organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-sec-butyl-2-(4-chloro­phen­yl)-1H-benzimidazole-5-carboxyl­ate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 20 August 2010; accepted 23 August 2010; online 28 August 2010)

In the title compound, C20H21ClN2O2, the ethyl 1H-benzimidazole-5-carboxyl­ate ring system, excluding the methyl­ene and methyl H atoms, is almost planar, with a maximum deviation of 0.055 (1) Å, and makes a dihedral angle of 40.63 (4)° with the benzene ring. The sec-butyl group is disordered over two positions, with refined site occupancies of 0.855 (4) and 0.145 (4). In the crystal, mol­ecules are linked into chains along [010] via inter­molecular C—H⋯O hydrogen bonds and are further inter­connected by C—H⋯Cl inter­actions into two-dimensional networks parallel to (001). The crystal structure is further consolidated by C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Arumugam et al. (2010a[Arumugam, N., Abd Hamid, S., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o776-o777.],b[Arumugam, N., Abdul Rahim, A. S., Abd Hamid, S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o796-o797.],c[Arumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o845.]). For general background to and the therapeutic properties of benzimidazole derivatives, see: Bonfanti et al. (2008[Bonfanti, J.-F., Meyer, C., Doublet, F., Fortin, J., Muller, P., Queguiner, L., Gevers, T., Janssens, P., Szel, H., Willebrords, R., Timmerman, P., Wuyts, K., Van Remoortere, P., Janssens, F., Wigerinck, P. & Andries, K. (2008). J. Med. Chem. 51, 875-896.]); Evans et al. (1997[Evans, T. M., Gardiner, J. M., Mahmood, N. & Smis, M. (1997). Bioorg. Med. Chem. Lett. 7, 409-412.]); Hori et al. (2002[Hori, A., Imaeda, Y., Kubo, K. & Kusaka, M. (2002). Cancer Lett. 183, 53-60.]); Snow (2007[Snow, R. J. (2007). Bioorg. Med. Chem. 17, 3660-3665.]). For a related structure, see: Eltayeb et al. (2009[Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613-o1614.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21ClN2O2

  • Mr = 356.84

  • Monoclinic, P 21 /c

  • a = 10.4321 (9) Å

  • b = 12.6218 (12) Å

  • c = 13.6896 (12) Å

  • β = 97.043 (3)°

  • V = 1788.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.45 × 0.34 × 0.10 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.904, Tmax = 0.977

  • 21234 measured reflections

  • 8437 independent reflections

  • 6651 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.175

  • S = 1.09

  • 8437 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C7/N2/C13/C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.93 2.57 3.4994 (16) 174
C16—H16A⋯Cl1ii 0.96 2.73 3.4651 (17) 134
C19A—H19BCg1 0.96 2.71 3.3457 (18) 124
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole is an important pharmacophore in drug discovery and its derivatives have shown various therapeutic properties such as antiviral (Bonfanti et al., 2008) and anti-HIV-1 (Evans et al., 1997) activities. Benzimidazoles are used as biomimetics of guanine residues and selectively inhibit endothelial cell growth and suppress angiogenesis in vitro and in vivo (Hori et al., 2002). In particular, substituted benzimidazole derivatives are also inhibitors of tyrosine kinase and are useful for inhibiting cell proliferation for the treatment of cancer (Snow et al., 2007). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. The ethyl 1H-benzimidazole-5-carboxylate ring system (O1/O2/N1/N2/C7–C16), excluding methylene and methyl H atoms, is almost planar, with a maximum deviation of 0.055 (1) Å for atom O2, and makes a dihedral angle of 40.63 (4)° with the benzene (C1–C6) ring. The sec-butyl group is disordered over two positions with refined site-occupancies of 0.855 (4) and 0.145 (4). The bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges and comparable to those in a related crystal structure (Eltayeb et al., 2009).

In the crystal structure (Fig. 2), the molecules are linked into one-dimensional chains along [010] via intermolecular C12—H12A···O2 hydrogen bonds and are further interconnected by C16–H16A···Cl1 interactions into two-dimensional networks parallel to (001). The crystal structure is further consolidated by C—H···Cg1 (Table 1) interactions; Cg1 is the centroid of the N1/C7/N2/C13/C8 ring.

Related literature top

For the synthesis of the title compound, see: Arumugam et al. (2010a,b,c). For general background to and the therapeutic properties of benzimidazole derivatives, see: Bonfanti et al. (2008); Evans et al. (1997); Hori et al. (2002); Snow (2007). For a related structure, see: Eltayeb et al. (2009). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized using previously reported procedures (Arumugam et al., 2010a,b,c). The crude product was recrystallized from ethyl acetate to yield the title compound as colourless crystals.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating-group model was applied for the methyl groups. The sec-butyl group attached to the benzimidazole ring system is disordered over two positions, with refined site-occupancies of 0.855 (4) and 0.145 (4).

Structure description top

Benzimidazole is an important pharmacophore in drug discovery and its derivatives have shown various therapeutic properties such as antiviral (Bonfanti et al., 2008) and anti-HIV-1 (Evans et al., 1997) activities. Benzimidazoles are used as biomimetics of guanine residues and selectively inhibit endothelial cell growth and suppress angiogenesis in vitro and in vivo (Hori et al., 2002). In particular, substituted benzimidazole derivatives are also inhibitors of tyrosine kinase and are useful for inhibiting cell proliferation for the treatment of cancer (Snow et al., 2007). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. The ethyl 1H-benzimidazole-5-carboxylate ring system (O1/O2/N1/N2/C7–C16), excluding methylene and methyl H atoms, is almost planar, with a maximum deviation of 0.055 (1) Å for atom O2, and makes a dihedral angle of 40.63 (4)° with the benzene (C1–C6) ring. The sec-butyl group is disordered over two positions with refined site-occupancies of 0.855 (4) and 0.145 (4). The bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges and comparable to those in a related crystal structure (Eltayeb et al., 2009).

In the crystal structure (Fig. 2), the molecules are linked into one-dimensional chains along [010] via intermolecular C12—H12A···O2 hydrogen bonds and are further interconnected by C16–H16A···Cl1 interactions into two-dimensional networks parallel to (001). The crystal structure is further consolidated by C—H···Cg1 (Table 1) interactions; Cg1 is the centroid of the N1/C7/N2/C13/C8 ring.

For the synthesis of the title compound, see: Arumugam et al. (2010a,b,c). For general background to and the therapeutic properties of benzimidazole derivatives, see: Bonfanti et al. (2008); Evans et al. (1997); Hori et al. (2002); Snow (2007). For a related structure, see: Eltayeb et al. (2009). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Both disorder components are shown; atom labels with suffix A correspond to the major disorder component, while those with suffix B correspond to the minor disorder component.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in intermolecular interactions (dashed lines) and the minor disorder component have been omitted for clarity.
Ethyl 1-sec-butyl-2-(4-chlorophenyl)-1H-benzimidazole-5-carboxylate top
Crystal data top
C20H21ClN2O2F(000) = 752
Mr = 356.84Dx = 1.325 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5929 reflections
a = 10.4321 (9) Åθ = 2.8–36.1°
b = 12.6218 (12) ŵ = 0.23 mm1
c = 13.6896 (12) ÅT = 100 K
β = 97.043 (3)°Plate, colourless
V = 1788.9 (3) Å30.45 × 0.34 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
8437 independent reflections
Radiation source: fine-focus sealed tube6651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 36.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.904, Tmax = 0.977k = 1420
21234 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0914P)2 + 0.4364P]
where P = (Fo2 + 2Fc2)/3
8437 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C20H21ClN2O2V = 1788.9 (3) Å3
Mr = 356.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4321 (9) ŵ = 0.23 mm1
b = 12.6218 (12) ÅT = 100 K
c = 13.6896 (12) Å0.45 × 0.34 × 0.10 mm
β = 97.043 (3)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
8437 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6651 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.977Rint = 0.038
21234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.09Δρmax = 0.75 e Å3
8437 reflectionsΔρmin = 0.39 e Å3
248 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.44482 (3)0.12780 (3)0.05943 (3)0.02804 (10)
O10.66151 (9)0.53169 (7)0.09366 (8)0.02287 (19)
O20.49447 (10)0.47833 (8)0.17101 (8)0.0244 (2)
N10.97430 (9)0.22053 (7)0.11935 (8)0.01566 (17)
N20.88205 (10)0.08363 (8)0.19214 (8)0.01724 (18)
C11.08637 (12)0.04972 (9)0.10289 (9)0.0184 (2)
H1A1.00560.08190.09690.022*
C21.19323 (13)0.10669 (10)0.08102 (9)0.0198 (2)
H2A1.18460.17690.06070.024*
C31.31246 (12)0.05767 (10)0.08982 (9)0.0193 (2)
C41.32851 (12)0.04663 (10)0.12105 (10)0.0204 (2)
H4A1.40960.07820.12710.025*
C51.22138 (12)0.10309 (9)0.14312 (9)0.0186 (2)
H5A1.23100.17300.16430.022*
C61.09949 (11)0.05585 (9)0.13384 (8)0.01582 (18)
C70.98702 (11)0.12116 (9)0.14997 (8)0.01543 (18)
C80.85402 (10)0.25092 (8)0.14249 (8)0.01417 (17)
C90.79079 (11)0.34784 (9)0.12560 (8)0.01504 (18)
H9A0.82860.40320.09470.018*
C100.66963 (11)0.35881 (8)0.15650 (8)0.01520 (18)
C110.61175 (11)0.27463 (9)0.20282 (9)0.0176 (2)
H11A0.53060.28460.22290.021*
C120.67240 (12)0.17741 (9)0.21918 (9)0.0187 (2)
H12A0.63380.12190.24930.022*
C130.79468 (11)0.16691 (9)0.18806 (8)0.01594 (19)
C140.59808 (11)0.46053 (9)0.14271 (9)0.01683 (19)
C150.60047 (14)0.63413 (10)0.07588 (11)0.0256 (3)
H15A0.60410.67400.13670.031*
H15B0.51070.62560.04890.031*
C160.67404 (16)0.69051 (12)0.00368 (13)0.0320 (3)
H16A0.63410.75770.01310.048*
H16B0.67350.64830.05470.048*
H16C0.76150.70160.03270.048*
C17A0.87973 (15)0.01159 (11)0.25461 (12)0.0170 (3)0.855 (4)
H17A0.96240.04800.25320.020*0.855 (4)
C18A0.87305 (16)0.02241 (14)0.36090 (11)0.0228 (3)0.855 (4)
H18A0.78820.05160.36630.027*0.855 (4)
H18B0.88470.03930.40340.027*0.855 (4)
C19A0.97501 (17)0.10445 (16)0.39550 (12)0.0268 (4)0.855 (4)
H19A0.97050.12070.46350.040*0.855 (4)
H19B0.95990.16760.35680.040*0.855 (4)
H19C1.05900.07680.38810.040*0.855 (4)
C20A0.77336 (17)0.08965 (12)0.21576 (16)0.0277 (4)0.855 (4)
H20A0.78170.10700.14860.042*0.855 (4)
H20B0.69040.05790.21940.042*0.855 (4)
H20C0.78120.15290.25490.042*0.855 (4)
C17B0.9122 (10)0.0082 (8)0.2857 (7)0.0179 (16)*0.145 (4)
H17B0.99240.03010.27910.021*0.145 (4)
C18B0.8027 (10)0.0706 (8)0.2733 (8)0.027 (2)*0.145 (4)
H18C0.72340.03350.28170.032*0.145 (4)
H18D0.81750.12250.32570.032*0.145 (4)
C19B0.7823 (14)0.1313 (11)0.1720 (11)0.039 (3)*0.145 (4)
H19D0.72340.18910.17640.059*0.145 (4)
H19E0.86360.15820.15690.059*0.145 (4)
H19F0.74720.08360.12100.059*0.145 (4)
C20B0.9247 (12)0.0562 (10)0.3823 (8)0.027 (2)*0.145 (4)
H20D0.94000.00210.43160.040*0.145 (4)
H20E0.84660.09340.39090.040*0.145 (4)
H20F0.99590.10500.38860.040*0.145 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02775 (17)0.02678 (16)0.03220 (17)0.01538 (12)0.01408 (13)0.00528 (12)
O10.0225 (4)0.0148 (4)0.0334 (5)0.0082 (3)0.0119 (4)0.0077 (3)
O20.0204 (4)0.0219 (4)0.0331 (5)0.0080 (3)0.0115 (4)0.0027 (4)
N10.0143 (4)0.0123 (3)0.0216 (4)0.0030 (3)0.0068 (3)0.0023 (3)
N20.0176 (4)0.0122 (4)0.0236 (4)0.0040 (3)0.0091 (3)0.0050 (3)
C10.0196 (5)0.0148 (4)0.0209 (5)0.0035 (4)0.0035 (4)0.0002 (4)
C20.0244 (5)0.0156 (4)0.0200 (5)0.0062 (4)0.0052 (4)0.0001 (4)
C30.0211 (5)0.0189 (5)0.0189 (5)0.0093 (4)0.0070 (4)0.0035 (4)
C40.0175 (5)0.0192 (5)0.0256 (5)0.0044 (4)0.0068 (4)0.0022 (4)
C50.0178 (5)0.0153 (4)0.0237 (5)0.0031 (4)0.0071 (4)0.0010 (4)
C60.0171 (4)0.0135 (4)0.0177 (4)0.0043 (3)0.0054 (4)0.0023 (3)
C70.0156 (4)0.0130 (4)0.0186 (4)0.0034 (3)0.0059 (3)0.0023 (3)
C80.0140 (4)0.0114 (4)0.0179 (4)0.0019 (3)0.0054 (3)0.0021 (3)
C90.0155 (4)0.0121 (4)0.0181 (4)0.0025 (3)0.0046 (3)0.0019 (3)
C100.0155 (4)0.0131 (4)0.0175 (4)0.0033 (3)0.0042 (3)0.0005 (3)
C110.0158 (4)0.0169 (4)0.0212 (5)0.0025 (4)0.0064 (4)0.0017 (4)
C120.0169 (5)0.0161 (4)0.0246 (5)0.0019 (4)0.0089 (4)0.0045 (4)
C130.0162 (4)0.0136 (4)0.0191 (4)0.0033 (3)0.0064 (4)0.0032 (3)
C140.0170 (5)0.0149 (4)0.0189 (4)0.0040 (3)0.0034 (4)0.0007 (3)
C150.0283 (6)0.0170 (5)0.0334 (6)0.0121 (4)0.0118 (5)0.0070 (4)
C160.0335 (7)0.0215 (6)0.0440 (8)0.0110 (5)0.0171 (6)0.0111 (6)
C17A0.0178 (6)0.0125 (5)0.0212 (6)0.0013 (4)0.0039 (5)0.0058 (5)
C18A0.0219 (7)0.0279 (7)0.0197 (6)0.0051 (6)0.0064 (5)0.0090 (5)
C19A0.0267 (8)0.0356 (9)0.0180 (6)0.0097 (7)0.0016 (5)0.0007 (6)
C20A0.0229 (7)0.0157 (6)0.0456 (11)0.0037 (5)0.0083 (7)0.0041 (6)
Geometric parameters (Å, º) top
Cl1—C31.7332 (12)C15—C161.503 (2)
O1—C141.3433 (15)C15—H15A0.9700
O1—C151.4486 (15)C15—H15B0.9700
O2—C141.2131 (15)C16—H16A0.9600
N1—C71.3240 (14)C16—H16B0.9600
N1—C81.3854 (14)C16—H16C0.9600
N2—C71.3828 (15)C17A—C18A1.527 (2)
N2—C131.3879 (14)C17A—C20A1.530 (2)
N2—C17A1.4769 (16)C17A—H17A0.9800
N2—C17B1.595 (9)C18A—C19A1.518 (3)
C1—C21.3897 (17)C18A—H18A0.9700
C1—C61.3998 (16)C18A—H18B0.9700
C1—H1A0.9300C19A—H19A0.9600
C2—C31.3812 (19)C19A—H19B0.9600
C2—H2A0.9300C19A—H19C0.9600
C3—C41.3879 (18)C20A—H20A0.9600
C4—C51.3895 (17)C20A—H20B0.9600
C4—H4A0.9300C20A—H20C0.9600
C5—C61.3960 (17)C17B—C20B1.447 (15)
C5—H5A0.9300C17B—C18B1.508 (15)
C6—C71.4725 (15)C17B—H17B0.9800
C8—C91.3956 (15)C18B—C19B1.576 (18)
C8—C131.4112 (15)C18B—H18C0.9700
C9—C101.3881 (16)C18B—H18D0.9700
C9—H9A0.9300C19B—H19D0.9600
C10—C111.4104 (16)C19B—H19E0.9600
C10—C141.4854 (15)C19B—H19F0.9600
C11—C121.3863 (16)C20B—H20D0.9600
C11—H11A0.9300C20B—H20E0.9600
C12—C131.3998 (16)C20B—H20F0.9600
C12—H12A0.9300
C14—O1—C15116.59 (10)O1—C15—C16106.49 (11)
C7—N1—C8104.38 (9)O1—C15—H15A110.4
C7—N2—C13105.87 (9)C16—C15—H15A110.4
C7—N2—C17A126.20 (10)O1—C15—H15B110.4
C13—N2—C17A125.61 (10)C16—C15—H15B110.4
C7—N2—C17B116.8 (4)H15A—C15—H15B108.6
C13—N2—C17B123.2 (3)C15—C16—H16A109.5
C2—C1—C6120.43 (12)C15—C16—H16B109.5
C2—C1—H1A119.8H16A—C16—H16B109.5
C6—C1—H1A119.8C15—C16—H16C109.5
C3—C2—C1119.14 (11)H16A—C16—H16C109.5
C3—C2—H2A120.4H16B—C16—H16C109.5
C1—C2—H2A120.4N2—C17A—C18A109.21 (12)
C2—C3—C4121.67 (11)N2—C17A—C20A112.67 (14)
C2—C3—Cl1119.06 (10)C18A—C17A—C20A113.35 (13)
C4—C3—Cl1119.26 (10)N2—C17A—H17A107.1
C3—C4—C5118.92 (12)C18A—C17A—H17A107.1
C3—C4—H4A120.5C20A—C17A—H17A107.1
C5—C4—H4A120.5C19A—C18A—C17A112.15 (12)
C4—C5—C6120.60 (11)C19A—C18A—H18A109.2
C4—C5—H5A119.7C17A—C18A—H18A109.2
C6—C5—H5A119.7C19A—C18A—H18B109.2
C5—C6—C1119.22 (10)C17A—C18A—H18B109.2
C5—C6—C7118.75 (10)H18A—C18A—H18B107.9
C1—C6—C7121.88 (11)C20B—C17B—C18B111.2 (9)
N1—C7—N2113.76 (9)C20B—C17B—N2118.1 (8)
N1—C7—C6122.25 (10)C18B—C17B—N2103.4 (8)
N2—C7—C6123.86 (10)C20B—C17B—H17B107.9
N1—C8—C9128.88 (10)C18B—C17B—H17B107.9
N1—C8—C13110.60 (9)N2—C17B—H17B107.9
C9—C8—C13120.52 (10)C17B—C18B—C19B116.0 (9)
C10—C9—C8117.80 (10)C17B—C18B—H18C108.3
C10—C9—H9A121.1C19B—C18B—H18C108.3
C8—C9—H9A121.1C17B—C18B—H18D108.3
C9—C10—C11121.19 (10)C19B—C18B—H18D108.3
C9—C10—C14120.64 (10)H18C—C18B—H18D107.4
C11—C10—C14118.17 (10)C18B—C19B—H19D109.5
C12—C11—C10121.83 (10)C18B—C19B—H19E109.5
C12—C11—H11A119.1H19D—C19B—H19E109.5
C10—C11—H11A119.1C18B—C19B—H19F109.5
C11—C12—C13116.72 (10)H19D—C19B—H19F109.5
C11—C12—H12A121.6H19E—C19B—H19F109.5
C13—C12—H12A121.6C17B—C20B—H20D109.5
N2—C13—C12132.68 (10)C17B—C20B—H20E109.5
N2—C13—C8105.39 (9)H20D—C20B—H20E109.5
C12—C13—C8121.93 (10)C17B—C20B—H20F109.5
O2—C14—O1123.27 (11)H20D—C20B—H20F109.5
O2—C14—C10124.96 (11)H20E—C20B—H20F109.5
O1—C14—C10111.77 (10)
C6—C1—C2—C30.27 (18)C17B—N2—C13—C1241.3 (5)
C1—C2—C3—C40.76 (19)C7—N2—C13—C80.12 (13)
C1—C2—C3—Cl1178.33 (9)C17A—N2—C13—C8163.64 (13)
C2—C3—C4—C50.55 (19)C17B—N2—C13—C8138.5 (5)
Cl1—C3—C4—C5178.54 (10)C11—C12—C13—N2179.91 (13)
C3—C4—C5—C60.15 (19)C11—C12—C13—C80.17 (18)
C4—C5—C6—C10.63 (18)N1—C8—C13—N20.11 (13)
C4—C5—C6—C7174.93 (11)C9—C8—C13—N2179.26 (10)
C2—C1—C6—C50.42 (17)N1—C8—C13—C12179.69 (11)
C2—C1—C6—C7175.00 (11)C9—C8—C13—C120.94 (18)
C8—N1—C7—N20.02 (14)C15—O1—C14—O20.54 (19)
C8—N1—C7—C6176.15 (11)C15—O1—C14—C10179.96 (11)
C13—N2—C7—N10.09 (14)C9—C10—C14—O2176.84 (12)
C17A—N2—C7—N1163.48 (13)C11—C10—C14—O22.36 (19)
C17B—N2—C7—N1141.6 (4)C9—C10—C14—O13.75 (16)
C13—N2—C7—C6176.15 (11)C11—C10—C14—O1177.05 (11)
C17A—N2—C7—C620.5 (2)C14—O1—C15—C16168.74 (13)
C17B—N2—C7—C642.4 (5)C7—N2—C17A—C18A108.23 (14)
C5—C6—C7—N138.83 (17)C13—N2—C17A—C18A52.01 (18)
C1—C6—C7—N1136.61 (12)C17B—N2—C17A—C18A38.7 (9)
C5—C6—C7—N2145.43 (12)C7—N2—C17A—C20A124.87 (14)
C1—C6—C7—N239.13 (17)C13—N2—C17A—C20A74.90 (18)
C7—N1—C8—C9179.25 (12)C17B—N2—C17A—C20A165.6 (10)
C7—N1—C8—C130.06 (13)N2—C17A—C18A—C19A50.27 (16)
N1—C8—C9—C10179.71 (11)C20A—C17A—C18A—C19A176.79 (13)
C13—C8—C9—C101.04 (17)C7—N2—C17B—C20B92.8 (8)
C8—C9—C10—C110.44 (17)C13—N2—C17B—C20B41.5 (10)
C8—C9—C10—C14178.73 (10)C17A—N2—C17B—C20B145.1 (15)
C9—C10—C11—C120.32 (18)C7—N2—C17B—C18B144.0 (5)
C14—C10—C11—C12179.51 (11)C13—N2—C17B—C18B81.8 (7)
C10—C11—C12—C130.44 (18)C17A—N2—C17B—C18B21.9 (7)
C7—N2—C13—C12179.65 (13)C20B—C17B—C18B—C19B178.0 (9)
C17A—N2—C13—C1216.1 (2)N2—C17B—C18B—C19B54.3 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C7/N2/C13/C8 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.932.573.4994 (16)174
C16—H16A···Cl1ii0.962.733.4651 (17)134
C19A—H19B···Cg10.962.713.3457 (18)124
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H21ClN2O2
Mr356.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.4321 (9), 12.6218 (12), 13.6896 (12)
β (°) 97.043 (3)
V3)1788.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.45 × 0.34 × 0.10
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.904, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
21234, 8437, 6651
Rint0.038
(sin θ/λ)max1)0.830
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.175, 1.09
No. of reflections8437
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C7/N2/C13/C8 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.932.573.4994 (16)174
C16—H16A···Cl1ii0.962.733.4651 (17)134
C19A—H19B···Cg10.962.713.3457 (18)124
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: aisyah@usm.my.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NA, ASAR and HO acknowledge Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under Research University Grant No. 1001/PFARMASI/815026 and MOSTI Grant 304/PFARMASI/650512/I121. HKF and CKQ thank USM for the Research University Grant No. 1001/PFIZIK/811160 for funding the crystallography work done in this article. NA also thanks USM for the award of a postdoctoral fellowship. CKQ also thanks USM for the award of a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArumugam, N., Abd Hamid, S., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o776–o777.  Web of Science CrossRef IUCr Journals Google Scholar
First citationArumugam, N., Abdul Rahim, A. S., Abd Hamid, S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o796–o797.  Web of Science CrossRef IUCr Journals Google Scholar
First citationArumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o845.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBonfanti, J.-F., Meyer, C., Doublet, F., Fortin, J., Muller, P., Queguiner, L., Gevers, T., Janssens, P., Szel, H., Willebrords, R., Timmerman, P., Wuyts, K., Van Remoortere, P., Janssens, F., Wigerinck, P. & Andries, K. (2008). J. Med. Chem. 51, 875–896.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEvans, T. M., Gardiner, J. M., Mahmood, N. & Smis, M. (1997). Bioorg. Med. Chem. Lett. 7, 409–412.  CrossRef CAS Web of Science Google Scholar
First citationHori, A., Imaeda, Y., Kubo, K. & Kusaka, M. (2002). Cancer Lett. 183, 53–60.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSnow, R. J. (2007). Bioorg. Med. Chem. 17, 3660–3665.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds