organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(E)-2-Bromo­benzyl­­idene]-8-(2-bromo­phen­yl)-2-hy­dr­oxy-10-methyl-3,10-di­aza­hexa­cyclo­[10.7.1.13,7.02,11.07,11.016,20]henicosa-1(20),12,14,16,18-pentaen-6-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 14 August 2010; accepted 18 August 2010; online 21 August 2010)

In the title compound, C33H26Br2N2O2, the piperidine group adopts an envelope conformation while the two pyrrolidine groups adopt half-chair and envelope conformations. The dihydro­acenaphthyl­ene group is almost planar, with a maximum deviation of 0.105 (1) Å. The dihedral angle between the two bromo­phenyl rings is 60.19 (8)°. An intra­molecular O—H⋯N inter­action is observed, generating an S(5) ring motif. The crystal structure is stabilized by inter­molecular C—H⋯O inter­actions. Short Br⋯Br [3.461 (1) Å] and Br⋯C [3.322 (2) Å] inter­molecular contacts are observed, as well as ππ inter­actions [centroid–centroid distance = 3.793 (1) Å].

Related literature

For biological studies of five-membered heterocycles, pyrrolidines and piperidines, see: Shi et al. (2009[Shi, F., Mancuso, R. & Larock, R. C. (2009). Tetrahedron Lett. 50, 4067-4070.]); Nair & Suja (2007[Nair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247-12275.]); Nájera & Sansano (2005[Nájera, C. N. & Sansano, J. M. (2005). Angew. Chem. Int. Ed. 117, 6428-6432.]); Coldham & Hufton (2005[Coldham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765-2810.]); Daly et al. (1986[Daly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod. 49, 265-280.]); El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the graph-set description of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a closely related crystal structure, see: Kumar et al. (2010[Kumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1444-o1445.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C33H26Br2N2O2

  • Mr = 642.38

  • Triclinic, [P \overline 1]

  • a = 8.3334 (14) Å

  • b = 12.4213 (19) Å

  • c = 12.8062 (19) Å

  • α = 80.623 (4)°

  • β = 79.787 (4)°

  • γ = 88.213 (4)°

  • V = 1287.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.19 mm−1

  • T = 100 K

  • 0.52 × 0.41 × 0.19 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.288, Tmax = 0.584

  • 27238 measured reflections

  • 9152 independent reflections

  • 8233 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.105

  • S = 1.18

  • 9152 reflections

  • 357 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.99 e Å−3

  • Δρmin = −1.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.75 (3) 2.12 (3) 2.6735 (18) 132 (3)
C32—H32A⋯O2i 0.93 2.47 3.374 (2) 163
C33—H33A⋯O2i 0.96 2.55 3.292 (2) 134
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Multi-component 1,3-dipolar cycloaddition of ylidic species, such as azomethine ylides with olefinic dipolarophiles, plays a key role in the construction of biologically active five-membered heterocycles (Shi et al., 2009; Nair et al., 2007; Nájera et al., 2005; Coldham et al., 2005). Highly substituted pyrrolidines have gained much importance since they form the central skeleton of many natural products (Daly et al., 1986). Heterocycles with the piperidine substructure display important biological activities, such as cytotoxic and anticancer activities (El-Subbagh et al., 2000 ; Dimmock et al., 2001). Because of the biological importance of these heterocycles, the crystal structure determination of the title compound was carried out and the results are presented in this paper.

All geometrical parameters of the title compound (Fig.1) are within normal ranges and comparable with those in a previously reported structure (Kumar et al., 2010). The piperidine (N1/C8-C12) ring adopts an envelope confirmation [Q = 0.617 (2) Å, Θ = 44.6 (2)°, φ= 60.6 (2)°; Cremer & Pople, 1975]. The two five-membered pyrrolidine rings, (N1/C10-C11/C13-C14) and (N2/C10/C13/C25-C26), adopt half-chair and envelope comformations respectively [Q = 0.452 (2) Å, φ= 198.8 (2)° and Q = 0.401 (2) Å, φ= 352.9 (2)°]. The dihydroacenaphthylene group, (C13-C24) is almost planar, with a maximum deviation of 0.105 (1) Å for atom C13. The dihedral angle between the two bromophenyl rings (C1-C6) and (C27-C32) is 60.19 (8)°.

An intramolecular O2—H1O2···N2 hydrogen bond (Table 1) forms a five-membered ring, generating an S(5) hydrogen bond ring motif (Bernstein et al., 1995). In the crystal structure, molecules are connected by intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2). Short intermolecular contacts Br2···Br2 [3.461 (1)Å] and Br1···C29 [3.322 (2)Å] are also observed. The crystal structure is further stabilized by π-π interactions with Cg1···Cg1 = 3.793 (1) Å, where Cg1 is the centroid of the C1-C6 benzene ring.

Related literature top

For biological studies of five-membered heterocycles, pyrrolidines and piperidines, see: Shi et al. (2009); Nair et al. (2007); Nájera et al. (2005); Coldham et al. (2005); Daly et al. (1986); El-Subbagh et al. (2000); Dimmock et al. (2001). For ring puckering analysis, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For a closely related crystal structure, see: Kumar et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3,5-bis[(E)-(2-bromophenyl)methylidene]tetrahydro-4(1H)-pyridinone (0.100 g, 0.231 mmol), acenaphthenequinone (0.042 g, 0.231 mmol) and sarcosine (0.021 g, 0.231 mmol) was dissolved in methanol (10 ml) and refluxed for 1 hour. After completion of the reaction, as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered, washed with water and recrystallised from a petroleum ether-ethyl acetate mixture (1:1) to yield the title compound as pale yellow crystals.

Refinement top

The H atom attached to O2 was located in a difference map and refined isotropically [O—H = 0.75 (3) Å]. The remaining H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å for Csp2, 0.96 Å for methyl C, 0.97 Å for methylene C and 0.98 Å for methine C]; Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating model was used for the methyl group.

Structure description top

Multi-component 1,3-dipolar cycloaddition of ylidic species, such as azomethine ylides with olefinic dipolarophiles, plays a key role in the construction of biologically active five-membered heterocycles (Shi et al., 2009; Nair et al., 2007; Nájera et al., 2005; Coldham et al., 2005). Highly substituted pyrrolidines have gained much importance since they form the central skeleton of many natural products (Daly et al., 1986). Heterocycles with the piperidine substructure display important biological activities, such as cytotoxic and anticancer activities (El-Subbagh et al., 2000 ; Dimmock et al., 2001). Because of the biological importance of these heterocycles, the crystal structure determination of the title compound was carried out and the results are presented in this paper.

All geometrical parameters of the title compound (Fig.1) are within normal ranges and comparable with those in a previously reported structure (Kumar et al., 2010). The piperidine (N1/C8-C12) ring adopts an envelope confirmation [Q = 0.617 (2) Å, Θ = 44.6 (2)°, φ= 60.6 (2)°; Cremer & Pople, 1975]. The two five-membered pyrrolidine rings, (N1/C10-C11/C13-C14) and (N2/C10/C13/C25-C26), adopt half-chair and envelope comformations respectively [Q = 0.452 (2) Å, φ= 198.8 (2)° and Q = 0.401 (2) Å, φ= 352.9 (2)°]. The dihydroacenaphthylene group, (C13-C24) is almost planar, with a maximum deviation of 0.105 (1) Å for atom C13. The dihedral angle between the two bromophenyl rings (C1-C6) and (C27-C32) is 60.19 (8)°.

An intramolecular O2—H1O2···N2 hydrogen bond (Table 1) forms a five-membered ring, generating an S(5) hydrogen bond ring motif (Bernstein et al., 1995). In the crystal structure, molecules are connected by intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2). Short intermolecular contacts Br2···Br2 [3.461 (1)Å] and Br1···C29 [3.322 (2)Å] are also observed. The crystal structure is further stabilized by π-π interactions with Cg1···Cg1 = 3.793 (1) Å, where Cg1 is the centroid of the C1-C6 benzene ring.

For biological studies of five-membered heterocycles, pyrrolidines and piperidines, see: Shi et al. (2009); Nair et al. (2007); Nájera et al. (2005); Coldham et al. (2005); Daly et al. (1986); El-Subbagh et al. (2000); Dimmock et al. (2001). For ring puckering analysis, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For a closely related crystal structure, see: Kumar et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
5-[(E)-2-Bromobenzylidene]-8-(2-bromophenyl)-2-hydroxy-10-methyl-3,10- diazahexacyclo[10.7.1.13,7.02,11.07,11.016,20]henicosa- 1(20),12,14,16,18-pentaen-6-one top
Crystal data top
C33H26Br2N2O2Z = 2
Mr = 642.38F(000) = 648
Triclinic, P1Dx = 1.657 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3334 (14) ÅCell parameters from 9995 reflections
b = 12.4213 (19) Åθ = 3.3–35.1°
c = 12.8062 (19) ŵ = 3.19 mm1
α = 80.623 (4)°T = 100 K
β = 79.787 (4)°Block, yellow
γ = 88.213 (4)°0.52 × 0.41 × 0.19 mm
V = 1287.2 (3) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
9152 independent reflections
Radiation source: fine-focus sealed tube8233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 32.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.288, Tmax = 0.584k = 1818
27238 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.2037P]
where P = (Fo2 + 2Fc2)/3
9152 reflections(Δ/σ)max = 0.004
357 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 1.17 e Å3
Crystal data top
C33H26Br2N2O2γ = 88.213 (4)°
Mr = 642.38V = 1287.2 (3) Å3
Triclinic, P1Z = 2
a = 8.3334 (14) ÅMo Kα radiation
b = 12.4213 (19) ŵ = 3.19 mm1
c = 12.8062 (19) ÅT = 100 K
α = 80.623 (4)°0.52 × 0.41 × 0.19 mm
β = 79.787 (4)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
9152 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8233 reflections with I > 2σ(I)
Tmin = 0.288, Tmax = 0.584Rint = 0.022
27238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.99 e Å3
9152 reflectionsΔρmin = 1.17 e Å3
357 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.856585 (19)1.068250 (12)0.386199 (13)0.01626 (5)
Br21.025391 (18)0.886819 (12)0.064263 (12)0.01437 (5)
O10.65922 (15)0.94414 (9)0.09019 (9)0.0152 (2)
O20.55092 (14)0.49704 (9)0.16200 (10)0.0131 (2)
N10.70944 (16)0.61925 (10)0.22074 (10)0.0111 (2)
N20.45256 (16)0.66041 (10)0.02417 (10)0.0109 (2)
C10.5433 (2)0.80453 (13)0.49862 (13)0.0169 (3)
H1A0.48520.75680.47050.020*
C20.5306 (2)0.79520 (14)0.60979 (14)0.0193 (3)
H2A0.46660.74060.65510.023*
C30.6137 (2)0.86754 (14)0.65250 (13)0.0193 (3)
H3A0.60540.86140.72660.023*
C40.7092 (2)0.94912 (13)0.58513 (13)0.0173 (3)
H4A0.76360.99850.61380.021*
C50.72276 (19)0.95632 (12)0.47468 (12)0.0131 (2)
C60.64227 (19)0.88461 (12)0.42811 (12)0.0132 (2)
C70.65161 (19)0.89702 (12)0.31078 (12)0.0139 (3)
H7A0.63840.96720.27490.017*
C80.67730 (18)0.81722 (12)0.25027 (12)0.0124 (2)
C90.67026 (18)0.84990 (12)0.13230 (12)0.0117 (2)
C100.66598 (17)0.75367 (11)0.07288 (11)0.0104 (2)
C110.78932 (18)0.66652 (12)0.11188 (12)0.0122 (2)
H11A0.80860.61130.06550.015*
H11B0.89240.69980.11340.015*
C120.71804 (19)0.69952 (12)0.29215 (12)0.0135 (2)
H12A0.82750.69780.30840.016*
H12B0.64430.67640.35920.016*
C130.49859 (17)0.69498 (11)0.11969 (11)0.0101 (2)
C140.54394 (17)0.59505 (11)0.20430 (11)0.0106 (2)
C150.41293 (18)0.59321 (12)0.30260 (12)0.0115 (2)
C160.3780 (2)0.52059 (13)0.39629 (13)0.0161 (3)
H16A0.43950.45730.40760.019*
C170.2453 (2)0.54430 (14)0.47598 (13)0.0189 (3)
H17A0.22090.49530.53970.023*
C180.1516 (2)0.63738 (14)0.46208 (13)0.0182 (3)
H18A0.06640.65060.51610.022*
C190.18568 (19)0.71303 (12)0.36501 (12)0.0137 (2)
C200.10036 (19)0.81138 (13)0.33826 (13)0.0153 (3)
H20A0.01300.83210.38690.018*
C210.14739 (19)0.87631 (12)0.23970 (13)0.0148 (3)
H21A0.09020.94060.22370.018*
C220.27944 (18)0.84897 (12)0.16176 (12)0.0128 (2)
H22A0.30840.89450.09620.015*
C230.36326 (17)0.75363 (11)0.18568 (11)0.0106 (2)
C240.31619 (18)0.68768 (12)0.28712 (12)0.0113 (2)
C250.50120 (18)0.75089 (12)0.06406 (12)0.0128 (2)
H25A0.42500.81120.05890.015*
H25B0.50530.72740.13310.015*
C260.67185 (18)0.78475 (12)0.05064 (11)0.0112 (2)
H26A0.68100.86430.06990.013*
C270.81308 (18)0.73321 (12)0.11802 (11)0.0117 (2)
C280.97428 (18)0.76858 (12)0.12970 (12)0.0120 (2)
C291.10552 (19)0.72043 (13)0.18784 (12)0.0149 (3)
H29A1.21060.74630.19300.018*
C301.0790 (2)0.63323 (13)0.23832 (13)0.0173 (3)
H30A1.16610.59920.27620.021*
C310.9204 (2)0.59773 (13)0.23128 (13)0.0170 (3)
H31A0.90110.54090.26660.020*
C320.7901 (2)0.64644 (13)0.17176 (12)0.0150 (3)
H32A0.68510.62080.16750.018*
C330.28025 (18)0.63124 (12)0.03566 (12)0.0132 (2)
H33A0.26410.60030.02570.020*
H33B0.21390.69540.04050.020*
H33C0.25010.57890.09970.020*
H1O20.547 (4)0.516 (2)0.104 (2)0.028 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01810 (8)0.01305 (8)0.01711 (8)0.00218 (5)0.00054 (6)0.00328 (6)
Br20.01454 (8)0.01177 (8)0.01788 (8)0.00154 (5)0.00447 (5)0.00345 (5)
O10.0200 (5)0.0107 (4)0.0152 (5)0.0001 (4)0.0042 (4)0.0015 (4)
O20.0173 (5)0.0089 (4)0.0143 (5)0.0019 (4)0.0043 (4)0.0039 (4)
N10.0120 (5)0.0103 (5)0.0112 (5)0.0008 (4)0.0027 (4)0.0017 (4)
N20.0113 (5)0.0117 (5)0.0100 (5)0.0005 (4)0.0021 (4)0.0017 (4)
C10.0182 (7)0.0154 (6)0.0167 (7)0.0008 (5)0.0006 (5)0.0035 (5)
C20.0225 (7)0.0163 (7)0.0164 (7)0.0009 (6)0.0025 (6)0.0006 (5)
C30.0255 (8)0.0194 (7)0.0124 (6)0.0030 (6)0.0032 (6)0.0016 (5)
C40.0206 (7)0.0176 (7)0.0148 (6)0.0013 (5)0.0045 (5)0.0048 (5)
C50.0141 (6)0.0113 (6)0.0137 (6)0.0014 (5)0.0021 (5)0.0024 (5)
C60.0149 (6)0.0122 (6)0.0126 (6)0.0016 (5)0.0020 (5)0.0031 (5)
C70.0155 (6)0.0122 (6)0.0143 (6)0.0001 (5)0.0031 (5)0.0027 (5)
C80.0138 (6)0.0114 (6)0.0125 (6)0.0003 (5)0.0035 (5)0.0021 (5)
C90.0107 (6)0.0115 (6)0.0135 (6)0.0013 (4)0.0026 (5)0.0031 (5)
C100.0110 (5)0.0094 (5)0.0107 (6)0.0002 (4)0.0019 (4)0.0016 (4)
C110.0111 (6)0.0120 (6)0.0131 (6)0.0015 (5)0.0028 (5)0.0008 (5)
C120.0167 (6)0.0115 (6)0.0135 (6)0.0003 (5)0.0058 (5)0.0026 (5)
C130.0112 (5)0.0083 (5)0.0105 (5)0.0008 (4)0.0014 (4)0.0011 (4)
C140.0118 (6)0.0081 (5)0.0124 (6)0.0010 (4)0.0029 (4)0.0024 (4)
C150.0122 (6)0.0103 (5)0.0118 (6)0.0002 (4)0.0018 (5)0.0011 (4)
C160.0190 (7)0.0131 (6)0.0151 (6)0.0017 (5)0.0027 (5)0.0004 (5)
C170.0198 (7)0.0188 (7)0.0146 (7)0.0006 (6)0.0007 (5)0.0031 (5)
C180.0180 (7)0.0197 (7)0.0142 (6)0.0014 (6)0.0019 (5)0.0002 (5)
C190.0133 (6)0.0135 (6)0.0141 (6)0.0007 (5)0.0009 (5)0.0031 (5)
C200.0139 (6)0.0151 (6)0.0175 (7)0.0030 (5)0.0019 (5)0.0059 (5)
C210.0145 (6)0.0130 (6)0.0178 (7)0.0042 (5)0.0039 (5)0.0045 (5)
C220.0142 (6)0.0108 (6)0.0137 (6)0.0017 (5)0.0037 (5)0.0015 (5)
C230.0109 (5)0.0095 (5)0.0116 (6)0.0008 (4)0.0022 (4)0.0024 (4)
C240.0115 (6)0.0105 (5)0.0121 (6)0.0005 (4)0.0025 (5)0.0017 (5)
C250.0126 (6)0.0140 (6)0.0112 (6)0.0001 (5)0.0024 (5)0.0002 (5)
C260.0119 (6)0.0109 (5)0.0104 (6)0.0003 (4)0.0017 (4)0.0012 (4)
C270.0132 (6)0.0110 (6)0.0104 (6)0.0011 (5)0.0011 (5)0.0010 (4)
C280.0136 (6)0.0104 (6)0.0117 (6)0.0001 (5)0.0022 (5)0.0013 (5)
C290.0132 (6)0.0157 (6)0.0147 (6)0.0007 (5)0.0006 (5)0.0014 (5)
C300.0191 (7)0.0164 (7)0.0158 (7)0.0023 (5)0.0000 (5)0.0041 (5)
C310.0211 (7)0.0141 (6)0.0159 (6)0.0006 (5)0.0009 (5)0.0053 (5)
C320.0160 (6)0.0143 (6)0.0147 (6)0.0029 (5)0.0004 (5)0.0046 (5)
C330.0113 (6)0.0137 (6)0.0149 (6)0.0007 (5)0.0022 (5)0.0037 (5)
Geometric parameters (Å, º) top
Br1—C51.8963 (15)C14—C151.511 (2)
Br2—C281.8993 (15)C15—C161.370 (2)
O1—C91.2144 (18)C15—C241.410 (2)
O2—C141.4065 (17)C16—C171.424 (2)
O2—H1O20.75 (3)C16—H16A0.9300
N1—C111.4697 (19)C17—C181.380 (2)
N1—C121.4698 (19)C17—H17A0.9300
N1—C141.4785 (19)C18—C191.421 (2)
N2—C331.4680 (19)C18—H18A0.9300
N2—C251.4684 (19)C19—C241.405 (2)
N2—C131.4750 (19)C19—C201.418 (2)
C1—C21.395 (2)C20—C211.382 (2)
C1—C61.407 (2)C20—H20A0.9300
C1—H1A0.9300C21—C221.421 (2)
C2—C31.385 (3)C21—H21A0.9300
C2—H2A0.9300C22—C231.3749 (19)
C3—C41.388 (2)C22—H22A0.9300
C3—H3A0.9300C23—C241.416 (2)
C4—C51.387 (2)C25—C261.542 (2)
C4—H4A0.9300C25—H25A0.9700
C5—C61.397 (2)C25—H25B0.9700
C6—C71.474 (2)C26—C271.521 (2)
C7—C81.344 (2)C26—H26A0.9800
C7—H7A0.9300C27—C281.402 (2)
C8—C91.510 (2)C27—C321.405 (2)
C8—C121.523 (2)C28—C291.387 (2)
C9—C101.522 (2)C29—C301.391 (2)
C10—C111.554 (2)C29—H29A0.9300
C10—C261.558 (2)C30—C311.389 (2)
C10—C131.569 (2)C30—H30A0.9300
C11—H11A0.9700C31—C321.394 (2)
C11—H11B0.9700C31—H31A0.9300
C12—H12A0.9700C32—H32A0.9300
C12—H12B0.9700C33—H33A0.9600
C13—C231.526 (2)C33—H33B0.9600
C13—C141.592 (2)C33—H33C0.9600
C14—O2—H1O2103 (2)C16—C15—C14132.30 (13)
C11—N1—C12108.02 (12)C24—C15—C14108.17 (12)
C11—N1—C14102.44 (11)C15—C16—C17118.42 (14)
C12—N1—C14115.63 (11)C15—C16—H16A120.8
C33—N2—C25112.31 (12)C17—C16—H16A120.8
C33—N2—C13114.95 (12)C18—C17—C16122.38 (15)
C25—N2—C13105.24 (11)C18—C17—H17A118.8
C2—C1—C6121.38 (16)C16—C17—H17A118.8
C2—C1—H1A119.3C17—C18—C19119.82 (14)
C6—C1—H1A119.3C17—C18—H18A120.1
C3—C2—C1119.73 (16)C19—C18—H18A120.1
C3—C2—H2A120.1C24—C19—C20116.51 (14)
C1—C2—H2A120.1C24—C19—C18116.89 (14)
C2—C3—C4120.28 (15)C20—C19—C18126.60 (14)
C2—C3—H3A119.9C21—C20—C19119.84 (14)
C4—C3—H3A119.9C21—C20—H20A120.1
C5—C4—C3119.32 (15)C19—C20—H20A120.1
C5—C4—H4A120.3C20—C21—C22122.79 (14)
C3—C4—H4A120.3C20—C21—H21A118.6
C4—C5—C6122.33 (14)C22—C21—H21A118.6
C4—C5—Br1117.66 (12)C23—C22—C21118.38 (14)
C6—C5—Br1120.00 (11)C23—C22—H22A120.8
C5—C6—C1116.92 (14)C21—C22—H22A120.8
C5—C6—C7121.47 (14)C22—C23—C24118.82 (13)
C1—C6—C7121.48 (14)C22—C23—C13132.51 (13)
C8—C7—C6126.64 (14)C24—C23—C13108.52 (12)
C8—C7—H7A116.7C19—C24—C15122.94 (13)
C6—C7—H7A116.7C19—C24—C23123.65 (13)
C7—C8—C9116.44 (13)C15—C24—C23113.41 (13)
C7—C8—C12124.44 (14)N2—C25—C26105.15 (11)
C9—C8—C12119.08 (12)N2—C25—H25A110.7
O1—C9—C8122.98 (13)C26—C25—H25A110.7
O1—C9—C10123.03 (13)N2—C25—H25B110.7
C8—C9—C10113.85 (12)C26—C25—H25B110.7
C9—C10—C11108.11 (12)H25A—C25—H25B108.8
C9—C10—C26114.98 (11)C27—C26—C25114.83 (12)
C11—C10—C26117.57 (11)C27—C26—C10113.94 (12)
C9—C10—C13106.44 (11)C25—C26—C10102.43 (11)
C11—C10—C13101.86 (11)C27—C26—H26A108.4
C26—C10—C13106.49 (11)C25—C26—H26A108.4
N1—C11—C10104.01 (11)C10—C26—H26A108.4
N1—C11—H11A111.0C28—C27—C32115.83 (13)
C10—C11—H11A111.0C28—C27—C26122.18 (13)
N1—C11—H11B111.0C32—C27—C26121.98 (13)
C10—C11—H11B111.0C29—C28—C27123.13 (14)
H11A—C11—H11B109.0C29—C28—Br2115.84 (11)
N1—C12—C8116.67 (12)C27—C28—Br2121.03 (11)
N1—C12—H12A108.1C28—C29—C30119.60 (15)
C8—C12—H12A108.1C28—C29—H29A120.2
N1—C12—H12B108.1C30—C29—H29A120.2
C8—C12—H12B108.1C31—C30—C29119.04 (15)
H12A—C12—H12B107.3C31—C30—H30A120.5
N2—C13—C23114.26 (12)C29—C30—H30A120.5
N2—C13—C10102.66 (11)C30—C31—C32120.60 (15)
C23—C13—C10119.66 (11)C30—C31—H31A119.7
N2—C13—C14112.84 (11)C32—C31—H31A119.7
C23—C13—C14103.45 (11)C31—C32—C27121.75 (15)
C10—C13—C14103.78 (11)C31—C32—H32A119.1
O2—C14—N1108.22 (11)C27—C32—H32A119.1
O2—C14—C15112.29 (12)N2—C33—H33A109.5
N1—C14—C15114.63 (12)N2—C33—H33B109.5
O2—C14—C13110.91 (11)H33A—C33—H33B109.5
N1—C14—C13105.17 (11)N2—C33—H33C109.5
C15—C14—C13105.37 (11)H33A—C33—H33C109.5
C16—C15—C24119.53 (14)H33B—C33—H33C109.5
C6—C1—C2—C31.5 (3)C10—C13—C14—C15135.81 (11)
C1—C2—C3—C40.0 (3)O2—C14—C15—C1651.9 (2)
C2—C3—C4—C51.0 (3)N1—C14—C15—C1672.2 (2)
C3—C4—C5—C60.5 (2)C13—C14—C15—C16172.71 (16)
C3—C4—C5—Br1179.35 (13)O2—C14—C15—C24128.68 (13)
C4—C5—C6—C11.0 (2)N1—C14—C15—C24107.29 (14)
Br1—C5—C6—C1179.16 (11)C13—C14—C15—C247.84 (15)
C4—C5—C6—C7176.88 (15)C24—C15—C16—C170.9 (2)
Br1—C5—C6—C73.2 (2)C14—C15—C16—C17178.52 (16)
C2—C1—C6—C52.0 (2)C15—C16—C17—C180.1 (3)
C2—C1—C6—C7177.90 (15)C16—C17—C18—C190.5 (3)
C5—C6—C7—C8135.05 (17)C17—C18—C19—C240.0 (2)
C1—C6—C7—C849.2 (2)C17—C18—C19—C20179.44 (16)
C6—C7—C8—C9175.99 (14)C24—C19—C20—C210.0 (2)
C6—C7—C8—C126.2 (3)C18—C19—C20—C21179.40 (16)
C7—C8—C9—O17.5 (2)C19—C20—C21—C220.2 (2)
C12—C8—C9—O1170.38 (14)C20—C21—C22—C230.2 (2)
C7—C8—C9—C10168.33 (13)C21—C22—C23—C240.9 (2)
C12—C8—C9—C1013.77 (19)C21—C22—C23—C13174.12 (15)
O1—C9—C10—C11142.12 (15)N2—C13—C23—C2261.5 (2)
C8—C9—C10—C1142.03 (16)C10—C13—C23—C2260.7 (2)
O1—C9—C10—C268.5 (2)C14—C13—C23—C22175.42 (15)
C8—C9—C10—C26175.62 (12)N2—C13—C23—C24113.85 (13)
O1—C9—C10—C13109.10 (16)C10—C13—C23—C24123.91 (13)
C8—C9—C10—C1366.74 (15)C14—C13—C23—C249.21 (15)
C12—N1—C11—C1073.52 (14)C20—C19—C24—C15179.51 (14)
C14—N1—C11—C1049.00 (13)C18—C19—C24—C151.0 (2)
C9—C10—C11—N173.21 (14)C20—C19—C24—C230.8 (2)
C26—C10—C11—N1154.57 (12)C18—C19—C24—C23178.75 (15)
C13—C10—C11—N138.68 (13)C16—C15—C24—C191.5 (2)
C11—N1—C12—C844.67 (17)C14—C15—C24—C19178.07 (14)
C14—N1—C12—C869.37 (17)C16—C15—C24—C23178.31 (14)
C7—C8—C12—N1168.00 (15)C14—C15—C24—C232.16 (17)
C9—C8—C12—N114.3 (2)C22—C23—C24—C191.2 (2)
C33—N2—C13—C2331.95 (17)C13—C23—C24—C19174.92 (14)
C25—N2—C13—C2392.16 (14)C22—C23—C24—C15179.05 (14)
C33—N2—C13—C10163.06 (11)C13—C23—C24—C154.84 (17)
C25—N2—C13—C1038.96 (13)C33—N2—C25—C26169.39 (11)
C33—N2—C13—C1485.87 (14)C13—N2—C25—C2643.64 (14)
C25—N2—C13—C14150.02 (12)N2—C25—C26—C2795.36 (14)
C9—C10—C13—N2143.27 (11)N2—C25—C26—C1028.69 (13)
C11—C10—C13—N2103.58 (12)C9—C10—C26—C27122.63 (13)
C26—C10—C13—N220.15 (13)C11—C10—C26—C276.42 (18)
C9—C10—C13—C2315.49 (17)C13—C10—C26—C27119.76 (13)
C11—C10—C13—C23128.64 (13)C9—C10—C26—C25112.74 (13)
C26—C10—C13—C23107.63 (14)C11—C10—C26—C25118.21 (13)
C9—C10—C13—C1499.04 (12)C13—C10—C26—C254.87 (13)
C11—C10—C13—C1414.11 (13)C25—C26—C27—C28168.94 (13)
C26—C10—C13—C14137.84 (11)C10—C26—C27—C2873.35 (17)
C11—N1—C14—O279.77 (13)C25—C26—C27—C3211.6 (2)
C12—N1—C14—O2163.02 (12)C10—C26—C27—C32106.11 (16)
C11—N1—C14—C15154.06 (12)C32—C27—C28—C291.7 (2)
C12—N1—C14—C1536.85 (17)C26—C27—C28—C29177.82 (14)
C11—N1—C14—C1338.81 (13)C32—C27—C28—Br2178.85 (11)
C12—N1—C14—C1378.40 (14)C26—C27—C28—Br21.7 (2)
N2—C13—C14—O27.93 (16)C27—C28—C29—C300.5 (2)
C23—C13—C14—O2131.93 (12)Br2—C28—C29—C30179.96 (12)
C10—C13—C14—O2102.44 (13)C28—C29—C30—C311.4 (2)
N2—C13—C14—N1124.69 (12)C29—C30—C31—C322.0 (3)
C23—C13—C14—N1111.31 (12)C30—C31—C32—C270.7 (3)
C10—C13—C14—N114.32 (13)C28—C27—C32—C311.1 (2)
N2—C13—C14—C15113.81 (13)C26—C27—C32—C31178.41 (15)
C23—C13—C14—C1510.19 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.75 (3)2.12 (3)2.6735 (18)132 (3)
C32—H32A···O2i0.932.473.374 (2)163
C33—H33A···O2i0.962.553.292 (2)134
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC33H26Br2N2O2
Mr642.38
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.3334 (14), 12.4213 (19), 12.8062 (19)
α, β, γ (°)80.623 (4), 79.787 (4), 88.213 (4)
V3)1287.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.52 × 0.41 × 0.19
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.288, 0.584
No. of measured, independent and
observed [I > 2σ(I)] reflections
27238, 9152, 8233
Rint0.022
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.105, 1.18
No. of reflections9152
No. of parameters357
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.99, 1.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.75 (3)2.12 (3)2.6735 (18)132 (3)
C32—H32A···O2i0.932.473.374 (2)163
C33—H33A···O2i0.962.553.292 (2)134
Symmetry code: (i) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under University Research Grant No. 1001/PKIMIA/811016 and RSK thanks Universiti Sains Malaysia for the award of a post-doctoral fellowship. HKF thanks Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColdham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765–2810.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDaly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod. 49, 265–280.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1444–o1445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247–12275.  Web of Science CrossRef CAS Google Scholar
First citationNájera, C. N. & Sansano, J. M. (2005). Angew. Chem. Int. Ed. 117, 6428–6432.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F., Mancuso, R. & Larock, R. C. (2009). Tetrahedron Lett. 50, 4067–4070.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds