metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ3-5-amino­isophthalato-κ4O,O′:O′′:O′′′)[μ2-1,2-bis­­(4-pyrid­yl)ethane-κ2N:N′]cobalt(II)]

aGeneral Education Center, Yuanpei University, Hsinchu 30015, Taiwan, and bDepartment of Biotechnology, Yuanpei University, No. 306, Yuanpei St., Hsinchu 30015, Taiwan
*Correspondence e-mail: fmshen@mail.ypu.edu.tw

(Received 26 July 2010; accepted 2 August 2010; online 11 August 2010)

In the title compound, [Co(C8H5NO4)(C12H12N2)]n, the CoII ion presents a distorted CoO4N2 octa­hedral coordination geometry, formed by three 5-amino­isophthalate dianions and two 1,2-bis­(4-pyrid­yl)ethane ligands. One carboxyl­ate group of the 5-amino­isophthalate dianion chelates a Co cation and the other carboxyl­ate group bridges the other two Co cations, while the terminal N atoms of the 1,2-bis­(4-pyrid­yl)ethane ligand coordinate the neighboring Co cations, forming a two-dimensional polymeric architecture. Two pyridine rings of the 1,2-bis­(4-pyrid­yl)ethane ligand are twisted to each other with a dihedral angle of 50.94 (16)°. Weak C—H⋯O hydrogen bonding and N—H⋯π inter­actions are observed in the crystal structure. A void of 69 (5) Å3 is present in the crystal structure, but no solvent mol­ecule can be located reasonably.

Related literature

For similar polymeric structures, see: He et al. (2006[He, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2006). Chin. J. Inorg. Chem. 22, 142-144.]); Tang et al. (2007[Tang, E., Dai, Y.-M., Li, Z.-J., Wang, X.-Q., Yin, P.-X. & Yao, Y.-G. (2007). Chin. J. Struct. Chem. 26, 529-532.]); Zhang et al. (2007[Zhang, K.-L., Qiao, N., Gao, H.-Y., Zhou, F. & Zhang, M. (2007). Polyhedron, 26, 2461-2469.]); Ou et al. (2008[Ou, Y.-J., Ma, C.-B., Chen, H., Wang, H.-S., Chen, C.-N. & Liu, Q.-T. (2008). Chin. J. Struct. Chem. 27, 159-162.]); Zhang et al. (2009[Zhang, S.-H., Jin, Z.-J., Zou, H.-H., Zhong, F. & Ge, C.-M. (2009). Chin. J. Struct. Chem. 28, 1630-1634.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H5NO4)(C12H12N2)]

  • Mr = 422.30

  • Triclinic, [P \overline 1]

  • a = 9.9093 (2) Å

  • b = 10.0755 (2) Å

  • c = 10.5065 (3) Å

  • α = 78.301 (1)°

  • β = 83.560 (1)°

  • γ = 68.074 (2)°

  • V = 952.12 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 298 K

  • 0.22 × 0.18 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]) Tmin = 0.732, Tmax = 0.840

  • 7715 measured reflections

  • 3356 independent reflections

  • 3003 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.120

  • S = 1.16

  • 3356 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 2.178 (2)
Co1—N2i 2.175 (3)
Co1—O1 2.0416 (18)
Co1—O2ii 2.011 (2)
Co1—O3iii 2.1426 (19)
Co1—O4iii 2.228 (2)
Symmetry codes: (i) x-1, y, z+1; (ii) -x, -y+1, -z+1; (iii) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the N1-pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4iv 0.93 2.35 3.271 (4) 173
C10—H10⋯O2v 0.93 2.44 3.276 (5) 150
C15—H15⋯O3vi 0.93 2.56 3.487 (4) 175
N3—H3ACg4vii 0.86 2.92 3.765 (3) 169
Symmetry codes: (iv) -x, -y+2, -z; (v) x+1, y, z-1; (vi) -x, -y+2, -z+1; (vii) -x, -y+1, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In recent years, we have been focused on organic-inorganic hybrid material containing either N– or O-donor rigid heteroaromatic ligands, such as 5-Aminoisophthalic acid (aip). The polycarboxylic acid ligands can bridge one or more metal centers and produce neutral architectures. Hence, metal-organic coordination polymers constructed by mixed ligands of pyridyl and carboxylate groups not only incorporate interesting propertied of different functional groups but also are more adjustable through changing one of the mixing organic ligands. However, few coordination polymers based on amino aromatic di or poly(carboxylic acids) ligands and bipyridine has been reported (He et al. 2006; Tang et al. 2007; Zhang et al. 2007; Ou et al. 2008; Zhang et al. 2009).

The title compound by X-ray crystallography reveals that the symmetric unit consist of one CoII ion, two 1,2-bis(4-pyridyl)ethane (dpe) ligands and three aip ligands, as shown in Fig. 1. The CoII ion is six-coordinated with a slightly distorted octahedral geometry. The equatorial plane is occupied by two monodentate carboxylate oxygen atoms from two aip ligands and one bidentate carboxylate oxygen atoms from one aip ligand, while the axial sites are occupied by two nitrogen atoms of the pyridine groups from two dpe ligands (Table 1). Each aip ligand employs its two carboxylate groups in turn to coordinate to three metal centers, while the remains amino group in uncoordinated manner. The four symmetry-related metal centers are linked by two aip ligands and two dpe ligands to form a 30-membered macro cycle with Co···Co separation of 6.956 (3) Å and 13.610 (8) Å, respectively, showing 1-D open channels along the crystallographic c axis. In title polymer, there are no classical hydrogen bonding interactions, but C—H···O hydrogen-bonding is observed in the crystal structure (Table 2).

In addition, C—H···π interactions C11—H11···Cg3 (N1/C2—C5), N—H···π interactions N3—H···Cg4 (N2/C8—C12) are present in the crystal structure (full details and symmetry codes are given in Table 2). π···π stacking interactions are also observed, the centroid-centroid between Cg3(O3—O4/C17/Co1c)···Cg4vii(N1/C1—C5), Cg3···Cg5(N2/C8—C12)viii are 3.8307 (17) and 3.9143 (18) [symmetry codes: (vii)= X, 1+Y, Z, (viii)= 1-X,1-Y,-Z.], respectively.

Related literature top

For similar polymeric structures, see: He et al. (2006); Tang et al. (2007); Zhang et al. (2007); Ou et al. (2008); Zhang et al. (2009).

Experimental top

CoBr2 (0.1097 g, 0.5 mmol), 5-aminoisophthalic acid, (0.0903 g, 0.5 mmol) and 1,2-bis(4-pyridyl)ethane (0.0913 g, 0.5 mmol) were mixed in 10 ml deionized water. After being stirred for 30 min, the mixture was placed in a 25 ml Teflon liner reactor and heated at 423 K in the oven for 24 h. The resulting solution was slowly cooled to room temperature. The purple transparent single crystals of the title compound were obtained in 46.45% yield (based on cobalt).

Refinement top

H atoms were positioned geometrically with N—H = 0.86, C—H = 0.93 (aromatic) and 0.97 Å (methylene), and were refined using a riding model with Uiso(H) = 1.2Ueq(C,N). A voids of 69 Å3 exists close to an inversion center in the crystal structure, a solvent water molecule with a fractional site occupancy factor was tried to located, however the refinement including the water molecule gave an abnormal large displacement paramenter and small SOF.

Structure description top

In recent years, we have been focused on organic-inorganic hybrid material containing either N– or O-donor rigid heteroaromatic ligands, such as 5-Aminoisophthalic acid (aip). The polycarboxylic acid ligands can bridge one or more metal centers and produce neutral architectures. Hence, metal-organic coordination polymers constructed by mixed ligands of pyridyl and carboxylate groups not only incorporate interesting propertied of different functional groups but also are more adjustable through changing one of the mixing organic ligands. However, few coordination polymers based on amino aromatic di or poly(carboxylic acids) ligands and bipyridine has been reported (He et al. 2006; Tang et al. 2007; Zhang et al. 2007; Ou et al. 2008; Zhang et al. 2009).

The title compound by X-ray crystallography reveals that the symmetric unit consist of one CoII ion, two 1,2-bis(4-pyridyl)ethane (dpe) ligands and three aip ligands, as shown in Fig. 1. The CoII ion is six-coordinated with a slightly distorted octahedral geometry. The equatorial plane is occupied by two monodentate carboxylate oxygen atoms from two aip ligands and one bidentate carboxylate oxygen atoms from one aip ligand, while the axial sites are occupied by two nitrogen atoms of the pyridine groups from two dpe ligands (Table 1). Each aip ligand employs its two carboxylate groups in turn to coordinate to three metal centers, while the remains amino group in uncoordinated manner. The four symmetry-related metal centers are linked by two aip ligands and two dpe ligands to form a 30-membered macro cycle with Co···Co separation of 6.956 (3) Å and 13.610 (8) Å, respectively, showing 1-D open channels along the crystallographic c axis. In title polymer, there are no classical hydrogen bonding interactions, but C—H···O hydrogen-bonding is observed in the crystal structure (Table 2).

In addition, C—H···π interactions C11—H11···Cg3 (N1/C2—C5), N—H···π interactions N3—H···Cg4 (N2/C8—C12) are present in the crystal structure (full details and symmetry codes are given in Table 2). π···π stacking interactions are also observed, the centroid-centroid between Cg3(O3—O4/C17/Co1c)···Cg4vii(N1/C1—C5), Cg3···Cg5(N2/C8—C12)viii are 3.8307 (17) and 3.9143 (18) [symmetry codes: (vii)= X, 1+Y, Z, (viii)= 1-X,1-Y,-Z.], respectively.

For similar polymeric structures, see: He et al. (2006); Tang et al. (2007); Zhang et al. (2007); Ou et al. (2008); Zhang et al. (2009).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Poly[(µ3-5-aminoisophthalato- κ4O,O':O'':O''')[µ2-1,2-bis(4- pyridyl)ethane-κ2N:N']cobalt(II)] top
Crystal data top
[Co(C8H5NO4)(C12H12N2)]Z = 2
Mr = 422.30F(000) = 434
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9093 (2) ÅCell parameters from 6854 reflections
b = 10.0755 (2) Åθ = 2.0–25.0°
c = 10.5065 (3) ŵ = 0.93 mm1
α = 78.301 (1)°T = 298 K
β = 83.560 (1)°Prism, purple
γ = 68.074 (2)°0.22 × 0.18 × 0.08 mm
V = 952.12 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
3356 independent reflections
Radiation source: fine-focus sealed tube3003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω/2θ scansh = 1111
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.732, Tmax = 0.840l = 1212
7715 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.2452P]
where P = (Fo2 + 2Fc2)/3
3356 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Co(C8H5NO4)(C12H12N2)]γ = 68.074 (2)°
Mr = 422.30V = 952.12 (4) Å3
Triclinic, P1Z = 2
a = 9.9093 (2) ÅMo Kα radiation
b = 10.0755 (2) ŵ = 0.93 mm1
c = 10.5065 (3) ÅT = 298 K
α = 78.301 (1)°0.22 × 0.18 × 0.08 mm
β = 83.560 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3356 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3003 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.840Rint = 0.038
7715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.16Δρmax = 0.58 e Å3
3356 reflectionsΔρmin = 0.60 e Å3
253 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.03642 (4)0.35863 (3)0.37674 (3)0.0234 (1)
O10.1184 (2)0.57793 (18)0.31360 (18)0.0285 (6)
O20.0962 (2)0.6739 (2)0.47933 (18)0.0323 (6)
O30.0094 (2)1.1365 (2)0.36324 (18)0.0308 (6)
O40.1437 (2)1.3060 (2)0.2285 (2)0.0359 (6)
N10.1467 (2)0.3521 (2)0.2393 (2)0.0279 (7)
N20.7840 (3)0.3556 (3)0.4846 (2)0.0317 (7)
N30.2170 (3)0.9890 (3)0.0716 (2)0.0406 (9)
C10.2784 (3)0.2469 (3)0.2530 (3)0.0358 (9)
C20.3902 (3)0.2352 (3)0.1606 (3)0.0395 (9)
C30.3706 (3)0.3366 (3)0.0468 (3)0.0355 (9)
C40.2349 (3)0.4469 (4)0.0337 (3)0.0423 (10)
C50.1282 (3)0.4506 (3)0.1293 (3)0.0381 (9)
C60.4901 (3)0.3287 (4)0.0575 (3)0.0493 (10)
C70.4432 (4)0.3491 (5)0.1921 (3)0.0622 (16)
C80.5608 (3)0.3512 (4)0.2951 (3)0.0434 (10)
C90.5940 (4)0.4743 (4)0.3398 (4)0.0577 (12)
C100.7050 (4)0.4714 (4)0.4323 (3)0.0490 (11)
C110.7517 (3)0.2363 (3)0.4412 (3)0.0435 (10)
C120.6425 (4)0.2314 (4)0.3494 (3)0.0491 (11)
C130.1119 (3)0.6807 (3)0.3616 (3)0.0247 (8)
C140.1282 (3)0.8214 (3)0.2696 (3)0.0252 (8)
C150.1013 (3)0.9306 (3)0.3130 (3)0.0269 (8)
C160.1136 (3)1.0592 (3)0.2279 (3)0.0266 (8)
C170.0809 (3)1.1747 (3)0.2751 (3)0.0267 (8)
C180.1542 (3)1.0802 (3)0.1017 (3)0.0295 (8)
C190.1780 (3)0.9694 (3)0.0556 (3)0.0289 (8)
C200.1643 (3)0.8411 (3)0.1413 (3)0.0274 (8)
H10.295100.178100.329000.0430*
H20.479200.159200.174500.0470*
H3A0.233000.921100.098200.0490*
H3B0.225101.069000.123800.0490*
H40.216400.518600.040300.0510*
H50.038200.525400.117300.0460*
H6A0.529500.402600.053700.0590*
H6B0.567800.234900.038700.0590*
H7A0.361100.439900.209100.0750*
H7B0.410400.271200.198000.0750*
H90.541400.559300.307600.0690*
H100.725700.555800.459600.0590*
H110.805800.152500.474700.0520*
H120.623700.145800.323900.0590*
H150.075400.917600.398300.0320*
H180.165901.168300.046700.0350*
H200.179500.766700.112400.0330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0327 (2)0.0192 (2)0.0210 (2)0.0133 (2)0.0040 (2)0.0048 (2)
O10.0409 (10)0.0202 (9)0.0278 (10)0.0143 (8)0.0001 (8)0.0062 (8)
O20.0487 (11)0.0302 (11)0.0229 (10)0.0211 (9)0.0035 (9)0.0009 (8)
O30.0425 (11)0.0253 (10)0.0294 (10)0.0169 (8)0.0038 (9)0.0052 (8)
O40.0529 (12)0.0208 (10)0.0365 (11)0.0157 (9)0.0079 (10)0.0025 (8)
N10.0343 (12)0.0288 (12)0.0216 (11)0.0134 (10)0.0039 (9)0.0057 (9)
N20.0359 (12)0.0333 (13)0.0279 (12)0.0167 (10)0.0082 (10)0.0067 (10)
N30.0644 (17)0.0355 (14)0.0287 (13)0.0250 (13)0.0137 (12)0.0003 (11)
C10.0415 (16)0.0321 (16)0.0280 (15)0.0108 (13)0.0031 (13)0.0001 (12)
C20.0342 (15)0.0410 (17)0.0355 (17)0.0062 (13)0.0022 (13)0.0059 (14)
C30.0336 (15)0.0454 (18)0.0281 (15)0.0158 (13)0.0058 (12)0.0088 (13)
C40.0431 (17)0.0459 (18)0.0262 (15)0.0104 (14)0.0074 (13)0.0040 (13)
C50.0336 (15)0.0386 (17)0.0305 (16)0.0043 (12)0.0056 (12)0.0011 (13)
C60.0356 (16)0.072 (2)0.0366 (18)0.0191 (16)0.0097 (14)0.0081 (16)
C70.0402 (18)0.116 (4)0.0359 (19)0.037 (2)0.0131 (15)0.016 (2)
C80.0347 (15)0.071 (2)0.0256 (15)0.0241 (16)0.0068 (13)0.0057 (15)
C90.063 (2)0.062 (2)0.054 (2)0.0273 (19)0.0290 (18)0.0309 (19)
C100.060 (2)0.0447 (19)0.053 (2)0.0313 (16)0.0259 (17)0.0232 (16)
C110.0495 (18)0.0369 (17)0.0438 (19)0.0200 (14)0.0148 (15)0.0068 (14)
C120.0530 (19)0.049 (2)0.046 (2)0.0283 (16)0.0121 (16)0.0020 (16)
C130.0282 (12)0.0216 (13)0.0252 (14)0.0116 (10)0.0023 (10)0.0031 (11)
C140.0314 (13)0.0192 (13)0.0269 (14)0.0122 (10)0.0006 (11)0.0029 (10)
C150.0379 (14)0.0213 (13)0.0231 (13)0.0121 (11)0.0015 (11)0.0044 (10)
C160.0344 (13)0.0210 (13)0.0269 (14)0.0128 (11)0.0012 (11)0.0057 (11)
C170.0367 (14)0.0243 (14)0.0215 (13)0.0157 (11)0.0054 (11)0.0039 (11)
C180.0387 (14)0.0219 (14)0.0272 (14)0.0118 (11)0.0013 (12)0.0011 (11)
C190.0350 (14)0.0285 (14)0.0255 (14)0.0141 (11)0.0034 (11)0.0032 (11)
C200.0357 (14)0.0234 (13)0.0281 (14)0.0141 (11)0.0020 (12)0.0082 (11)
Geometric parameters (Å, º) top
Co1—N12.178 (2)C9—C101.380 (6)
Co1—N2i2.175 (3)C11—C121.375 (5)
Co1—O12.0416 (18)C13—C141.509 (4)
Co1—O2ii2.011 (2)C14—C201.390 (4)
Co1—O3iii2.1426 (19)C14—C151.393 (4)
Co1—O4iii2.228 (2)C15—C161.389 (4)
O1—C131.265 (3)C16—C171.502 (4)
O2—C131.249 (4)C16—C181.381 (4)
O3—C171.261 (4)C18—C191.406 (4)
O4—C171.252 (3)C19—C201.387 (4)
N1—C11.340 (4)C1—H10.9300
N1—C51.342 (4)C2—H20.9300
N2—C101.326 (5)C4—H40.9300
N2—C111.337 (4)C5—H50.9300
N3—C191.388 (4)C6—H6A0.9700
N3—H3A0.8600C6—H6B0.9700
N3—H3B0.8600C7—H7A0.9700
C1—C21.375 (4)C7—H7B0.9700
C2—C31.386 (4)C9—H90.9300
C3—C61.511 (5)C10—H100.9300
C3—C41.388 (5)C11—H110.9300
C4—C51.370 (4)C12—H120.9300
C6—C71.489 (5)C15—H150.9300
C7—C81.502 (5)C18—H180.9300
C8—C121.373 (5)C20—H200.9300
C8—C91.379 (5)
Co1···C15ii3.893 (3)C19···C18ix3.421 (4)
Co1···H15ii3.1900C1···H3Aiv2.7500
O1···O4iii3.151 (3)C2···H3Aiv2.8000
O1···N12.913 (3)C4···H7A2.7100
O1···N2i3.111 (3)C6···H6Avi3.0900
O1···C52.995 (4)C7···H42.8200
O1···C10i3.246 (4)C9···H6A3.0000
O1···O2ii3.235 (3)C11···H15vi3.0400
O1···C7iv3.362 (5)C12···H3Bxiii2.7500
O2···O1ii3.235 (3)C13···H10i2.7500
O2···C10i3.276 (5)C17···H11viii2.7400
O2···O3v3.155 (3)C18···H6Bxii2.9900
O2···N2vi3.001 (4)C19···H6Bxii2.9900
O2···C1ii3.241 (4)C20···H7Biv3.0100
O2···N1ii2.917 (3)H1···O2ii2.8800
O3···N1vii2.988 (3)H2···H6B2.4000
O3···C1vii3.269 (4)H3A···H202.4200
O3···N2viii3.060 (3)H3A···C1iv2.7500
O3···C11viii3.082 (4)H3A···C2iv2.8000
O3···O2v3.155 (3)H3B···C12xii2.7500
O4···C4ix3.271 (4)H3B···H6Bxii2.3300
O4···O1vii3.151 (3)H3B···H12xii2.5400
O4···N2viii3.116 (3)H3B···H182.4400
O4···N1vii3.099 (3)H4···C72.8200
O1···H52.4600H4···H7A2.2300
O1···H202.5000H4···O4ix2.3500
O1···H10i2.7100H5···O12.4600
O1···H7Aiv2.8300H5···H202.5700
O2···H152.5100H6A···C93.0000
O2···H10i2.4400H6A···C6vi3.0900
O2···H1ii2.8800H6A···H6Avi2.3200
O3···H152.5900H6B···N3xiii2.6500
O3···H15v2.5600H6B···C18xiii2.9900
O3···H11viii2.4700H6B···C19xiii2.9900
O3···H11vi2.8800H6B···H22.4000
O4···H182.6500H6B···H3Bxiii2.3300
O4···H4ix2.3500H7A···C42.7100
O4···H7Aix2.6500H7A···H42.2300
N1···O12.913 (3)H7A···H92.5300
N1···O3iii2.988 (3)H7A···O1iv2.8300
N1···O4iii3.099 (3)H7A···O4ix2.6500
N1···C17iii3.312 (4)H7B···H122.4200
N1···O2ii2.917 (3)H7B···C20iv3.0100
N2···O1x3.111 (3)H7B···H20iv2.5000
N2···O3xi3.060 (3)H9···H7A2.5300
N2···O4xi3.116 (3)H10···O1x2.7100
N2···C17xi3.282 (4)H10···O2x2.4400
N2···O2vi3.001 (4)H10···C13x2.7500
N3···C16ix3.405 (4)H11···O3xi2.4700
N3···H6Bxii2.6500H11···C17xi2.7400
C4···O4ix3.271 (4)H11···O3vi2.8800
C7···O1iv3.362 (5)H12···H3Bxiii2.5400
C10···O2x3.276 (5)H12···H7B2.4200
C10···C13x3.543 (5)H15···O22.5100
C11···C17xi3.301 (4)H15···O32.5900
C11···C15vi3.524 (4)H15···Co1ii3.1900
C11···O3xi3.082 (4)H15···O3v2.5600
C13···C10i3.543 (5)H15···C11vi3.0400
C15···C11vi3.524 (4)H18···O42.6500
C15···Co1ii3.893 (3)H18···H3B2.4400
C16···N3ix3.405 (4)H20···O12.5000
C17···C11viii3.301 (4)H20···H3A2.4200
C17···N2viii3.282 (4)H20···H52.5700
C18···C18ix3.573 (4)H20···H7Biv2.5000
C18···C19ix3.421 (4)
O1—Co1—N187.24 (8)O1—C13—C14117.0 (3)
O1—Co1—N2i95.05 (9)C13—C14—C15119.3 (3)
O1—Co1—O3iii154.55 (8)C13—C14—C20120.9 (3)
O1—Co1—O4iii95.00 (8)C15—C14—C20119.7 (3)
O1—Co1—C17iii124.90 (9)C14—C15—C16119.5 (3)
O1—Co1—O2ii105.91 (8)C17—C16—C18120.5 (3)
N1—Co1—N2i177.68 (9)C15—C16—C18120.6 (3)
O3iii—Co1—N187.51 (7)C15—C16—C17118.9 (3)
O4iii—Co1—N189.38 (8)O3—C17—O4121.1 (3)
N1—Co1—C17iii89.68 (9)O3—C17—C16118.6 (3)
O2ii—Co1—N188.18 (8)Co1vii—C17—O358.69 (14)
O3iii—Co1—N2i90.27 (9)O4—C17—C16120.3 (3)
O4iii—Co1—N2i90.08 (9)Co1vii—C17—O462.59 (15)
N2i—Co1—C17iii88.72 (10)Co1vii—C17—C16174.0 (2)
O2ii—Co1—N2i91.52 (9)C16—C18—C19120.5 (3)
O3iii—Co1—O4iii60.05 (7)N3—C19—C18120.9 (3)
O3iii—Co1—C17iii30.19 (9)N3—C19—C20120.9 (3)
O2ii—Co1—O3iii98.80 (8)C18—C19—C20118.3 (3)
O4iii—Co1—C17iii29.93 (9)C14—C20—C19121.4 (3)
O2ii—Co1—O4iii158.80 (7)N1—C1—H1118.00
O2ii—Co1—C17iii128.97 (9)C2—C1—H1118.00
Co1—O1—C13130.47 (19)C1—C2—H2120.00
Co1ii—O2—C13148.9 (2)C3—C2—H2120.00
Co1vii—O3—C1791.12 (17)C3—C4—H4120.00
Co1vii—O4—C1787.48 (18)C5—C4—H4120.00
Co1—N1—C1123.40 (18)N1—C5—H5118.00
Co1—N1—C5120.13 (18)C4—C5—H5118.00
C1—N1—C5116.3 (2)C3—C6—H6A109.00
C10—N2—C11115.9 (3)C3—C6—H6B109.00
Co1x—N2—C10121.2 (2)C7—C6—H6A109.00
Co1x—N2—C11122.7 (2)C7—C6—H6B109.00
C19—N3—H3B120.00H6A—C6—H6B108.00
H3A—N3—H3B120.00C6—C7—H7A109.00
C19—N3—H3A120.00C6—C7—H7B109.00
N1—C1—C2123.5 (3)C8—C7—H7A109.00
C1—C2—C3120.1 (3)C8—C7—H7B109.00
C2—C3—C4116.3 (3)H7A—C7—H7B108.00
C2—C3—C6122.1 (3)C8—C9—H9120.00
C4—C3—C6121.5 (3)C10—C9—H9120.00
C3—C4—C5120.3 (3)N2—C10—H10118.00
N1—C5—C4123.5 (3)C9—C10—H10118.00
C3—C6—C7114.5 (3)N2—C11—H11118.00
C6—C7—C8113.7 (3)C12—C11—H11118.00
C9—C8—C12116.0 (3)C8—C12—H12120.00
C7—C8—C12122.5 (3)C11—C12—H12120.00
C7—C8—C9121.6 (4)C14—C15—H15120.00
C8—C9—C10120.1 (3)C16—C15—H15120.00
N2—C10—C9124.0 (4)C16—C18—H18120.00
N2—C11—C12123.2 (3)C19—C18—H18120.00
C8—C12—C11120.8 (3)C14—C20—H20119.00
O2—C13—C14118.6 (3)C19—C20—H20119.00
O1—C13—O2124.4 (3)
N1—Co1—O1—C1397.8 (3)Co1x—N2—C10—C9177.1 (3)
N2i—Co1—O1—C1382.6 (3)C10—N2—C11—C120.9 (5)
O3iii—Co1—O1—C13176.1 (2)Co1x—N2—C11—C12177.1 (3)
O4iii—Co1—O1—C13173.1 (3)N1—C1—C2—C31.0 (5)
C17iii—Co1—O1—C13174.5 (2)C1—C2—C3—C40.2 (5)
O2ii—Co1—O1—C1310.5 (3)C1—C2—C3—C6179.9 (3)
O1—Co1—N1—C1155.5 (2)C2—C3—C4—C50.9 (5)
O1—Co1—N1—C529.6 (2)C6—C3—C4—C5179.4 (3)
O3iii—Co1—N1—C149.4 (2)C2—C3—C6—C7133.5 (4)
O3iii—Co1—N1—C5125.5 (2)C4—C3—C6—C746.8 (5)
O4iii—Co1—N1—C1109.5 (2)C3—C4—C5—N10.6 (5)
O4iii—Co1—N1—C565.4 (2)C3—C6—C7—C8176.0 (3)
C17iii—Co1—N1—C179.6 (2)C6—C7—C8—C980.7 (5)
C17iii—Co1—N1—C595.4 (2)C6—C7—C8—C1298.6 (4)
O2ii—Co1—N1—C149.5 (2)C7—C8—C9—C10178.5 (3)
O2ii—Co1—N1—C5135.6 (2)C12—C8—C9—C100.9 (5)
O1—Co1—N2i—C10i26.1 (3)C7—C8—C12—C11178.4 (3)
O1—Co1—N2i—C11i157.9 (2)C9—C8—C12—C111.0 (5)
O1—Co1—O3iii—C17iii15.4 (3)C8—C9—C10—N20.9 (6)
N1—Co1—O3iii—C17iii93.66 (18)N2—C11—C12—C81.0 (5)
O1—Co1—O4iii—C17iii177.63 (18)O1—C13—C14—C15170.9 (3)
N1—Co1—O4iii—C17iii90.45 (18)O1—C13—C14—C206.7 (4)
O1—Co1—C17iii—O3iii172.00 (15)O2—C13—C14—C1510.6 (4)
O1—Co1—C17iii—O4iii2.9 (2)O2—C13—C14—C20171.8 (3)
N1—Co1—C17iii—O3iii85.58 (17)C13—C14—C15—C16178.8 (3)
N1—Co1—C17iii—O4iii89.30 (17)C20—C14—C15—C161.2 (5)
O1—Co1—O2ii—C13ii86.0 (4)C13—C14—C20—C19179.3 (3)
N1—Co1—O2ii—C13ii172.6 (4)C15—C14—C20—C191.7 (5)
Co1—O1—C13—O225.5 (5)C14—C15—C16—C17178.6 (3)
Co1—O1—C13—C14156.1 (2)C14—C15—C16—C181.0 (5)
Co1ii—O2—C13—O197.8 (4)C15—C16—C17—O328.8 (4)
Co1ii—O2—C13—C1483.8 (4)C15—C16—C17—O4150.4 (3)
Co1vii—O3—C17—O45.3 (3)C18—C16—C17—O3150.7 (3)
Co1vii—O3—C17—C16173.9 (3)C18—C16—C17—O430.1 (5)
Co1vii—O4—C17—O35.1 (3)C15—C16—C18—C192.6 (5)
Co1vii—O4—C17—C16174.1 (3)C17—C16—C18—C19176.9 (3)
Co1—N1—C1—C2173.8 (2)C16—C18—C19—N3179.2 (3)
C5—N1—C1—C21.3 (4)C16—C18—C19—C202.1 (5)
Co1—N1—C5—C4174.8 (2)N3—C19—C20—C14178.7 (3)
C1—N1—C5—C40.5 (4)C18—C19—C20—C140.1 (5)
C11—N2—C10—C90.8 (5)
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x, y+2, z+1; (vi) x+1, y+1, z; (vii) x, y+1, z; (viii) x1, y+1, z+1; (ix) x, y+2, z; (x) x+1, y, z1; (xi) x+1, y1, z1; (xii) x1, y+1, z; (xiii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the N1-pyridine ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O4ix0.932.353.271 (4)173
C5—H5···O10.932.462.995 (4)117
C10—H10···O2x0.932.443.276 (5)150
C11—H11···O3xi0.932.473.082 (4)124
C15—H15···O3v0.932.563.487 (4)175
N3—H3A···Cg4iv0.862.923.765 (3)169
C11—H11···Cg3xi0.932.653.019 (3)105
Symmetry codes: (iv) x, y+1, z; (v) x, y+2, z+1; (ix) x, y+2, z; (x) x+1, y, z1; (xi) x+1, y1, z1.

Experimental details

Crystal data
Chemical formula[Co(C8H5NO4)(C12H12N2)]
Mr422.30
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.9093 (2), 10.0755 (2), 10.5065 (3)
α, β, γ (°)78.301 (1), 83.560 (1), 68.074 (2)
V3)952.12 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.22 × 0.18 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.732, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
7715, 3356, 3003
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.120, 1.16
No. of reflections3356
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.60

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—N12.178 (2)Co1—O2ii2.011 (2)
Co1—N2i2.175 (3)Co1—O3iii2.1426 (19)
Co1—O12.0416 (18)Co1—O4iii2.228 (2)
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1, z+1; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the N1-pyridine ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O4iv0.932.353.271 (4)173
C10—H10···O2v0.932.443.276 (5)150
C15—H15···O3vi0.932.563.487 (4)175
N3—H3A···Cg4vii0.862.923.765 (3)169
Symmetry codes: (iv) x, y+2, z; (v) x+1, y, z1; (vi) x, y+2, z+1; (vii) x, y+1, z.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationHe, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2006). Chin. J. Inorg. Chem. 22, 142–144.  CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.  Google Scholar
First citationOu, Y.-J., Ma, C.-B., Chen, H., Wang, H.-S., Chen, C.-N. & Liu, Q.-T. (2008). Chin. J. Struct. Chem. 27, 159–162.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, E., Dai, Y.-M., Li, Z.-J., Wang, X.-Q., Yin, P.-X. & Yao, Y.-G. (2007). Chin. J. Struct. Chem. 26, 529–532.  CAS Google Scholar
First citationZhang, S.-H., Jin, Z.-J., Zou, H.-H., Zhong, F. & Ge, C.-M. (2009). Chin. J. Struct. Chem. 28, 1630–1634.  CAS Google Scholar
First citationZhang, K.-L., Qiao, N., Gao, H.-Y., Zhou, F. & Zhang, M. (2007). Polyhedron, 26, 2461–2469.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds