = 0.89 (2) to 1.03 (2) Å; N—H = 0.81 (3) Å; O—H = 0.83 (3) and 0.84 (3) Å].
Hydrazones have been prepared by treating aryl
with using a variety of solvents in the presence or absence of an acidic catalyst (Pasha & Nanjundaswamy, 2004). Aryl are important building blocks for the synthesis of a variety of such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). have been demonstrated to possess a variety of pharmacological activities (Rollas et al., 2002; Terzioglu & Gürsoy, 2003). These observations have provided the guidelines for the development of new that possess a variety of biological activities. Pyrimidines and their derivatives possess biological and pharmacological activities such as antibacterial, antimicrobial, anti-inflammatory, analgesic, anticonvulsant and anti-aggressive properties (Ghorab et al., 2004). This prompted us to synthesize compounds containing the pyrimidine unit.The ═N4 double bond. The pyrimidine ring (C1–C3/N2/C4/N1) is approximately planar, with a maximum deviation of 0.011 (2) Å at atom C3 and it forms a dihedral angle of 10.68 (8)° with the benzene ring (C6–C11). Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those in the related (Zhang et al., 2009).
of the title Schiff base compound (Fig. 1) consists of one molecule of p-anisyl-(5-bromopyrimidin-2-yl)hydrazone and one water molecule. The p-anisyl-(5-bromopyrimidin-2-yl)hydrazone molecule exists in an E configuration with respect to the C5In the crystal packing (Fig. 2) intermolecular O1W—H1W1···N2, O1W—H1W1···N4 O1W—H2W1···N2, N3—H1N3···O1W and C5—H5A···O1W hydrogen bonds (Table 1) link the molecules into two-dimensional networks parallel to the ac plane.
For the preparation of
see: Pasha & Nanjundaswamy (2004). For the importance and biological activity of see: Sridhar & Perumal (2003); Rollas et al. (2002); Terzioglu & Gürsoy (2003). For the biological activity of pyrimidines and their derivatives, see: Ghorab et al. (2004). For related structures, see: Zhang et al. (2009). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius. | |
Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing the two-dimensional network parallel to the ac plane. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. |
C12H11BrN4O·H2O | F(000) = 2624 |
Mr = 325.17 | Dx = 1.664 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 5163 reflections |
a = 13.0606 (3) Å | θ = 3.7–32.2° |
b = 60.5887 (10) Å | µ = 3.17 mm−1 |
c = 6.5618 (1) Å | T = 100 K |
V = 5192.52 (17) Å3 | Block, colourless |
Z = 16 | 0.40 × 0.34 × 0.21 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 4593 independent reflections |
Radiation source: fine-focus sealed tube | 4107 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
φ and ω scans | θmax = 32.8°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −18→19 |
Tmin = 0.365, Tmax = 0.558 | k = −92→91 |
12616 measured reflections | l = −9→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | All H-atom parameters refined |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.92 | (Δ/σ)max < 0.001 |
4593 reflections | Δρmax = 0.43 e Å−3 |
225 parameters | Δρmin = −0.40 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2037 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.012 (5) |
C12H11BrN4O·H2O | V = 5192.52 (17) Å3 |
Mr = 325.17 | Z = 16 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 13.0606 (3) Å | µ = 3.17 mm−1 |
b = 60.5887 (10) Å | T = 100 K |
c = 6.5618 (1) Å | 0.40 × 0.34 × 0.21 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 4593 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4107 reflections with I > 2σ(I) |
Tmin = 0.365, Tmax = 0.558 | Rint = 0.029 |
12616 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | All H-atom parameters refined |
wR(F2) = 0.052 | Δρmax = 0.43 e Å−3 |
S = 0.92 | Δρmin = −0.40 e Å−3 |
4593 reflections | Absolute structure: Flack (1983), 2037 Friedel pairs |
225 parameters | Absolute structure parameter: 0.012 (5) |
1 restraint |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.088547 (13) | 0.026408 (2) | 0.69853 (3) | 0.02305 (5) | |
O1 | 0.08828 (10) | 0.235769 (16) | 0.7073 (2) | 0.0206 (2) | |
N1 | 0.04426 (12) | 0.07710 (2) | 1.1084 (2) | 0.0181 (3) | |
N2 | 0.05839 (12) | 0.09353 (2) | 0.7759 (2) | 0.0168 (3) | |
N3 | 0.03392 (13) | 0.11442 (2) | 1.0691 (2) | 0.0175 (3) | |
N4 | 0.04759 (10) | 0.133332 (18) | 0.9574 (2) | 0.0156 (2) | |
C1 | 0.05708 (15) | 0.05747 (3) | 1.0215 (3) | 0.0194 (3) | |
C2 | 0.07009 (14) | 0.05472 (3) | 0.8133 (3) | 0.0182 (3) | |
C3 | 0.06893 (12) | 0.07344 (2) | 0.6943 (3) | 0.0176 (3) | |
C4 | 0.04600 (12) | 0.09446 (2) | 0.9789 (2) | 0.0149 (3) | |
C5 | 0.03372 (14) | 0.15154 (3) | 1.0534 (3) | 0.0165 (3) | |
C6 | 0.04819 (11) | 0.17289 (2) | 0.9545 (3) | 0.0147 (3) | |
C7 | 0.03424 (14) | 0.19218 (3) | 1.0688 (2) | 0.0183 (3) | |
C8 | 0.04797 (14) | 0.21285 (2) | 0.9828 (2) | 0.0186 (3) | |
C9 | 0.07649 (14) | 0.21461 (3) | 0.7790 (2) | 0.0167 (3) | |
C10 | 0.09188 (14) | 0.19569 (3) | 0.6627 (2) | 0.0167 (3) | |
C11 | 0.07730 (14) | 0.17500 (3) | 0.7492 (2) | 0.0167 (3) | |
C12 | 0.11941 (17) | 0.23826 (3) | 0.5009 (3) | 0.0242 (4) | |
O1W | 0.24687 (11) | 0.12558 (2) | 0.72556 (19) | 0.0203 (3) | |
H1W1 | 0.184 (2) | 0.1255 (4) | 0.749 (4) | 0.037 (7)* | |
H2W1 | 0.2655 (18) | 0.1332 (4) | 0.826 (4) | 0.027 (6)* | |
H1N3 | 0.0212 (17) | 0.1149 (3) | 1.189 (5) | 0.030 (6)* | |
H1A | 0.0590 (17) | 0.0449 (4) | 1.110 (3) | 0.023 (5)* | |
H3A | 0.0769 (19) | 0.0728 (4) | 0.546 (4) | 0.035 (7)* | |
H5A | 0.0120 (15) | 0.1507 (3) | 1.198 (4) | 0.022 (5)* | |
H7A | 0.0149 (15) | 0.1910 (3) | 1.218 (4) | 0.020 (5)* | |
H8A | 0.041 (2) | 0.2255 (4) | 1.052 (4) | 0.036 (7)* | |
H10A | 0.1133 (19) | 0.1960 (4) | 0.522 (4) | 0.036 (6)* | |
H11A | 0.0919 (16) | 0.1621 (3) | 0.667 (4) | 0.023 (5)* | |
H12A | 0.1909 (19) | 0.2312 (3) | 0.491 (4) | 0.033 (6)* | |
H12B | 0.1262 (15) | 0.2538 (3) | 0.476 (4) | 0.023 (5)* | |
H12C | 0.0727 (17) | 0.2324 (4) | 0.415 (4) | 0.031 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02252 (8) | 0.01183 (6) | 0.03480 (9) | 0.00168 (6) | −0.00211 (8) | −0.00497 (7) |
O1 | 0.0280 (6) | 0.0115 (4) | 0.0223 (5) | −0.0010 (5) | −0.0027 (5) | 0.0006 (6) |
N1 | 0.0205 (8) | 0.0142 (6) | 0.0195 (7) | 0.0001 (5) | 0.0023 (6) | 0.0035 (5) |
N2 | 0.0206 (7) | 0.0128 (6) | 0.0171 (6) | 0.0004 (5) | 0.0013 (5) | −0.0002 (5) |
N3 | 0.0270 (8) | 0.0122 (6) | 0.0133 (6) | 0.0003 (6) | 0.0036 (6) | 0.0007 (5) |
N4 | 0.0195 (6) | 0.0118 (5) | 0.0156 (6) | −0.0014 (5) | 0.0001 (6) | 0.0011 (5) |
C1 | 0.0193 (9) | 0.0127 (7) | 0.0261 (8) | −0.0008 (6) | 0.0026 (7) | 0.0035 (6) |
C2 | 0.0152 (8) | 0.0123 (7) | 0.0273 (9) | −0.0005 (6) | 0.0001 (6) | −0.0020 (6) |
C3 | 0.0165 (8) | 0.0152 (6) | 0.0211 (7) | 0.0015 (5) | 0.0001 (8) | −0.0020 (7) |
C4 | 0.0149 (7) | 0.0123 (6) | 0.0176 (8) | −0.0002 (5) | 0.0011 (6) | 0.0006 (5) |
C5 | 0.0194 (9) | 0.0138 (7) | 0.0164 (7) | 0.0013 (6) | 0.0009 (6) | −0.0002 (5) |
C6 | 0.0147 (7) | 0.0125 (6) | 0.0168 (6) | 0.0011 (5) | −0.0007 (7) | −0.0007 (6) |
C7 | 0.0226 (9) | 0.0159 (7) | 0.0164 (7) | 0.0017 (6) | −0.0009 (6) | −0.0017 (6) |
C8 | 0.0236 (8) | 0.0127 (7) | 0.0195 (8) | 0.0020 (6) | −0.0029 (7) | −0.0040 (6) |
C9 | 0.0180 (8) | 0.0106 (7) | 0.0216 (7) | −0.0002 (6) | −0.0041 (6) | 0.0006 (5) |
C10 | 0.0195 (8) | 0.0152 (6) | 0.0154 (8) | −0.0006 (6) | 0.0004 (6) | −0.0011 (5) |
C11 | 0.0210 (9) | 0.0127 (6) | 0.0164 (8) | 0.0019 (6) | −0.0006 (6) | −0.0021 (5) |
C12 | 0.0258 (10) | 0.0161 (7) | 0.0307 (10) | −0.0008 (7) | 0.0068 (8) | 0.0045 (6) |
O1W | 0.0256 (7) | 0.0202 (5) | 0.0152 (6) | −0.0051 (5) | 0.0025 (6) | −0.0026 (5) |
Br1—C2 | 1.8886 (17) | C5—H5A | 0.99 (2) |
O1—C9 | 1.3745 (19) | C6—C7 | 1.401 (2) |
O1—C12 | 1.422 (2) | C6—C11 | 1.406 (2) |
N1—C1 | 1.329 (2) | C7—C8 | 1.386 (2) |
N1—C4 | 1.352 (2) | C7—H7A | 1.01 (2) |
N2—C3 | 1.337 (2) | C8—C9 | 1.392 (2) |
N2—C4 | 1.343 (2) | C8—H8A | 0.89 (2) |
N3—C4 | 1.356 (2) | C9—C10 | 1.392 (2) |
N3—N4 | 1.3719 (18) | C10—C11 | 1.389 (2) |
N3—H1N3 | 0.81 (3) | C10—H10A | 0.96 (2) |
N4—C5 | 1.284 (2) | C11—H11A | 0.97 (2) |
C1—C2 | 1.387 (3) | C12—H12A | 1.03 (2) |
C1—H1A | 0.95 (2) | C12—H12B | 0.957 (19) |
C2—C3 | 1.377 (2) | C12—H12C | 0.90 (3) |
C3—H3A | 0.98 (3) | O1W—H1W1 | 0.83 (3) |
C5—C6 | 1.459 (2) | O1W—H2W1 | 0.84 (3) |
C9—O1—C12 | 117.21 (13) | C11—C6—C5 | 122.81 (14) |
C1—N1—C4 | 115.10 (14) | C8—C7—C6 | 121.30 (15) |
C3—N2—C4 | 116.63 (14) | C8—C7—H7A | 119.3 (9) |
C4—N3—N4 | 119.77 (14) | C6—C7—H7A | 119.4 (9) |
C4—N3—H1N3 | 118.9 (14) | C7—C8—C9 | 119.66 (14) |
N4—N3—H1N3 | 121.3 (14) | C7—C8—H8A | 123.6 (17) |
C5—N4—N3 | 115.91 (15) | C9—C8—H8A | 116.8 (17) |
N1—C1—C2 | 123.06 (16) | O1—C9—C10 | 124.35 (15) |
N1—C1—H1A | 117.1 (13) | O1—C9—C8 | 115.47 (14) |
C2—C1—H1A | 119.8 (13) | C10—C9—C8 | 120.17 (14) |
C3—C2—C1 | 117.26 (16) | C11—C10—C9 | 119.95 (14) |
C3—C2—Br1 | 121.57 (14) | C11—C10—H10A | 116.7 (14) |
C1—C2—Br1 | 121.17 (14) | C9—C10—H10A | 123.3 (14) |
N2—C3—C2 | 121.59 (19) | C10—C11—C6 | 120.72 (14) |
N2—C3—H3A | 116.5 (15) | C10—C11—H11A | 118.3 (13) |
C2—C3—H3A | 121.9 (15) | C6—C11—H11A | 120.9 (13) |
N2—C4—N1 | 126.34 (14) | O1—C12—H12A | 105.9 (13) |
N2—C4—N3 | 118.98 (13) | O1—C12—H12B | 106.9 (14) |
N1—C4—N3 | 114.68 (14) | H12A—C12—H12B | 108.1 (17) |
N4—C5—C6 | 121.68 (15) | O1—C12—H12C | 111.1 (15) |
N4—C5—H5A | 117.8 (10) | H12A—C12—H12C | 114 (2) |
C6—C5—H5A | 120.5 (10) | H12B—C12—H12C | 110 (2) |
C7—C6—C11 | 118.19 (14) | H1W1—O1W—H2W1 | 98 (2) |
C7—C6—C5 | 118.99 (16) | ||
C4—N3—N4—C5 | 179.31 (15) | N4—C5—C6—C7 | −178.50 (16) |
C4—N1—C1—C2 | −0.8 (3) | N4—C5—C6—C11 | 0.4 (3) |
N1—C1—C2—C3 | −0.3 (3) | C11—C6—C7—C8 | 0.4 (3) |
N1—C1—C2—Br1 | 179.74 (14) | C5—C6—C7—C8 | 179.38 (16) |
C4—N2—C3—C2 | −1.9 (2) | C6—C7—C8—C9 | −0.2 (3) |
C1—C2—C3—N2 | 1.7 (3) | C12—O1—C9—C10 | −0.7 (2) |
Br1—C2—C3—N2 | −178.33 (12) | C12—O1—C9—C8 | 178.75 (17) |
C3—N2—C4—N1 | 0.8 (3) | C7—C8—C9—O1 | 180.00 (15) |
C3—N2—C4—N3 | −179.34 (15) | C7—C8—C9—C10 | −0.5 (3) |
C1—N1—C4—N2 | 0.6 (3) | O1—C9—C10—C11 | −179.58 (15) |
C1—N1—C4—N3 | −179.35 (16) | C8—C9—C10—C11 | 0.9 (3) |
N4—N3—C4—N2 | −8.4 (2) | C9—C10—C11—C6 | −0.7 (3) |
N4—N3—C4—N1 | 171.56 (15) | C7—C6—C11—C10 | 0.1 (2) |
N3—N4—C5—C6 | 178.45 (14) | C5—C6—C11—C10 | −178.87 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···N2 | 0.84 (3) | 2.55 (3) | 3.153 (2) | 131 (2) |
O1W—H1W1···N4 | 0.84 (3) | 2.30 (3) | 3.0511 (19) | 151 (2) |
O1W—H2W1···N2i | 0.84 (3) | 2.01 (3) | 2.8341 (19) | 169 (2) |
N3—H1N3···O1Wii | 0.81 (3) | 1.99 (3) | 2.7773 (19) | 165.1 (19) |
C5—H5A···O1Wii | 0.99 (2) | 2.43 (2) | 3.257 (2) | 140.7 (13) |
Symmetry codes: (i) x+1/4, −y+1/4, z+1/4; (ii) x−1/4, −y+1/4, z+3/4. |
Experimental details
Crystal data | |
Chemical formula | C12H11BrN4O·H2O |
Mr | 325.17 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 100 |
a, b, c (Å) | 13.0606 (3), 60.5887 (10), 6.5618 (1) |
V (Å3) | 5192.52 (17) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 3.17 |
Crystal size (mm) | 0.40 × 0.34 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.365, 0.558 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12616, 4593, 4107 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.761 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.052, 0.92 |
No. of reflections | 4593 |
No. of parameters | 225 |
No. of restraints | 1 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.43, −0.40 |
Absolute structure | Flack (1983), 2037 Friedel pairs |
Absolute structure parameter | 0.012 (5) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···N2 | 0.84 (3) | 2.55 (3) | 3.153 (2) | 131 (2) |
O1W—H1W1···N4 | 0.84 (3) | 2.30 (3) | 3.0511 (19) | 151 (2) |
O1W—H2W1···N2i | 0.84 (3) | 2.01 (3) | 2.8341 (19) | 169 (2) |
N3—H1N3···O1Wii | 0.81 (3) | 1.99 (3) | 2.7773 (19) | 165.1 (19) |
C5—H5A···O1Wii | 0.99 (2) | 2.43 (2) | 3.257 (2) | 140.7 (13) |
Symmetry codes: (i) x+1/4, −y+1/4, z+1/4; (ii) x−1/4, −y+1/4, z+3/4. |
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of a research fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ghorab, M. M., Ismail, Z. H., Abdel-Gawad, S. M. & Aziem, A. A. (2004). Heteroat. Chem. 15, 57–62. Web of Science CrossRef CAS Google Scholar
Pasha, M. A. & Nanjundaswamy, H. M. (2004). Synth. Commun. 34, 3827–3831. Web of Science CrossRef CAS Google Scholar
Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488. Web of Science CrossRef CAS Google Scholar
Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazones have been prepared by treating aryl hydrazines with carbonyl compounds using a variety of solvents in the presence or absence of an acidic catalyst (Pasha & Nanjundaswamy, 2004). Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). Hydrazones have been demonstrated to possess a variety of pharmacological activities (Rollas et al., 2002; Terzioglu & Gürsoy, 2003). These observations have provided the guidelines for the development of new hydrazones that possess a variety of biological activities. Pyrimidines and their derivatives possess biological and pharmacological activities such as antibacterial, antimicrobial, anti-inflammatory, analgesic, anticonvulsant and anti-aggressive properties (Ghorab et al., 2004). This prompted us to synthesize compounds containing the pyrimidine unit.
The asymmetric unit of the title Schiff base compound (Fig. 1) consists of one molecule of p-anisyl-(5-bromopyrimidin-2-yl)hydrazone and one water molecule. The p-anisyl-(5-bromopyrimidin-2-yl)hydrazone molecule exists in an E configuration with respect to the C5═N4 double bond. The pyrimidine ring (C1–C3/N2/C4/N1) is approximately planar, with a maximum deviation of 0.011 (2) Å at atom C3 and it forms a dihedral angle of 10.68 (8)° with the benzene ring (C6–C11). Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those in the related crystal structure (Zhang et al., 2009).
In the crystal packing (Fig. 2) intermolecular O1W—H1W1···N2, O1W—H1W1···N4 O1W—H2W1···N2, N3—H1N3···O1W and C5—H5A···O1W hydrogen bonds (Table 1) link the molecules into two-dimensional networks parallel to the ac plane.