metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4,6-di­methyl­pyrimidine-2-thiol­ato)di­methyl­tin(IV)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: macl@lcu.edu.cn

(Received 27 July 2010; accepted 30 July 2010; online 28 August 2010)

The asymmetric unit of the title complex, [Sn(CH3)2(C6H7N2S)2], contains two independent mol­ecules with similar configurations. In each, the SnIV cation is coordinated by two methyl and two 4,6-dimethyl­pyrimidine-2-thiol­ate anions in a distorted SnS2C2 tetra­hedral geometry. In the two mol­ecules, the S—Sn—S bond angles are 87.70 (5) and 88.93 (4)°, while the C—Sn—C bond angles are 125.7 (3) and 125.9 (2)°. Weak C—H⋯N hydrogen bonding is present in the crystal structure.

Related literature

For applications of organotin compounds, see: Duboy & Roy (2003[Duboy, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3-8.]); Gielen (2002[Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(C6H7N2S)2]

  • Mr = 427.15

  • Monoclinic, P 21 /n

  • a = 10.5787 (17) Å

  • b = 26.731 (4) Å

  • c = 13.393 (2) Å

  • β = 91.001 (2)°

  • V = 3786.7 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 273 K

  • 0.43 × 0.38 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.552, Tmax = 0.787

  • 19775 measured reflections

  • 6678 independent reflections

  • 4533 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.06

  • 6678 reflections

  • 391 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯N6i 0.96 2.55 3.397 (7) 147
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, organotin complexes have attracted increasing attention owing to their wide industrial applications and biological activities (Duboy & Roy, 2003). In order to explore the relationships between these applications and their structures, a large number of organotin compounds have been prepared and studied (Gielen, 2002). In this connection, we report the structure of the title compound, (CH3)2Sn(SC6H7N2)2. As shown in Fig. 1, the title compound is a mononuclear dimethyltin(IV) derivate. The asymmetric unit contains two monomers. The structures of the two independent molecules are almost the same, with only small differences in bond lengths and bond angles. In the two molecules the S–Sn–S bond angles are 87.70 (5) and 88.93 (4)°, while the C–Sn–C bond angles are 125.7 (3) and 125.9 (2)°. Weak C—H···N hydrogen bonding is present in the crystal structure.

Related literature top

For applications of organotin compounds, see: Duboy & Roy (2003); Gielen (2002).

Experimental top

The reaction was carried out under nitrogen atmosphere. the 4,6-dimethyl-2-mercaptopyrimidine (0.280 g, 2 mmol), sodium ethoxide (0.136 g, 2 mmol) and dimethyltin dichloride (0.220 g, 1 mmol) was added in turn in benzene (20 ml), stirred for 12 h at 313 K and filtrated. The solvent was gradually removed by evaporation under vacuum until a solid product was obtained. Colorless crystals suitable for X-ray diffraction were obtained by recrystallization.

Refinement top

The H atoms were positioned geometrically, with methyl C—H distance of 0.96, aromatic C—H distance of 0.93 Å, and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C) for the methyl groups.

Structure description top

In recent years, organotin complexes have attracted increasing attention owing to their wide industrial applications and biological activities (Duboy & Roy, 2003). In order to explore the relationships between these applications and their structures, a large number of organotin compounds have been prepared and studied (Gielen, 2002). In this connection, we report the structure of the title compound, (CH3)2Sn(SC6H7N2)2. As shown in Fig. 1, the title compound is a mononuclear dimethyltin(IV) derivate. The asymmetric unit contains two monomers. The structures of the two independent molecules are almost the same, with only small differences in bond lengths and bond angles. In the two molecules the S–Sn–S bond angles are 87.70 (5) and 88.93 (4)°, while the C–Sn–C bond angles are 125.7 (3) and 125.9 (2)°. Weak C—H···N hydrogen bonding is present in the crystal structure.

For applications of organotin compounds, see: Duboy & Roy (2003); Gielen (2002).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
Bis(4,6-dimethylpyrimidine-2-thiolato)dimethyltin(IV) top
Crystal data top
[Sn(CH3)2(C6H7N2S)2]F(000) = 1712
Mr = 427.15Dx = 1.498 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6539 reflections
a = 10.5787 (17) Åθ = 2.3–24.8°
b = 26.731 (4) ŵ = 1.57 mm1
c = 13.393 (2) ÅT = 273 K
β = 91.001 (2)°Block, colorless
V = 3786.7 (11) Å30.43 × 0.38 × 0.16 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
6678 independent reflections
Radiation source: fine-focus sealed tube4533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.552, Tmax = 0.787k = 3131
19775 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0349P)2 + 1.8858P]
where P = (Fo2 + 2Fc2)/3
6678 reflections(Δ/σ)max = 0.001
391 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Sn(CH3)2(C6H7N2S)2]V = 3786.7 (11) Å3
Mr = 427.15Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.5787 (17) ŵ = 1.57 mm1
b = 26.731 (4) ÅT = 273 K
c = 13.393 (2) Å0.43 × 0.38 × 0.16 mm
β = 91.001 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6678 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4533 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 0.787Rint = 0.037
19775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
6678 reflectionsΔρmin = 0.50 e Å3
391 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.29835 (3)0.070638 (12)0.28079 (2)0.05902 (12)
Sn20.46690 (3)0.321709 (12)0.29062 (2)0.05684 (11)
N10.5146 (3)0.04328 (14)0.1909 (3)0.0572 (10)
N20.6789 (4)0.10341 (16)0.1758 (3)0.0689 (11)
N30.0515 (4)0.05130 (16)0.3491 (3)0.0672 (11)
N40.0609 (4)0.12016 (15)0.4172 (3)0.0648 (11)
N50.2278 (4)0.30583 (15)0.2095 (3)0.0604 (10)
N60.0827 (4)0.37434 (15)0.2086 (3)0.0645 (11)
N70.7109 (4)0.29191 (14)0.3290 (3)0.0594 (10)
N80.8426 (4)0.34338 (14)0.4329 (3)0.0588 (10)
S10.47037 (13)0.13220 (5)0.26493 (12)0.0772 (4)
S20.17451 (14)0.13676 (5)0.36460 (12)0.0814 (4)
S30.30242 (12)0.38749 (5)0.30106 (11)0.0700 (4)
S40.61257 (13)0.37658 (5)0.38733 (11)0.0730 (4)
C10.5659 (4)0.08862 (17)0.2041 (3)0.0568 (12)
C20.7474 (5)0.0685 (2)0.1292 (4)0.0752 (15)
C30.7034 (5)0.0213 (2)0.1139 (4)0.0775 (16)
H30.75410.00250.08380.093*
C40.5828 (5)0.00892 (18)0.1432 (4)0.0669 (14)
C50.8762 (5)0.0855 (3)0.0965 (5)0.117 (2)
H5A0.86690.11200.04860.175*
H5B0.91990.05790.06670.175*
H5C0.92390.09730.15340.175*
C60.5228 (7)0.0405 (2)0.1240 (5)0.104 (2)
H6A0.48150.05170.18330.156*
H6B0.58640.06430.10590.156*
H6C0.46160.03750.07050.156*
C70.0413 (5)0.09874 (19)0.3781 (3)0.0606 (12)
C80.1617 (5)0.0906 (2)0.4255 (3)0.0651 (13)
C90.1586 (5)0.0414 (2)0.3959 (4)0.0736 (15)
H90.22990.02130.40120.088*
C100.0492 (5)0.0224 (2)0.3586 (4)0.0748 (15)
C110.2767 (5)0.1137 (2)0.4713 (4)0.0980 (19)
H11A0.27500.14930.46150.147*
H11B0.27690.10650.54150.147*
H11C0.35150.10010.44010.147*
C120.0373 (7)0.0313 (2)0.3279 (6)0.128 (3)
H12A0.02350.03320.25730.192*
H12B0.11360.04890.34360.192*
H12C0.03280.04630.36310.192*
C130.3509 (6)0.0161 (2)0.3880 (4)0.0935 (19)
H13A0.32360.01630.36550.140*
H13B0.31190.02370.45040.140*
H13C0.44120.01610.39690.140*
C140.2190 (5)0.0561 (3)0.1390 (4)0.0965 (19)
H14A0.21430.02060.12850.145*
H14B0.27080.07090.08880.145*
H14C0.13560.07020.13480.145*
C150.1916 (4)0.35227 (19)0.2334 (3)0.0570 (12)
C160.0008 (5)0.3462 (2)0.1562 (4)0.0708 (14)
C170.0285 (6)0.2986 (3)0.1298 (4)0.0819 (17)
H170.03020.27960.09380.098*
C180.1440 (6)0.2784 (2)0.1566 (4)0.0712 (14)
C190.1224 (5)0.3714 (3)0.1293 (5)0.124 (3)
H19A0.16380.38160.18920.187*
H19B0.17560.34840.09290.187*
H19C0.10640.40020.08870.187*
C200.1851 (7)0.2268 (2)0.1290 (5)0.112 (2)
H20A0.23500.22830.06990.168*
H20B0.11200.20630.11660.168*
H20C0.23470.21270.18270.168*
C210.7356 (4)0.33284 (17)0.3837 (3)0.0543 (11)
C220.9334 (4)0.30907 (19)0.4280 (3)0.0602 (12)
C230.9162 (5)0.26541 (18)0.3745 (4)0.0641 (13)
H230.97980.24140.37280.077*
C240.8040 (5)0.25800 (17)0.3239 (4)0.0625 (13)
C251.0534 (5)0.3200 (2)0.4843 (4)0.0843 (16)
H25A1.09530.34790.45400.126*
H25B1.10750.29120.48280.126*
H25C1.03440.32810.55230.126*
C260.7785 (6)0.2129 (2)0.2592 (5)0.0972 (19)
H26A0.70000.19780.27790.146*
H26B0.84580.18920.26800.146*
H26C0.77330.22300.19050.146*
C270.4156 (5)0.26283 (19)0.3870 (4)0.0783 (15)
H27A0.35770.24080.35280.117*
H27B0.37600.27640.44500.117*
H27C0.48990.24450.40700.117*
C280.5214 (5)0.3140 (2)0.1398 (3)0.0823 (17)
H28A0.53440.27930.12490.123*
H28B0.59840.33220.12950.123*
H28C0.45600.32710.09660.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0535 (2)0.0648 (2)0.0589 (2)0.00175 (16)0.00344 (16)0.00119 (16)
Sn20.0546 (2)0.0580 (2)0.0576 (2)0.00125 (16)0.00538 (15)0.00102 (15)
N10.050 (2)0.057 (2)0.065 (3)0.0019 (19)0.0042 (19)0.0066 (19)
N20.042 (2)0.084 (3)0.081 (3)0.006 (2)0.004 (2)0.002 (2)
N30.066 (3)0.075 (3)0.062 (3)0.011 (2)0.013 (2)0.014 (2)
N40.060 (3)0.080 (3)0.055 (2)0.011 (2)0.006 (2)0.010 (2)
N50.060 (3)0.065 (3)0.057 (2)0.003 (2)0.003 (2)0.001 (2)
N60.046 (2)0.085 (3)0.063 (3)0.004 (2)0.003 (2)0.002 (2)
N70.059 (2)0.056 (2)0.062 (2)0.008 (2)0.011 (2)0.004 (2)
N80.054 (2)0.066 (2)0.056 (2)0.011 (2)0.005 (2)0.0046 (19)
S10.0581 (8)0.0638 (8)0.1101 (11)0.0000 (6)0.0133 (8)0.0147 (7)
S20.0663 (9)0.0764 (9)0.1021 (11)0.0001 (7)0.0200 (8)0.0143 (8)
S30.0536 (7)0.0646 (8)0.0914 (10)0.0002 (6)0.0108 (7)0.0110 (7)
S40.0604 (8)0.0669 (8)0.0910 (10)0.0050 (6)0.0183 (7)0.0137 (7)
C10.046 (3)0.059 (3)0.065 (3)0.003 (2)0.004 (2)0.003 (2)
C20.052 (3)0.106 (5)0.068 (3)0.003 (3)0.000 (3)0.004 (3)
C30.064 (4)0.097 (4)0.072 (4)0.030 (3)0.005 (3)0.004 (3)
C40.077 (4)0.058 (3)0.066 (3)0.018 (3)0.002 (3)0.008 (2)
C50.048 (3)0.178 (7)0.125 (6)0.003 (4)0.018 (4)0.005 (5)
C60.129 (6)0.064 (4)0.120 (5)0.002 (4)0.020 (4)0.011 (3)
C70.060 (3)0.074 (3)0.047 (3)0.012 (3)0.005 (2)0.002 (2)
C80.053 (3)0.097 (4)0.046 (3)0.012 (3)0.006 (2)0.002 (3)
C90.064 (4)0.092 (4)0.066 (3)0.009 (3)0.008 (3)0.002 (3)
C100.074 (4)0.078 (4)0.073 (4)0.006 (3)0.011 (3)0.011 (3)
C110.071 (4)0.133 (5)0.092 (4)0.019 (4)0.027 (3)0.012 (4)
C120.123 (6)0.080 (5)0.181 (7)0.007 (4)0.012 (5)0.038 (5)
C130.107 (5)0.094 (4)0.080 (4)0.019 (4)0.008 (4)0.032 (3)
C140.064 (4)0.151 (6)0.074 (4)0.006 (4)0.004 (3)0.013 (4)
C150.047 (3)0.070 (3)0.054 (3)0.002 (2)0.005 (2)0.006 (2)
C160.051 (3)0.108 (5)0.054 (3)0.009 (3)0.003 (3)0.007 (3)
C170.073 (4)0.114 (5)0.059 (3)0.027 (4)0.001 (3)0.008 (3)
C180.083 (4)0.074 (4)0.057 (3)0.011 (3)0.005 (3)0.007 (3)
C190.057 (4)0.207 (8)0.108 (5)0.012 (4)0.023 (4)0.012 (5)
C200.150 (7)0.088 (5)0.098 (5)0.014 (4)0.010 (4)0.031 (4)
C210.052 (3)0.060 (3)0.051 (3)0.008 (2)0.008 (2)0.006 (2)
C220.048 (3)0.074 (3)0.059 (3)0.009 (3)0.003 (2)0.013 (3)
C230.057 (3)0.063 (3)0.072 (3)0.005 (2)0.003 (3)0.011 (3)
C240.066 (3)0.052 (3)0.070 (3)0.006 (3)0.002 (3)0.000 (2)
C250.055 (3)0.102 (4)0.096 (4)0.008 (3)0.009 (3)0.005 (3)
C260.096 (5)0.069 (4)0.126 (5)0.001 (3)0.011 (4)0.020 (3)
C270.081 (4)0.074 (4)0.079 (4)0.004 (3)0.007 (3)0.017 (3)
C280.067 (4)0.125 (5)0.055 (3)0.000 (3)0.006 (3)0.001 (3)
Geometric parameters (Å, º) top
Sn1—C142.099 (5)C9—H90.9300
Sn1—C132.114 (5)C10—C121.500 (7)
Sn1—S12.4654 (14)C11—H11A0.9600
Sn1—S22.4804 (14)C11—H11B0.9600
Sn2—C272.112 (5)C11—H11C0.9600
Sn2—C282.121 (5)C12—H12A0.9600
Sn2—S42.4766 (14)C12—H12B0.9600
Sn2—S32.4793 (13)C12—H12C0.9600
N1—C41.337 (6)C13—H13A0.9600
N1—C11.338 (5)C13—H13B0.9600
N2—C11.321 (5)C13—H13C0.9600
N2—C21.343 (6)C14—H14A0.9600
N3—C101.324 (6)C14—H14B0.9600
N3—C71.331 (6)C14—H14C0.9600
N4—C81.334 (6)C16—C171.356 (8)
N4—C71.338 (5)C16—C191.504 (8)
N5—C151.340 (6)C17—C181.378 (8)
N5—C181.344 (6)C17—H170.9300
N6—C151.332 (6)C18—C201.493 (7)
N6—C161.337 (6)C19—H19A0.9600
N7—C211.340 (5)C19—H19B0.9600
N7—C241.341 (6)C19—H19C0.9600
N8—C211.330 (5)C20—H20A0.9600
N8—C221.331 (6)C20—H20B0.9600
S1—C11.752 (5)C20—H20C0.9600
S2—C71.749 (5)C22—C231.380 (6)
S3—C151.744 (5)C22—C251.494 (6)
S4—C211.751 (5)C23—C241.372 (7)
C2—C31.358 (7)C23—H230.9300
C2—C51.508 (7)C24—C261.506 (7)
C3—C41.382 (7)C25—H25A0.9600
C3—H30.9300C25—H25B0.9600
C4—C61.486 (7)C25—H25C0.9600
C5—H5A0.9600C26—H26A0.9600
C5—H5B0.9600C26—H26B0.9600
C5—H5C0.9600C26—H26C0.9600
C6—H6A0.9600C27—H27A0.9600
C6—H6B0.9600C27—H27B0.9600
C6—H6C0.9600C27—H27C0.9600
C8—C91.374 (7)C28—H28A0.9600
C8—C111.504 (7)C28—H28B0.9600
C9—C101.366 (7)C28—H28C0.9600
C14—Sn1—C13125.7 (3)Sn1—C13—H13A109.5
C14—Sn1—S1109.25 (18)Sn1—C13—H13B109.5
C13—Sn1—S1109.44 (18)H13A—C13—H13B109.5
C14—Sn1—S2109.59 (17)Sn1—C13—H13C109.5
C13—Sn1—S2108.57 (16)H13A—C13—H13C109.5
S1—Sn1—S287.70 (5)H13B—C13—H13C109.5
C27—Sn2—C28125.9 (2)Sn1—C14—H14A109.5
C27—Sn2—S4106.60 (15)Sn1—C14—H14B109.5
C28—Sn2—S4112.26 (16)H14A—C14—H14B109.5
C27—Sn2—S3107.81 (16)Sn1—C14—H14C109.5
C28—Sn2—S3108.97 (16)H14A—C14—H14C109.5
S4—Sn2—S388.93 (4)H14B—C14—H14C109.5
C4—N1—C1117.6 (4)N6—C15—N5126.9 (4)
C1—N2—C2115.1 (4)N6—C15—S3117.5 (4)
C10—N3—C7117.3 (4)N5—C15—S3115.6 (3)
C8—N4—C7115.6 (4)N6—C16—C17121.6 (5)
C15—N5—C18116.3 (4)N6—C16—C19115.2 (6)
C15—N6—C16115.6 (5)C17—C16—C19123.2 (6)
C21—N7—C24116.4 (4)C16—C17—C18119.6 (5)
C21—N8—C22116.0 (4)C16—C17—H17120.2
C1—S1—Sn191.65 (16)C18—C17—H17120.2
C7—S2—Sn193.76 (17)N5—C18—C17119.9 (5)
C15—S3—Sn293.08 (17)N5—C18—C20116.2 (5)
C21—S4—Sn292.63 (16)C17—C18—C20123.9 (6)
N2—C1—N1126.9 (4)C16—C19—H19A109.5
N2—C1—S1117.8 (4)C16—C19—H19B109.5
N1—C1—S1115.3 (3)H19A—C19—H19B109.5
N2—C2—C3121.9 (5)C16—C19—H19C109.5
N2—C2—C5115.1 (6)H19A—C19—H19C109.5
C3—C2—C5123.0 (6)H19B—C19—H19C109.5
C2—C3—C4119.8 (5)C18—C20—H20A109.5
C2—C3—H3120.1C18—C20—H20B109.5
C4—C3—H3120.1H20A—C20—H20B109.5
N1—C4—C3118.6 (5)C18—C20—H20C109.5
N1—C4—C6117.4 (5)H20A—C20—H20C109.5
C3—C4—C6123.9 (5)H20B—C20—H20C109.5
C2—C5—H5A109.5N8—C21—N7126.9 (4)
C2—C5—H5B109.5N8—C21—S4118.1 (4)
H5A—C5—H5B109.5N7—C21—S4115.0 (3)
C2—C5—H5C109.5N8—C22—C23121.3 (5)
H5A—C5—H5C109.5N8—C22—C25116.6 (5)
H5B—C5—H5C109.5C23—C22—C25122.1 (5)
C4—C6—H6A109.5C24—C23—C22118.9 (5)
C4—C6—H6B109.5C24—C23—H23120.5
H6A—C6—H6B109.5C22—C23—H23120.5
C4—C6—H6C109.5N7—C24—C23120.5 (4)
H6A—C6—H6C109.5N7—C24—C26116.5 (5)
H6B—C6—H6C109.5C23—C24—C26123.0 (5)
N3—C7—N4126.3 (5)C22—C25—H25A109.5
N3—C7—S2117.0 (4)C22—C25—H25B109.5
N4—C7—S2116.7 (4)H25A—C25—H25B109.5
N4—C8—C9121.3 (4)C22—C25—H25C109.5
N4—C8—C11116.4 (5)H25A—C25—H25C109.5
C9—C8—C11122.3 (5)H25B—C25—H25C109.5
C10—C9—C8119.1 (5)C24—C26—H26A109.5
C10—C9—H9120.4C24—C26—H26B109.5
C8—C9—H9120.4H26A—C26—H26B109.5
N3—C10—C9120.4 (5)C24—C26—H26C109.5
N3—C10—C12117.4 (5)H26A—C26—H26C109.5
C9—C10—C12122.2 (6)H26B—C26—H26C109.5
C8—C11—H11A109.5Sn2—C27—H27A109.5
C8—C11—H11B109.5Sn2—C27—H27B109.5
H11A—C11—H11B109.5H27A—C27—H27B109.5
C8—C11—H11C109.5Sn2—C27—H27C109.5
H11A—C11—H11C109.5H27A—C27—H27C109.5
H11B—C11—H11C109.5H27B—C27—H27C109.5
C10—C12—H12A109.5Sn2—C28—H28A109.5
C10—C12—H12B109.5Sn2—C28—H28B109.5
H12A—C12—H12B109.5H28A—C28—H28B109.5
C10—C12—H12C109.5Sn2—C28—H28C109.5
H12A—C12—H12C109.5H28A—C28—H28C109.5
H12B—C12—H12C109.5H28B—C28—H28C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N6i0.962.553.397 (7)147
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C6H7N2S)2]
Mr427.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)10.5787 (17), 26.731 (4), 13.393 (2)
β (°) 91.001 (2)
V3)3786.7 (11)
Z8
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.43 × 0.38 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.552, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
19775, 6678, 4533
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.06
No. of reflections6678
No. of parameters391
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.50

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N6i0.962.553.397 (7)147.0
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We acknowledge the National Natural Foundation of China (20741008) and the Scientific Research Fund of Liaocheng University, China (x071009).

References

First citationDuboy, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3–8.  Web of Science CrossRef Google Scholar
First citationGielen, M. (2002). Appl. Organomet. Chem. 16, 481–494.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds