metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(5-carb­­oxy-2-propyl-1H-imidazole-4-carboxyl­ato-κ2N3,O4)cadmium(II) 3.5-hydrate

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and cCollege of Medical Laboratory, Hebei North University, Zhangjiakou 075000, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 13 July 2010; accepted 5 August 2010; online 28 August 2010)

In the title complex, [Cd(C8H9N2O4)2(H2O)2]·3.5H2O, the CdII is coordinated by two water mol­ecules and N,O-chelated by two 5-carb­oxy-2-propyl-1H-imidazole-4-carboxyl­ate anions in a distorted octa­hedral geometry. The two imidazole rings are oriented to each other with a dihedral angle of 75.1 (2)°. Strong O—H⋯O hydrogen bonds between protonated and deprotonated carboxyl­ate groups occur in the mol­ecular structure. In the crystal structure extensive O—H⋯O and N—H⋯O hydrogen bonds help to stabilize the three-dimensional supra­molecular framework. The propyl groups of anions are disordered over two sites with refined occupancies of 0.768 (6):0.232 (6) and 0.642 (8):0.358 (8).

Related literature

For the potential uses and diverse structural types of metal complexes with the imidazole-4,5-dicarboxyl­ate ligand, see: Zou et al. (2006[Zou, R.-Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542-2546.]); Li et al. (2006[Li, C.-J., Hu, S., Li, W., Lam, C. K., Zheng, Y.-Z. & Tong, M.-L. (2006). Eur. J. Inorg. Chem. pp. 1931-1935.]); Liu et al. (2004[Liu, Y.-L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806-2807.]); Sun et al. (2005[Sun, Y.-Q., Zhang, J., Chen, Y.-M. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 5814-5817.]). For related structures, see: Yan et al. (2010[Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.]); Li et al. (2010[Li, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m280.]); Song et al. (2010[Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.]); He et al. (2010[He, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896.]); Fan et al. (2010[Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897-m898.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H9N2O4)2(H2O)2]·3.5H2O

  • Mr = 605.83

  • Triclinic, [P \overline 1]

  • a = 10.6228 (12) Å

  • b = 10.7000 (12) Å

  • c = 11.3694 (13) Å

  • α = 83.690 (1)°

  • β = 81.701 (1)°

  • γ = 87.441 (1)°

  • V = 1270.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 296 K

  • 0.29 × 0.24 × 0.21 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.775, Tmax = 0.829

  • 6589 measured reflections

  • 4494 independent reflections

  • 3730 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.05

  • 4494 reflections

  • 346 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4W 0.86 1.89 2.747 (5) 172
N4—H4⋯O6W 0.86 1.90 2.729 (5) 161
O1—H1⋯O4 0.82 (3) 1.67 (3) 2.490 (5) 172 (7)
O7—H7⋯O6 0.82 (4) 1.63 (4) 2.440 (5) 171 (8)
O1W—H1W⋯O5Wi 0.85 2.27 2.654 (5) 108
O1W—H2W⋯O8ii 0.85 1.90 2.737 (5) 168
O2W—H3W⋯O8iii 0.84 2.08 2.852 (5) 152
O2W—H4W⋯O2iv 0.86 1.99 2.818 (5) 163
O3W—H5W⋯O3iv 0.85 2.19 2.794 (7) 128
O3W—H6W⋯O3v 0.85 1.96 2.770 (6) 160
O4W—H7W⋯O3W 0.85 1.78 2.620 (8) 169
O4W—H8W⋯O7vi 0.85 2.05 2.904 (6) 180
O5W—H9W⋯O5vi 0.87 2.01 2.841 (5) 159
O5W—H10W⋯O4vii 0.85 1.95 2.778 (5) 163
O6W—H11W⋯O3Wvii 0.85 1.87 2.679 (8) 160
O6W—H12W⋯O5Wviii 0.85 2.22 2.850 (5) 130
Symmetry codes: (i) x+1, y, z-1; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x+2, -y, -z+1; (v) x, y, z+1; (vi) -x+1, -y+1, -z+1; (vii) -x+1, -y, -z+1; (viii) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole-4,5-dicarboxylic acid (H3IDC) has been widely used to coordinate with metal salts to obtain a series of MOFs with different structures and useful properties(Zou et al., 2006; Li et al., 2006; Liu et al., 2004; Sun et al., 2005), 2-propyl-1H-imidazole-4,5-carboxylate(H3pimda) ligand as one derivative of H3IDC with efficient N,O-donors has been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- k3 N3,O4,O5)calcium(II)] (Song et al., 2010), [diaquabis (5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4) manganese(II)]N,N-dimethylformamide (Yan et al., 2010), [Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2 N3,O4)nickle(II)]N,N-dimethylformamide disolvate(Li et al., 2010), Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- k2N3,O4)copper(II) N,N-dimethylformamide disolvate (He et al., 2010) and Diaquabis(5-carboxy-2-propyl-1H-imidazole- 4-carboxylato-k2N3,O4)nickle(II) tetrahedrate (Fan et al., 2010). In this paper, we report the structure of a new Cd(II) complex obtained under hydrothermal conditions.

As illustrated in figure 1, the title complex molecule is similar to diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N,O)nickle(II) tetrahedrate (Fan et al. 2010), contains one CdII ion, two mono-deprotonated H2pimda- anions, two coordinated water molecules and 3.5 solvent water molecules. The CdII is six-coordinated by two N,O-bidentate H3pimda anions and two water molecules in a distorted octahedral geometry. the dihedral angle between the two imidazole rings is 75.0 (1) %A. In the crystal structure, the three-dimensional supramolecular framework is stabilized by extensive O—H···O and N—H···O hydrogen bonds involving the free water molecules, the coordinated water molecules, the carboxy O atoms and the protonated N atoms of H3pimda. The propyl groups of H3pimda are disordered over two sets of sites with refined occupiencies of 0.772 (6):0.228 (6) and 0.642 (8):0.358 (8).

Related literature top

For the potential uses and diverse structural types of metal complexes with the imidazole-4,5-dicarboxylate ligand, see: Zou et al. (2006); Li et al. (2006); Liu et al. (2004); Sun et al. (2005). For related structures, see: Yan et al. (2010); Li et al. (2010); Song et al.(2010); He et al. (2010); Fan et al. (2010).

Experimental top

A mixture of CdCl2 (0.5 mmol, 0.09 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.99 g) in 15 ml water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433 K for 4 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Carboxyl H atoms were located in a difference map and refined with distance restraints, Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C,N). The propyl groups of H3pimda are disordered over two sites with refined occupancies of 0.768 (6):0.232 (6) and 0.642 (8):0.358 (8). C—C distance restraints of disordered components were applied. The O3W water molecule is located close to an inversion center, its occupancy factor was refined to 0.49 (1) and was fixed as 0.5 at the final refinements.

Structure description top

Imidazole-4,5-dicarboxylic acid (H3IDC) has been widely used to coordinate with metal salts to obtain a series of MOFs with different structures and useful properties(Zou et al., 2006; Li et al., 2006; Liu et al., 2004; Sun et al., 2005), 2-propyl-1H-imidazole-4,5-carboxylate(H3pimda) ligand as one derivative of H3IDC with efficient N,O-donors has been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- k3 N3,O4,O5)calcium(II)] (Song et al., 2010), [diaquabis (5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4) manganese(II)]N,N-dimethylformamide (Yan et al., 2010), [Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2 N3,O4)nickle(II)]N,N-dimethylformamide disolvate(Li et al., 2010), Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- k2N3,O4)copper(II) N,N-dimethylformamide disolvate (He et al., 2010) and Diaquabis(5-carboxy-2-propyl-1H-imidazole- 4-carboxylato-k2N3,O4)nickle(II) tetrahedrate (Fan et al., 2010). In this paper, we report the structure of a new Cd(II) complex obtained under hydrothermal conditions.

As illustrated in figure 1, the title complex molecule is similar to diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N,O)nickle(II) tetrahedrate (Fan et al. 2010), contains one CdII ion, two mono-deprotonated H2pimda- anions, two coordinated water molecules and 3.5 solvent water molecules. The CdII is six-coordinated by two N,O-bidentate H3pimda anions and two water molecules in a distorted octahedral geometry. the dihedral angle between the two imidazole rings is 75.0 (1) %A. In the crystal structure, the three-dimensional supramolecular framework is stabilized by extensive O—H···O and N—H···O hydrogen bonds involving the free water molecules, the coordinated water molecules, the carboxy O atoms and the protonated N atoms of H3pimda. The propyl groups of H3pimda are disordered over two sets of sites with refined occupiencies of 0.772 (6):0.228 (6) and 0.642 (8):0.358 (8).

For the potential uses and diverse structural types of metal complexes with the imidazole-4,5-dicarboxylate ligand, see: Zou et al. (2006); Li et al. (2006); Liu et al. (2004); Sun et al. (2005). For related structures, see: Yan et al. (2010); Li et al. (2010); Song et al.(2010); He et al. (2010); Fan et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic-numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N3,O4)cadmium(II) 3.5-hydrate top
Crystal data top
[Cd(C8H9N2O4)2(H2O)2]·3.5H2OZ = 2
Mr = 605.83F(000) = 618
Triclinic, P1Dx = 1.584 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6228 (12) ÅCell parameters from 3600 reflections
b = 10.7000 (12) Åθ = 1.4–25.0°
c = 11.3694 (13) ŵ = 0.93 mm1
α = 83.690 (1)°T = 296 K
β = 81.701 (1)°Block, colorless
γ = 87.441 (1)°0.29 × 0.24 × 0.21 mm
V = 1270.5 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4494 independent reflections
Radiation source: fine-focus sealed tube3730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scanθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.775, Tmax = 0.829k = 128
6589 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.1685P]
where P = (Fo2 + 2Fc2)/3
4494 reflections(Δ/σ)max = 0.001
346 parametersΔρmax = 0.46 e Å3
7 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cd(C8H9N2O4)2(H2O)2]·3.5H2Oγ = 87.441 (1)°
Mr = 605.83V = 1270.5 (2) Å3
Triclinic, P1Z = 2
a = 10.6228 (12) ÅMo Kα radiation
b = 10.7000 (12) ŵ = 0.93 mm1
c = 11.3694 (13) ÅT = 296 K
α = 83.690 (1)°0.29 × 0.24 × 0.21 mm
β = 81.701 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
4494 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3730 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.829Rint = 0.034
6589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0417 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.46 e Å3
4494 reflectionsΔρmin = 0.59 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.84023 (3)0.29169 (3)0.19976 (2)0.04816 (13)
O10.8778 (4)0.1913 (3)0.5186 (3)0.0698 (9)
O20.8413 (3)0.1136 (3)0.6913 (3)0.0701 (9)
O30.8810 (3)0.0754 (3)0.1940 (2)0.0565 (7)
O40.8944 (3)0.1083 (3)0.3037 (3)0.0656 (8)
O50.7595 (3)0.5000 (3)0.2111 (3)0.0553 (7)
O60.5964 (3)0.6304 (3)0.1835 (3)0.0660 (8)
O70.3809 (3)0.6208 (3)0.1350 (3)0.0604 (8)
O80.2516 (3)0.4784 (3)0.0948 (3)0.0606 (8)
N10.8262 (3)0.2015 (3)0.3933 (3)0.0454 (7)
N20.8116 (3)0.1310 (3)0.5823 (3)0.0550 (9)
H20.80090.13020.65880.066*
N30.6294 (3)0.2956 (3)0.1734 (3)0.0438 (7)
N40.4358 (3)0.2862 (3)0.1287 (3)0.0479 (8)
H40.36810.25560.11120.058*
C10.8362 (3)0.0280 (4)0.5209 (3)0.0447 (9)
C20.8454 (3)0.0742 (3)0.4021 (3)0.0395 (8)
C30.8069 (5)0.2337 (4)0.5040 (4)0.0591 (11)
C40.8760 (4)0.0090 (4)0.2913 (3)0.0473 (9)
C50.8512 (4)0.0992 (4)0.5834 (4)0.0517 (10)
C6A0.7979 (9)0.3683 (10)0.5325 (10)0.085 (3)0.772 (6)
H6A0.82150.37170.61140.102*0.772 (6)
H6B0.85790.41740.47530.102*0.772 (6)
C7A0.6674 (9)0.4249 (7)0.5292 (8)0.107 (3)0.772 (6)
H7A0.60910.38540.59490.128*0.772 (6)
H7B0.63790.41080.45500.128*0.772 (6)
C8A0.6699 (11)0.5651 (7)0.5390 (9)0.129 (4)0.772 (6)
H8A0.58480.59700.56040.193*0.772 (6)
H8B0.70590.60730.46350.193*0.772 (6)
H8C0.72070.57960.59920.193*0.772 (6)
C6B0.740 (4)0.350 (4)0.549 (4)0.085 (3)0.228 (6)
H6C0.67510.38160.50020.102*0.228 (6)
H6D0.69980.33280.63130.102*0.228 (6)
C7B0.844 (3)0.442 (3)0.540 (3)0.107 (3)0.228 (6)
H7C0.80780.52590.55000.128*0.228 (6)
H7D0.89510.44450.46160.128*0.228 (6)
C8B0.924 (3)0.399 (3)0.637 (3)0.129 (4)0.228 (6)
H8D0.97220.46790.65150.193*0.228 (6)
H8E0.98080.33170.61170.193*0.228 (6)
H8F0.86950.36990.70860.193*0.228 (6)
C90.5736 (3)0.4138 (3)0.1688 (3)0.0397 (8)
C100.4529 (3)0.4099 (4)0.1405 (3)0.0413 (8)
C110.5431 (4)0.2209 (4)0.1490 (4)0.0509 (10)
C120.6485 (4)0.5201 (4)0.1898 (3)0.0470 (9)
C130.3529 (4)0.5090 (4)0.1221 (3)0.0481 (9)
C14A0.5509 (17)0.0797 (5)0.1655 (9)0.061 (3)0.642 (8)
H14A0.63610.05080.13530.073*0.642 (8)
H14B0.49180.04640.12010.073*0.642 (8)
C15A0.5189 (11)0.0302 (8)0.2979 (9)0.081 (3)0.642 (8)
H15A0.57400.06800.34430.098*0.642 (8)
H15B0.43150.05370.32670.098*0.642 (8)
C16A0.5361 (10)0.1097 (8)0.3138 (11)0.108 (4)0.642 (8)
H16A0.56050.13540.39120.161*0.642 (8)
H16B0.60130.13580.25310.161*0.642 (8)
H16C0.45760.14790.30750.161*0.642 (8)
C14B0.572 (3)0.0878 (9)0.119 (2)0.061 (3)0.358 (8)
H14C0.66110.06640.12160.073*0.358 (8)
H14D0.55260.07900.04000.073*0.358 (8)
C15B0.4893 (14)0.0002 (15)0.2123 (14)0.081 (3)0.358 (8)
H15C0.40050.02440.21010.098*0.358 (8)
H15D0.50170.08510.19050.098*0.358 (8)
C16B0.518 (3)0.002 (2)0.3363 (17)0.108 (4)0.358 (8)
H16D0.47960.06880.38590.161*0.358 (8)
H16E0.48320.07840.36690.161*0.358 (8)
H16F0.60800.00250.33630.161*0.358 (8)
O1W0.8927 (3)0.3292 (4)0.0015 (3)0.0955 (13)
H1W0.90950.26170.03140.143*
H2W0.85690.39050.03630.143*
O2W1.0419 (3)0.3400 (4)0.2218 (3)0.0897 (12)
H3W1.08470.40100.18690.135*
H4W1.09110.27780.24050.135*
O3W0.9149 (6)0.0145 (6)0.9607 (5)0.0625 (15)0.50
H5W0.99510.00200.95280.094*0.50
H6W0.90900.01451.03600.094*0.50
O4W0.7737 (5)0.1534 (4)0.8233 (3)0.1211 (17)
H7W0.82690.10830.85980.182*
H8W0.72880.21970.83530.182*
O5W0.1097 (3)0.2735 (3)0.8678 (3)0.0718 (9)
H9W0.16080.33120.82990.108*
H10W0.11510.21230.82550.108*
O6W0.2598 (4)0.1582 (4)0.0406 (4)0.1044 (13)
H11W0.21300.09490.05340.157*
H12W0.20450.21610.02830.157*
H10.876 (8)0.162 (7)0.449 (2)0.157*
H70.453 (3)0.632 (7)0.149 (7)0.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04170 (18)0.0518 (2)0.0479 (2)0.00347 (13)0.00891 (12)0.01025 (13)
O10.091 (2)0.0495 (19)0.067 (2)0.0007 (16)0.0173 (19)0.0084 (16)
O20.070 (2)0.079 (2)0.0510 (19)0.0116 (17)0.0047 (15)0.0254 (15)
O30.0718 (19)0.0587 (18)0.0362 (15)0.0191 (14)0.0077 (13)0.0008 (13)
O40.096 (2)0.0453 (18)0.0579 (18)0.0127 (16)0.0199 (16)0.0092 (14)
O50.0471 (16)0.0495 (17)0.0723 (19)0.0052 (13)0.0187 (14)0.0049 (14)
O60.0647 (19)0.0398 (17)0.096 (2)0.0045 (14)0.0164 (17)0.0127 (16)
O70.0518 (17)0.0510 (18)0.077 (2)0.0153 (14)0.0098 (15)0.0072 (15)
O80.0370 (15)0.069 (2)0.071 (2)0.0022 (13)0.0108 (13)0.0172 (15)
N10.0490 (18)0.0434 (19)0.0429 (18)0.0051 (14)0.0080 (14)0.0005 (14)
N20.063 (2)0.064 (2)0.0355 (17)0.0098 (17)0.0058 (15)0.0041 (16)
N30.0387 (17)0.0403 (18)0.0517 (19)0.0014 (14)0.0099 (14)0.0012 (14)
N40.0384 (17)0.050 (2)0.055 (2)0.0057 (14)0.0133 (14)0.0032 (15)
C10.038 (2)0.049 (2)0.044 (2)0.0000 (16)0.0035 (16)0.0043 (18)
C20.0334 (18)0.044 (2)0.041 (2)0.0010 (15)0.0074 (15)0.0007 (16)
C30.076 (3)0.053 (3)0.050 (3)0.009 (2)0.014 (2)0.006 (2)
C40.047 (2)0.050 (2)0.045 (2)0.0074 (17)0.0120 (17)0.0020 (18)
C50.043 (2)0.061 (3)0.047 (2)0.0004 (18)0.0083 (18)0.014 (2)
C6A0.109 (9)0.068 (5)0.078 (5)0.011 (6)0.009 (6)0.021 (4)
C7A0.133 (8)0.069 (5)0.115 (7)0.011 (5)0.004 (5)0.017 (5)
C8A0.174 (10)0.067 (5)0.136 (8)0.020 (5)0.006 (7)0.012 (5)
C6B0.109 (9)0.068 (5)0.078 (5)0.011 (6)0.009 (6)0.021 (4)
C7B0.133 (8)0.069 (5)0.115 (7)0.011 (5)0.004 (5)0.017 (5)
C8B0.174 (10)0.067 (5)0.136 (8)0.020 (5)0.006 (7)0.012 (5)
C90.0391 (19)0.039 (2)0.0383 (19)0.0003 (15)0.0029 (15)0.0024 (15)
C100.039 (2)0.044 (2)0.0378 (19)0.0004 (16)0.0002 (15)0.0032 (16)
C110.048 (2)0.043 (2)0.061 (3)0.0025 (18)0.0127 (19)0.0029 (19)
C120.048 (2)0.046 (2)0.047 (2)0.0007 (18)0.0077 (17)0.0012 (17)
C130.041 (2)0.056 (3)0.040 (2)0.0088 (18)0.0033 (16)0.0075 (18)
C14A0.061 (7)0.036 (3)0.087 (9)0.006 (3)0.022 (7)0.007 (4)
C15A0.062 (5)0.058 (5)0.121 (8)0.003 (4)0.028 (5)0.023 (5)
C16A0.101 (7)0.059 (5)0.157 (10)0.007 (5)0.023 (6)0.023 (6)
C14B0.061 (7)0.036 (3)0.087 (9)0.006 (3)0.022 (7)0.007 (4)
C15B0.062 (5)0.058 (5)0.121 (8)0.003 (4)0.028 (5)0.023 (5)
C16B0.101 (7)0.059 (5)0.157 (10)0.007 (5)0.023 (6)0.023 (6)
O1W0.085 (3)0.121 (3)0.059 (2)0.052 (2)0.0107 (18)0.035 (2)
O2W0.0499 (19)0.100 (3)0.110 (3)0.0224 (18)0.0251 (18)0.057 (2)
O3W0.065 (4)0.075 (4)0.048 (3)0.008 (3)0.007 (3)0.013 (3)
O4W0.156 (4)0.142 (4)0.072 (2)0.058 (3)0.030 (3)0.048 (3)
O5W0.0623 (19)0.069 (2)0.084 (2)0.0175 (16)0.0083 (16)0.0255 (17)
O6W0.101 (3)0.098 (3)0.131 (4)0.001 (2)0.064 (3)0.025 (3)
Geometric parameters (Å, º) top
Cd1—O1W2.238 (3)C6B—H6D0.9700
Cd1—O2W2.281 (3)C7B—C8B1.512 (14)
Cd1—N12.290 (3)C7B—H7C0.9700
Cd1—N32.300 (3)C7B—H7D0.9700
Cd1—O32.341 (3)C8B—H8D0.9600
Cd1—O52.362 (3)C8B—H8E0.9600
O1—C51.291 (5)C8B—H8F0.9600
O1—H10.82 (3)C9—C101.370 (5)
O2—C51.209 (5)C9—C121.476 (5)
O3—C41.243 (5)C10—C131.487 (5)
O4—C41.257 (5)C11—C14A1.502 (7)
O5—C121.243 (5)C11—C14B1.507 (9)
O6—C121.280 (5)C14A—C15A1.534 (12)
O7—C131.275 (5)C14A—H14A0.9700
O7—H70.82 (4)C14A—H14B0.9700
O8—C131.229 (5)C15A—C16A1.495 (10)
N1—C31.327 (5)C15A—H15A0.9700
N1—C21.363 (5)C15A—H15B0.9700
N2—C31.341 (5)C16A—H16A0.9600
N2—C11.364 (5)C16A—H16B0.9600
N2—H20.8600C16A—H16C0.9600
N3—C111.320 (5)C14B—C15B1.532 (14)
N3—C91.371 (5)C14B—H14C0.9700
N4—C111.346 (5)C14B—H14D0.9700
N4—C101.368 (5)C15B—C16B1.486 (13)
N4—H40.8600C15B—H15C0.9700
C1—C21.377 (5)C15B—H15D0.9700
C1—C51.478 (6)C16B—H16D0.9600
C2—C41.495 (5)C16B—H16E0.9600
C3—C6A1.506 (11)C16B—H16F0.9600
C3—C6B1.51 (4)O1W—H1W0.8499
C6A—C7A1.492 (12)O1W—H2W0.8500
C6A—H6A0.9700O2W—H3W0.8405
C6A—H6B0.9700O2W—H4W0.8547
C7A—C8A1.518 (10)O3W—H5W0.8500
C7A—H7A0.9700O3W—H6W0.8501
C7A—H7B0.9700O4W—H7W0.8503
C8A—H8A0.9600O4W—H8W0.8498
C8A—H8B0.9600O5W—H9W0.8741
C8A—H8C0.9600O5W—H10W0.8500
C6B—C7B1.498 (15)O6W—H11W0.8452
C6B—H6C0.9700O6W—H12W0.8490
O1W—Cd1—O2W88.94 (14)C8B—C7B—H7C110.3
O1W—Cd1—N1162.70 (12)C6B—C7B—H7D110.3
O2W—Cd1—N185.50 (12)C8B—C7B—H7D110.3
O1W—Cd1—N389.03 (13)H7C—C7B—H7D108.5
O2W—Cd1—N3165.95 (12)C7B—C8B—H8D109.5
N1—Cd1—N3100.21 (11)C7B—C8B—H8E109.5
O1W—Cd1—O391.83 (12)H8D—C8B—H8E109.5
O2W—Cd1—O396.11 (12)C7B—C8B—H8F109.5
N1—Cd1—O372.55 (10)H8D—C8B—H8F109.5
N3—Cd1—O397.85 (10)H8E—C8B—H8F109.5
O1W—Cd1—O590.99 (12)C10—C9—N3110.1 (3)
O2W—Cd1—O594.05 (12)C10—C9—C12131.2 (3)
N1—Cd1—O5105.72 (10)N3—C9—C12118.6 (3)
N3—Cd1—O572.08 (10)N4—C10—C9105.1 (3)
O3—Cd1—O5169.50 (10)N4—C10—C13122.2 (3)
C5—O1—H1107 (6)C9—C10—C13132.6 (4)
C4—O3—Cd1117.3 (2)N3—C11—N4111.0 (3)
C12—O5—Cd1115.9 (2)N3—C11—C14A125.1 (8)
C13—O7—H7118 (6)N4—C11—C14A122.8 (8)
C3—N1—C2106.7 (3)N3—C11—C14B123.8 (15)
C3—N1—Cd1140.1 (3)N4—C11—C14B123.8 (16)
C2—N1—Cd1113.2 (2)O5—C12—O6122.5 (4)
C3—N2—C1108.9 (3)O5—C12—C9119.3 (3)
C3—N2—H2125.6O6—C12—C9118.2 (4)
C1—N2—H2125.6O8—C13—O7125.1 (4)
C11—N3—C9105.6 (3)O8—C13—C10118.7 (4)
C11—N3—Cd1140.3 (3)O7—C13—C10116.2 (4)
C9—N3—Cd1113.7 (2)C11—C14A—C15A110.9 (6)
C11—N4—C10108.1 (3)C11—C14A—H14A109.5
C11—N4—H4125.9C15A—C14A—H14A109.5
C10—N4—H4125.9C11—C14A—H14B109.5
N2—C1—C2105.1 (3)C15A—C14A—H14B109.5
N2—C1—C5121.4 (4)H14A—C14A—H14B108.0
C2—C1—C5133.4 (4)C16A—C15A—C14A110.3 (8)
N1—C2—C1109.3 (3)C16A—C15A—H15A109.6
N1—C2—C4119.8 (3)C14A—C15A—H15A109.6
C1—C2—C4130.8 (4)C16A—C15A—H15B109.6
N1—C3—N2110.0 (4)C14A—C15A—H15B109.6
N1—C3—C6A123.2 (6)H15A—C15A—H15B108.1
N2—C3—C6A126.4 (6)C11—C14B—C15B108.1 (13)
N1—C3—C6B129 (2)C11—C14B—H14C110.1
N2—C3—C6B117.6 (18)C15B—C14B—H14C110.1
O3—C4—O4125.2 (4)C11—C14B—H14D110.1
O3—C4—C2117.2 (4)C15B—C14B—H14D110.1
O4—C4—C2117.6 (3)H14C—C14B—H14D108.4
O2—C5—O1122.4 (4)C16B—C15B—C14B113.8 (19)
O2—C5—C1119.9 (4)C16B—C15B—H15C108.8
O1—C5—C1117.6 (4)C14B—C15B—H15C108.8
C7A—C6A—C3112.3 (8)C16B—C15B—H15D108.8
C7A—C6A—H6A109.2C14B—C15B—H15D108.8
C3—C6A—H6A109.2H15C—C15B—H15D107.7
C7A—C6A—H6B109.2C15B—C16B—H16D109.5
C3—C6A—H6B109.2C15B—C16B—H16E109.5
H6A—C6A—H6B107.9H16D—C16B—H16E109.5
C6A—C7A—C8A109.4 (8)C15B—C16B—H16F109.5
C6A—C7A—H7A109.8H16D—C16B—H16F109.5
C8A—C7A—H7A109.8H16E—C16B—H16F109.5
C6A—C7A—H7B109.8Cd1—O1W—H1W112.0
C8A—C7A—H7B109.8Cd1—O1W—H2W119.5
H7A—C7A—H7B108.2H1W—O1W—H2W118.7
C7B—C6B—C3104 (3)Cd1—O2W—H3W127.7
C7B—C6B—H6C111.0Cd1—O2W—H4W116.0
C3—C6B—H6C111.0H3W—O2W—H4W110.5
C7B—C6B—H6D111.0H5W—O3W—H6W92.8
C3—C6B—H6D111.0H7W—O4W—H8W136.0
H6C—C6B—H6D109.0H9W—O5W—H10W107.5
C6B—C7B—C8B107 (3)H11W—O6W—H12W100.2
C6B—C7B—H7C110.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4W0.861.892.747 (5)172
N4—H4···O6W0.861.902.729 (5)161
O1—H1···O40.82 (3)1.67 (3)2.490 (5)172 (7)
O7—H7···O60.82 (4)1.63 (4)2.440 (5)171 (8)
O1W—H1W···O5Wi0.852.272.654 (5)108
O1W—H2W···O8ii0.851.902.737 (5)168
O2W—H3W···O8iii0.842.082.852 (5)152
O2W—H4W···O2iv0.861.992.818 (5)163
O3W—H5W···O3iv0.852.192.794 (7)128
O3W—H6W···O3v0.851.962.770 (6)160
O4W—H7W···O3W0.851.782.620 (8)169
O4W—H8W···O7vi0.852.052.904 (6)180
O5W—H9W···O5vi0.872.012.841 (5)159
O5W—H10W···O4vii0.851.952.778 (5)163
O6W—H11W···O3Wvii0.851.872.679 (8)160
O6W—H12W···O5Wviii0.852.222.850 (5)130
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y, z+1; (v) x, y, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y, z+1; (viii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Cd(C8H9N2O4)2(H2O)2]·3.5H2O
Mr605.83
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.6228 (12), 10.7000 (12), 11.3694 (13)
α, β, γ (°)83.690 (1), 81.701 (1), 87.441 (1)
V3)1270.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.29 × 0.24 × 0.21
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.775, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
6589, 4494, 3730
Rint0.034
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.05
No. of reflections4494
No. of parameters346
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.59

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4W0.861.892.747 (5)172
N4—H4···O6W0.861.902.729 (5)161
O1—H1···O40.82 (3)1.67 (3)2.490 (5)172 (7)
O7—H7···O60.82 (4)1.63 (4)2.440 (5)171 (8)
O1W—H1W···O5Wi0.852.272.654 (5)108
O1W—H2W···O8ii0.851.902.737 (5)168
O2W—H3W···O8iii0.842.082.852 (5)152
O2W—H4W···O2iv0.861.992.818 (5)163
O3W—H5W···O3iv0.852.192.794 (7)128
O3W—H6W···O3v0.851.962.770 (6)160
O4W—H7W···O3W0.851.782.620 (8)169
O4W—H8W···O7vi0.852.052.904 (6)180
O5W—H9W···O5vi0.872.012.841 (5)159
O5W—H10W···O4vii0.851.952.778 (5)163
O6W—H11W···O3Wvii0.851.872.679 (8)160
O6W—H12W···O5Wviii0.852.222.850 (5)130
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y, z+1; (v) x, y, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y, z+1; (viii) x, y, z1.
 

Acknowledgements

This work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003-018(c)] and Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, C.-J., Hu, S., Li, W., Lam, C. K., Zheng, Y.-Z. & Tong, M.-L. (2006). Eur. J. Inorg. Chem. pp. 1931–1935.  Web of Science CSD CrossRef Google Scholar
First citationLi, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806–2807.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J., Chen, Y.-M. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 5814–5817.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZou, R.-Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542–2546.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds