organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy­benzaldehyde (5-bromo­pyrimidin-2-yl)hydrazone monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 August 2010; accepted 18 August 2010; online 28 August 2010)

In the title Schiff base compound, C12H11BrN4O·H2O, the organic mol­ecule exists in an E configuration with respect to the C=N double bond. The pyrimidine ring is approximately planar, with a maximum deviation of 0.011 (2) Å, and forms a dihedral angle of 10.68 (8)° with the benzene ring. In the crystal, inter­molecular O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network parallel to the ac plane.

Related literature

For the preparation of hydrazones, see: Pasha & Nanjundaswamy (2004[Pasha, M. A. & Nanjundaswamy, H. M. (2004). Synth. Commun. 34, 3827-3831.]). For the importance and biological activity of hydrazones, see: Sridhar & Perumal (2003[Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483-1488.]); Rollas et al. (2002[Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Terzioglu & Gürsoy (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]). For the biological activity of pyrimidines and their derivatives, see: Ghorab et al. (2004[Ghorab, M. M., Ismail, Z. H., Abdel-Gawad, S. M. & Aziem, A. A. (2004). Heteroat. Chem. 15, 57-62.]). For a related structure, see: Zhang et al. (2009[Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11BrN4O·H2O

  • Mr = 325.17

  • Orthorhombic, F d d 2

  • a = 13.0606 (3) Å

  • b = 60.5887 (10) Å

  • c = 6.5618 (1) Å

  • V = 5192.52 (17) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 3.17 mm−1

  • T = 100 K

  • 0.40 × 0.34 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.365, Tmax = 0.558

  • 12616 measured reflections

  • 4593 independent reflections

  • 4107 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.052

  • S = 0.92

  • 4593 reflections

  • 225 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2037 Friedel pairs

  • Flack parameter: 0.012 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯N2 0.84 (3) 2.55 (3) 3.153 (2) 131 (2)
O1W—H1W1⋯N4 0.84 (3) 2.30 (3) 3.0511 (19) 151 (2)
O1W—H2W1⋯N2i 0.84 (3) 2.01 (3) 2.8341 (19) 169 (2)
N3—H1N3⋯O1Wii 0.81 (3) 1.99 (3) 2.7773 (19) 165.1 (19)
C5—H5A⋯O1Wii 0.99 (2) 2.43 (2) 3.257 (2) 140.7 (13)
Symmetry codes: (i) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}]; (ii) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{3\over 4}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones have been prepared by treating aryl hydrazines with carbonyl compounds using a variety of solvents in the presence or absence of an acidic catalyst (Pasha & Nanjundaswamy, 2004). Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). Hydrazones have been demonstrated to possess a variety of pharmacological activities (Rollas et al., 2002; Terzioglu & Gürsoy, 2003). These observations have provided the guidelines for the development of new hydrazones that possess a variety of biological activities. Pyrimidines and their derivatives possess biological and pharmacological activities such as antibacterial, antimicrobial, anti-inflammatory, analgesic, anticonvulsant and anti-aggressive properties (Ghorab et al., 2004). This prompted us to synthesize compounds containing the pyrimidine unit.

The asymmetric unit of the title Schiff base compound (Fig. 1) consists of one molecule of p-anisyl-(5-bromopyrimidin-2-yl)hydrazone and one water molecule. The p-anisyl-(5-bromopyrimidin-2-yl)hydrazone molecule exists in an E configuration with respect to the C5N4 double bond. The pyrimidine ring (C1–C3/N2/C4/N1) is approximately planar, with a maximum deviation of 0.011 (2) Å at atom C3 and it forms a dihedral angle of 10.68 (8)° with the benzene ring (C6–C11). Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those in the related crystal structure (Zhang et al., 2009).

In the crystal packing (Fig. 2) intermolecular O1W—H1W1···N2, O1W—H1W1···N4 O1W—H2W1···N2, N3—H1N3···O1W and C5—H5A···O1W hydrogen bonds (Table 1) link the molecules into two-dimensional networks parallel to the ac plane.

Related literature top

For the preparation of hydrazones, see: Pasha & Nanjundaswamy (2004). For the importance and biological activity of hydrazones, see: Sridhar & Perumal (2003); Rollas et al. (2002); Terzioglu & Gürsoy (2003). For the biological activity of pyrimidines and their derivatives, see: Ghorab et al. (2004). For related structures, see: Zhang et al. (2009). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was obtained by refluxing 5-bromo-2-hydrazinopyrimidine (0.01 mol) and 4-methoxybenzaldehyde (0.01 mol) in ethanol (30 ml), with the addition of 3 drops of concentrated sulfuric acid over a period of 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The resulting solid product was filtered, washed with ethanol and dried. Colourless single crystals suitable for X-ray analysis were obtained from the ethanol solution by slow evaporation.

Refinement top

All H atoms were located in a difference Fourier map and were refined freely [C—H = 0.89 (2) to 1.03 (2) Å; N—H = 0.81 (3) Å; O—H = 0.83 (3) and 0.84 (3) Å].

Structure description top

Hydrazones have been prepared by treating aryl hydrazines with carbonyl compounds using a variety of solvents in the presence or absence of an acidic catalyst (Pasha & Nanjundaswamy, 2004). Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). Hydrazones have been demonstrated to possess a variety of pharmacological activities (Rollas et al., 2002; Terzioglu & Gürsoy, 2003). These observations have provided the guidelines for the development of new hydrazones that possess a variety of biological activities. Pyrimidines and their derivatives possess biological and pharmacological activities such as antibacterial, antimicrobial, anti-inflammatory, analgesic, anticonvulsant and anti-aggressive properties (Ghorab et al., 2004). This prompted us to synthesize compounds containing the pyrimidine unit.

The asymmetric unit of the title Schiff base compound (Fig. 1) consists of one molecule of p-anisyl-(5-bromopyrimidin-2-yl)hydrazone and one water molecule. The p-anisyl-(5-bromopyrimidin-2-yl)hydrazone molecule exists in an E configuration with respect to the C5N4 double bond. The pyrimidine ring (C1–C3/N2/C4/N1) is approximately planar, with a maximum deviation of 0.011 (2) Å at atom C3 and it forms a dihedral angle of 10.68 (8)° with the benzene ring (C6–C11). Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those in the related crystal structure (Zhang et al., 2009).

In the crystal packing (Fig. 2) intermolecular O1W—H1W1···N2, O1W—H1W1···N4 O1W—H2W1···N2, N3—H1N3···O1W and C5—H5A···O1W hydrogen bonds (Table 1) link the molecules into two-dimensional networks parallel to the ac plane.

For the preparation of hydrazones, see: Pasha & Nanjundaswamy (2004). For the importance and biological activity of hydrazones, see: Sridhar & Perumal (2003); Rollas et al. (2002); Terzioglu & Gürsoy (2003). For the biological activity of pyrimidines and their derivatives, see: Ghorab et al. (2004). For related structures, see: Zhang et al. (2009). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing the two-dimensional network parallel to the ac plane. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
4-Methoxybenzaldehyde (5-bromopyrimidin-2-yl)hydrazone monohydrate top
Crystal data top
C12H11BrN4O·H2OF(000) = 2624
Mr = 325.17Dx = 1.664 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 5163 reflections
a = 13.0606 (3) Åθ = 3.7–32.2°
b = 60.5887 (10) ŵ = 3.17 mm1
c = 6.5618 (1) ÅT = 100 K
V = 5192.52 (17) Å3Block, colourless
Z = 160.40 × 0.34 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4593 independent reflections
Radiation source: fine-focus sealed tube4107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 32.8°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1819
Tmin = 0.365, Tmax = 0.558k = 9291
12616 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
4593 reflectionsΔρmax = 0.43 e Å3
225 parametersΔρmin = 0.40 e Å3
1 restraintAbsolute structure: Flack (1983), 2037 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (5)
Crystal data top
C12H11BrN4O·H2OV = 5192.52 (17) Å3
Mr = 325.17Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 13.0606 (3) ŵ = 3.17 mm1
b = 60.5887 (10) ÅT = 100 K
c = 6.5618 (1) Å0.40 × 0.34 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4593 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4107 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.558Rint = 0.029
12616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.052Δρmax = 0.43 e Å3
S = 0.92Δρmin = 0.40 e Å3
4593 reflectionsAbsolute structure: Flack (1983), 2037 Friedel pairs
225 parametersAbsolute structure parameter: 0.012 (5)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.088547 (13)0.026408 (2)0.69853 (3)0.02305 (5)
O10.08828 (10)0.235769 (16)0.7073 (2)0.0206 (2)
N10.04426 (12)0.07710 (2)1.1084 (2)0.0181 (3)
N20.05839 (12)0.09353 (2)0.7759 (2)0.0168 (3)
N30.03392 (13)0.11442 (2)1.0691 (2)0.0175 (3)
N40.04759 (10)0.133332 (18)0.9574 (2)0.0156 (2)
C10.05708 (15)0.05747 (3)1.0215 (3)0.0194 (3)
C20.07009 (14)0.05472 (3)0.8133 (3)0.0182 (3)
C30.06893 (12)0.07344 (2)0.6943 (3)0.0176 (3)
C40.04600 (12)0.09446 (2)0.9789 (2)0.0149 (3)
C50.03372 (14)0.15154 (3)1.0534 (3)0.0165 (3)
C60.04819 (11)0.17289 (2)0.9545 (3)0.0147 (3)
C70.03424 (14)0.19218 (3)1.0688 (2)0.0183 (3)
C80.04797 (14)0.21285 (2)0.9828 (2)0.0186 (3)
C90.07649 (14)0.21461 (3)0.7790 (2)0.0167 (3)
C100.09188 (14)0.19569 (3)0.6627 (2)0.0167 (3)
C110.07730 (14)0.17500 (3)0.7492 (2)0.0167 (3)
C120.11941 (17)0.23826 (3)0.5009 (3)0.0242 (4)
O1W0.24687 (11)0.12558 (2)0.72556 (19)0.0203 (3)
H1W10.184 (2)0.1255 (4)0.749 (4)0.037 (7)*
H2W10.2655 (18)0.1332 (4)0.826 (4)0.027 (6)*
H1N30.0212 (17)0.1149 (3)1.189 (5)0.030 (6)*
H1A0.0590 (17)0.0449 (4)1.110 (3)0.023 (5)*
H3A0.0769 (19)0.0728 (4)0.546 (4)0.035 (7)*
H5A0.0120 (15)0.1507 (3)1.198 (4)0.022 (5)*
H7A0.0149 (15)0.1910 (3)1.218 (4)0.020 (5)*
H8A0.041 (2)0.2255 (4)1.052 (4)0.036 (7)*
H10A0.1133 (19)0.1960 (4)0.522 (4)0.036 (6)*
H11A0.0919 (16)0.1621 (3)0.667 (4)0.023 (5)*
H12A0.1909 (19)0.2312 (3)0.491 (4)0.033 (6)*
H12B0.1262 (15)0.2538 (3)0.476 (4)0.023 (5)*
H12C0.0727 (17)0.2324 (4)0.415 (4)0.031 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02252 (8)0.01183 (6)0.03480 (9)0.00168 (6)0.00211 (8)0.00497 (7)
O10.0280 (6)0.0115 (4)0.0223 (5)0.0010 (5)0.0027 (5)0.0006 (6)
N10.0205 (8)0.0142 (6)0.0195 (7)0.0001 (5)0.0023 (6)0.0035 (5)
N20.0206 (7)0.0128 (6)0.0171 (6)0.0004 (5)0.0013 (5)0.0002 (5)
N30.0270 (8)0.0122 (6)0.0133 (6)0.0003 (6)0.0036 (6)0.0007 (5)
N40.0195 (6)0.0118 (5)0.0156 (6)0.0014 (5)0.0001 (6)0.0011 (5)
C10.0193 (9)0.0127 (7)0.0261 (8)0.0008 (6)0.0026 (7)0.0035 (6)
C20.0152 (8)0.0123 (7)0.0273 (9)0.0005 (6)0.0001 (6)0.0020 (6)
C30.0165 (8)0.0152 (6)0.0211 (7)0.0015 (5)0.0001 (8)0.0020 (7)
C40.0149 (7)0.0123 (6)0.0176 (8)0.0002 (5)0.0011 (6)0.0006 (5)
C50.0194 (9)0.0138 (7)0.0164 (7)0.0013 (6)0.0009 (6)0.0002 (5)
C60.0147 (7)0.0125 (6)0.0168 (6)0.0011 (5)0.0007 (7)0.0007 (6)
C70.0226 (9)0.0159 (7)0.0164 (7)0.0017 (6)0.0009 (6)0.0017 (6)
C80.0236 (8)0.0127 (7)0.0195 (8)0.0020 (6)0.0029 (7)0.0040 (6)
C90.0180 (8)0.0106 (7)0.0216 (7)0.0002 (6)0.0041 (6)0.0006 (5)
C100.0195 (8)0.0152 (6)0.0154 (8)0.0006 (6)0.0004 (6)0.0011 (5)
C110.0210 (9)0.0127 (6)0.0164 (8)0.0019 (6)0.0006 (6)0.0021 (5)
C120.0258 (10)0.0161 (7)0.0307 (10)0.0008 (7)0.0068 (8)0.0045 (6)
O1W0.0256 (7)0.0202 (5)0.0152 (6)0.0051 (5)0.0025 (6)0.0026 (5)
Geometric parameters (Å, º) top
Br1—C21.8886 (17)C5—H5A0.99 (2)
O1—C91.3745 (19)C6—C71.401 (2)
O1—C121.422 (2)C6—C111.406 (2)
N1—C11.329 (2)C7—C81.386 (2)
N1—C41.352 (2)C7—H7A1.01 (2)
N2—C31.337 (2)C8—C91.392 (2)
N2—C41.343 (2)C8—H8A0.89 (2)
N3—C41.356 (2)C9—C101.392 (2)
N3—N41.3719 (18)C10—C111.389 (2)
N3—H1N30.81 (3)C10—H10A0.96 (2)
N4—C51.284 (2)C11—H11A0.97 (2)
C1—C21.387 (3)C12—H12A1.03 (2)
C1—H1A0.95 (2)C12—H12B0.957 (19)
C2—C31.377 (2)C12—H12C0.90 (3)
C3—H3A0.98 (3)O1W—H1W10.83 (3)
C5—C61.459 (2)O1W—H2W10.84 (3)
C9—O1—C12117.21 (13)C11—C6—C5122.81 (14)
C1—N1—C4115.10 (14)C8—C7—C6121.30 (15)
C3—N2—C4116.63 (14)C8—C7—H7A119.3 (9)
C4—N3—N4119.77 (14)C6—C7—H7A119.4 (9)
C4—N3—H1N3118.9 (14)C7—C8—C9119.66 (14)
N4—N3—H1N3121.3 (14)C7—C8—H8A123.6 (17)
C5—N4—N3115.91 (15)C9—C8—H8A116.8 (17)
N1—C1—C2123.06 (16)O1—C9—C10124.35 (15)
N1—C1—H1A117.1 (13)O1—C9—C8115.47 (14)
C2—C1—H1A119.8 (13)C10—C9—C8120.17 (14)
C3—C2—C1117.26 (16)C11—C10—C9119.95 (14)
C3—C2—Br1121.57 (14)C11—C10—H10A116.7 (14)
C1—C2—Br1121.17 (14)C9—C10—H10A123.3 (14)
N2—C3—C2121.59 (19)C10—C11—C6120.72 (14)
N2—C3—H3A116.5 (15)C10—C11—H11A118.3 (13)
C2—C3—H3A121.9 (15)C6—C11—H11A120.9 (13)
N2—C4—N1126.34 (14)O1—C12—H12A105.9 (13)
N2—C4—N3118.98 (13)O1—C12—H12B106.9 (14)
N1—C4—N3114.68 (14)H12A—C12—H12B108.1 (17)
N4—C5—C6121.68 (15)O1—C12—H12C111.1 (15)
N4—C5—H5A117.8 (10)H12A—C12—H12C114 (2)
C6—C5—H5A120.5 (10)H12B—C12—H12C110 (2)
C7—C6—C11118.19 (14)H1W1—O1W—H2W198 (2)
C7—C6—C5118.99 (16)
C4—N3—N4—C5179.31 (15)N4—C5—C6—C7178.50 (16)
C4—N1—C1—C20.8 (3)N4—C5—C6—C110.4 (3)
N1—C1—C2—C30.3 (3)C11—C6—C7—C80.4 (3)
N1—C1—C2—Br1179.74 (14)C5—C6—C7—C8179.38 (16)
C4—N2—C3—C21.9 (2)C6—C7—C8—C90.2 (3)
C1—C2—C3—N21.7 (3)C12—O1—C9—C100.7 (2)
Br1—C2—C3—N2178.33 (12)C12—O1—C9—C8178.75 (17)
C3—N2—C4—N10.8 (3)C7—C8—C9—O1180.00 (15)
C3—N2—C4—N3179.34 (15)C7—C8—C9—C100.5 (3)
C1—N1—C4—N20.6 (3)O1—C9—C10—C11179.58 (15)
C1—N1—C4—N3179.35 (16)C8—C9—C10—C110.9 (3)
N4—N3—C4—N28.4 (2)C9—C10—C11—C60.7 (3)
N4—N3—C4—N1171.56 (15)C7—C6—C11—C100.1 (2)
N3—N4—C5—C6178.45 (14)C5—C6—C11—C10178.87 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N20.84 (3)2.55 (3)3.153 (2)131 (2)
O1W—H1W1···N40.84 (3)2.30 (3)3.0511 (19)151 (2)
O1W—H2W1···N2i0.84 (3)2.01 (3)2.8341 (19)169 (2)
N3—H1N3···O1Wii0.81 (3)1.99 (3)2.7773 (19)165.1 (19)
C5—H5A···O1Wii0.99 (2)2.43 (2)3.257 (2)140.7 (13)
Symmetry codes: (i) x+1/4, y+1/4, z+1/4; (ii) x1/4, y+1/4, z+3/4.

Experimental details

Crystal data
Chemical formulaC12H11BrN4O·H2O
Mr325.17
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)13.0606 (3), 60.5887 (10), 6.5618 (1)
V3)5192.52 (17)
Z16
Radiation typeMo Kα
µ (mm1)3.17
Crystal size (mm)0.40 × 0.34 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.365, 0.558
No. of measured, independent and
observed [I > 2σ(I)] reflections
12616, 4593, 4107
Rint0.029
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.052, 0.92
No. of reflections4593
No. of parameters225
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.43, 0.40
Absolute structureFlack (1983), 2037 Friedel pairs
Absolute structure parameter0.012 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N20.84 (3)2.55 (3)3.153 (2)131 (2)
O1W—H1W1···N40.84 (3)2.30 (3)3.0511 (19)151 (2)
O1W—H2W1···N2i0.84 (3)2.01 (3)2.8341 (19)169 (2)
N3—H1N3···O1Wii0.81 (3)1.99 (3)2.7773 (19)165.1 (19)
C5—H5A···O1Wii0.99 (2)2.43 (2)3.257 (2)140.7 (13)
Symmetry codes: (i) x+1/4, y+1/4, z+1/4; (ii) x1/4, y+1/4, z+3/4.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhorab, M. M., Ismail, Z. H., Abdel-Gawad, S. M. & Aziem, A. A. (2004). Heteroat. Chem. 15, 57–62.  Web of Science CrossRef CAS Google Scholar
First citationPasha, M. A. & Nanjundaswamy, H. M. (2004). Synth. Commun. 34, 3827–3831.  Web of Science CrossRef CAS Google Scholar
First citationRollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.  Web of Science CrossRef CAS Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds