metal-organic compounds
Bis(μ-pyridine-2,4-dicarboxylato)-κ3N,O2:O2;κ3O2:N,O2-bis[triaquamagnesium(II)]
aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: zhangqingfu@foxmail.com
In the title centrosymmetric MgII complex, [Mg2(C7H3NO4)2(H2O)6], each Mg cation is N,O-chelated by a pyridine-2,4-dicarboxylate dianion and is coordinated by three water molecules. A carboxylate O atom from the neighboring pyridine-2,4-dicarboxylate dianion bridges the Mg cation to complete the MgNO5 distorted octahedral coordination geometry. The dinuclear complex molecules are linked by intermolecular O—H⋯O hydrogen bonding, forming a three-dimensional supramolecular structure.
Related literature
For the applications of Mg complexes, see: Davies et al. (2007); Dinca & Long (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810030722/xu5007sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810030722/xu5007Isup2.hkl
A mixture of pyridine-2,4-dicarboxylic acid (16.7 mg, 0.10 mmol) and magnesium chloride hexahydrate (20.3 mg, 0.10 mmol) in 5 ml dimethyl acetamide (DMA) was heated to 373 K in a sealed 10 ml Teflon-lined reactor for 72 h. The mixture was allowed to cool to room temperature and the resulting block-shaped colorless crystals filtered from the reaction mixture. Yield, 72%.
The H atoms on water were located in a difference Fourier map and refined in riding mode with the fixed Uiso(H) = 0.105 Å2. The aromatic H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Magnesium(II) complexes have been extensively studied in recent year due to their wide application in synthesis of inorganic materials, catalysis of organic reactions and storage of hydrogen (Dinca & Long, 2005). In order to explore the relationship between these applications and their structures, a series of magnesium(II) complexes have been prepared and structural characterized (Davies et al., 2007). To expand research in this area, here we report a dinuclear magnesium(II) complex.
As shown in Fig.1, each magnesium(II) ion in the title complex is coordinated by two carboxyl O atoms, one pyridyl N atom and three water molecules, forming a distorted octahedral geometry (axial angle, O7—Mg1—O5 = 173.33 (9)°). Interestingly, the two adjacent magnesium(II) ions are linked by two µ2-carboxylate O atoms to form a dinuclear strucutre.
In the crystal strucutre, these dimeric molecules are linked by intermolecular O—H···O H-bonding interactions into a three-dimensional framework (Fig.2).
For the applications of Mg complexes, see: Davies et al. (2007); Dinca & Long (2005).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. | |
Fig. 2. The packing diagram of the title complex. |
[Mg2(C7H3NO4)2(H2O)6] | F(000) = 1008 |
Mr = 486.92 | Dx = 1.663 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2705 reflections |
a = 7.9221 (8) Å | θ = 3.2–26.8° |
b = 12.0951 (12) Å | µ = 0.21 mm−1 |
c = 20.2989 (18) Å | T = 293 K |
V = 1945.0 (3) Å3 | Block, colorless |
Z = 4 | 0.25 × 0.18 × 0.15 mm |
Bruker SMART CCD area-detector diffractometer | 1719 independent reflections |
Radiation source: fine-focus sealed tube | 1289 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
φ and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −5→9 |
Tmin = 0.951, Tmax = 0.970 | k = −14→14 |
8884 measured reflections | l = −24→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0376P)2 + 1.7679P] where P = (Fo2 + 2Fc2)/3 |
1719 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Mg2(C7H3NO4)2(H2O)6] | V = 1945.0 (3) Å3 |
Mr = 486.92 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.9221 (8) Å | µ = 0.21 mm−1 |
b = 12.0951 (12) Å | T = 293 K |
c = 20.2989 (18) Å | 0.25 × 0.18 × 0.15 mm |
Bruker SMART CCD area-detector diffractometer | 1719 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1289 reflections with I > 2σ(I) |
Tmin = 0.951, Tmax = 0.970 | Rint = 0.042 |
8884 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.36 e Å−3 |
1719 reflections | Δρmin = −0.30 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mg1 | 0.07954 (11) | 0.60169 (7) | 0.04323 (3) | 0.0240 (2) | |
O1 | −0.0075 (2) | 0.43818 (14) | 0.05141 (7) | 0.0272 (4) | |
O2 | −0.0923 (4) | 0.30663 (19) | 0.12021 (10) | 0.0760 (9) | |
O3 | −0.0102 (4) | 0.3649 (2) | 0.35781 (9) | 0.0875 (11) | |
H6A | 0.1178 | 0.8068 | 0.0765 | 0.105* | |
H5B | −0.1892 | 0.7246 | 0.0848 | 0.105* | |
H5A | −0.2377 | 0.6193 | 0.0826 | 0.105* | |
H7A | 0.3503 | 0.5401 | −0.0194 | 0.105* | |
H7B | 0.4054 | 0.5600 | 0.0457 | 0.105* | |
H6B | 0.2174 | 0.8016 | 0.0211 | 0.105* | |
O4 | 0.1026 (2) | 0.51899 (15) | 0.39638 (8) | 0.0364 (5) | |
O5 | −0.1604 (2) | 0.66298 (14) | 0.06670 (8) | 0.0323 (5) | |
O6 | 0.1539 (3) | 0.76106 (16) | 0.04659 (9) | 0.0491 (6) | |
O7 | 0.3209 (2) | 0.56088 (17) | 0.01937 (8) | 0.0430 (5) | |
N1 | 0.1126 (3) | 0.56101 (17) | 0.14911 (9) | 0.0257 (5) | |
C1 | −0.0232 (4) | 0.3941 (2) | 0.10852 (11) | 0.0325 (6) | |
C2 | 0.0461 (3) | 0.4620 (2) | 0.16485 (11) | 0.0261 (6) | |
C3 | 0.0314 (3) | 0.4258 (2) | 0.22895 (11) | 0.0302 (6) | |
H3 | −0.0135 | 0.3564 | 0.2378 | 0.036* | |
C4 | 0.0838 (3) | 0.4934 (2) | 0.28011 (11) | 0.0281 (6) | |
C5 | 0.0576 (4) | 0.4556 (2) | 0.35037 (12) | 0.0361 (7) | |
C6 | 0.1530 (4) | 0.5952 (2) | 0.26430 (11) | 0.0318 (6) | |
H6 | 0.1902 | 0.6426 | 0.2973 | 0.038* | |
C7 | 0.1660 (4) | 0.6255 (2) | 0.19836 (11) | 0.0325 (6) | |
H7 | 0.2139 | 0.6935 | 0.1881 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.0328 (5) | 0.0234 (5) | 0.0157 (4) | −0.0004 (4) | 0.0015 (3) | −0.0008 (3) |
O1 | 0.0415 (11) | 0.0250 (10) | 0.0151 (8) | 0.0001 (8) | −0.0028 (8) | 0.0000 (7) |
O2 | 0.151 (3) | 0.0485 (15) | 0.0289 (11) | −0.0543 (16) | −0.0205 (13) | 0.0080 (10) |
O3 | 0.176 (3) | 0.0627 (17) | 0.0241 (11) | −0.0682 (19) | 0.0088 (14) | 0.0028 (10) |
O4 | 0.0497 (12) | 0.0419 (12) | 0.0176 (8) | −0.0064 (9) | −0.0043 (8) | −0.0016 (8) |
O5 | 0.0379 (11) | 0.0271 (10) | 0.0320 (9) | 0.0057 (8) | 0.0049 (8) | −0.0031 (8) |
O6 | 0.0683 (15) | 0.0308 (11) | 0.0482 (12) | −0.0158 (10) | 0.0282 (11) | −0.0089 (9) |
O7 | 0.0339 (11) | 0.0693 (15) | 0.0260 (9) | 0.0104 (10) | −0.0014 (8) | −0.0103 (9) |
N1 | 0.0348 (13) | 0.0239 (12) | 0.0185 (10) | −0.0021 (9) | −0.0003 (9) | 0.0002 (8) |
C1 | 0.0538 (18) | 0.0229 (14) | 0.0208 (13) | −0.0060 (13) | −0.0040 (12) | −0.0003 (11) |
C2 | 0.0327 (15) | 0.0238 (14) | 0.0220 (12) | −0.0006 (11) | −0.0008 (11) | 0.0010 (10) |
C3 | 0.0445 (17) | 0.0256 (14) | 0.0205 (12) | −0.0074 (12) | −0.0023 (12) | 0.0028 (10) |
C4 | 0.0349 (15) | 0.0301 (15) | 0.0194 (12) | −0.0011 (12) | −0.0010 (11) | 0.0007 (10) |
C5 | 0.0526 (19) | 0.0362 (17) | 0.0193 (13) | −0.0074 (14) | −0.0014 (12) | 0.0027 (12) |
C6 | 0.0449 (16) | 0.0308 (15) | 0.0196 (12) | −0.0068 (13) | −0.0052 (12) | −0.0026 (10) |
C7 | 0.0466 (17) | 0.0275 (15) | 0.0236 (13) | −0.0102 (13) | −0.0025 (12) | 0.0009 (11) |
Mg1—N1 | 2.2202 (19) | O7—H7A | 0.8581 |
Mg1—O1 | 2.1011 (19) | O7—H7B | 0.8563 |
Mg1—O1i | 2.0613 (16) | N1—C7 | 1.336 (3) |
Mg1—O5 | 2.0953 (19) | N1—C2 | 1.347 (3) |
Mg1—O6 | 2.017 (2) | C1—C2 | 1.511 (3) |
Mg1—O7 | 2.033 (2) | C2—C3 | 1.378 (3) |
O1—C1 | 1.282 (3) | C3—C4 | 1.385 (3) |
O2—C1 | 1.215 (3) | C3—H3 | 0.9300 |
O3—C5 | 1.231 (3) | C4—C6 | 1.385 (4) |
O4—C5 | 1.260 (3) | C4—C5 | 1.512 (3) |
O5—H5B | 0.8616 | C6—C7 | 1.392 (3) |
O5—H5A | 0.8701 | C6—H6 | 0.9300 |
O6—H6A | 0.8688 | C7—H7 | 0.9300 |
O6—H6B | 0.8725 | ||
O6—Mg1—O7 | 88.02 (9) | H6A—O6—H6B | 104.2 |
O6—Mg1—O1i | 109.63 (8) | Mg1—O7—H7A | 123.0 |
O7—Mg1—O1i | 88.93 (7) | Mg1—O7—H7B | 126.1 |
O6—Mg1—O5 | 85.36 (8) | H7A—O7—H7B | 110.8 |
O7—Mg1—O5 | 173.33 (9) | C7—N1—C2 | 117.7 (2) |
O1i—Mg1—O5 | 92.50 (7) | C7—N1—Mg1 | 129.22 (17) |
O6—Mg1—O1 | 173.16 (8) | C2—N1—Mg1 | 112.37 (15) |
O7—Mg1—O1 | 95.68 (8) | O2—C1—O1 | 125.6 (2) |
O1i—Mg1—O1 | 76.26 (7) | O2—C1—C2 | 119.3 (2) |
O5—Mg1—O1 | 90.98 (8) | O1—C1—C2 | 115.0 (2) |
O6—Mg1—N1 | 98.32 (8) | N1—C2—C3 | 122.7 (2) |
O7—Mg1—N1 | 93.77 (8) | N1—C2—C1 | 116.5 (2) |
O1i—Mg1—N1 | 152.00 (8) | C3—C2—C1 | 120.7 (2) |
O5—Mg1—N1 | 88.02 (8) | C2—C3—C4 | 119.7 (2) |
O1—Mg1—N1 | 75.74 (7) | C2—C3—H3 | 120.2 |
O6—Mg1—Mg1i | 148.06 (7) | C4—C3—H3 | 120.2 |
O7—Mg1—Mg1i | 92.97 (6) | C6—C4—C3 | 118.0 (2) |
O1i—Mg1—Mg1i | 38.56 (5) | C6—C4—C5 | 122.8 (2) |
O5—Mg1—Mg1i | 92.20 (6) | C3—C4—C5 | 119.2 (2) |
O1—Mg1—Mg1i | 37.70 (4) | O3—C5—O4 | 125.1 (2) |
N1—Mg1—Mg1i | 113.44 (7) | O3—C5—C4 | 116.5 (2) |
C1—O1—Mg1i | 135.94 (16) | O4—C5—C4 | 118.4 (2) |
C1—O1—Mg1 | 119.66 (15) | C4—C6—C7 | 119.1 (2) |
Mg1i—O1—Mg1 | 103.74 (7) | C4—C6—H6 | 120.5 |
Mg1—O5—H5B | 130.0 | C7—C6—H6 | 120.5 |
Mg1—O5—H5A | 120.5 | N1—C7—C6 | 122.9 (2) |
H5B—O5—H5A | 100.5 | N1—C7—H7 | 118.6 |
Mg1—O6—H6A | 122.4 | C6—C7—H7 | 118.6 |
Mg1—O6—H6B | 133.3 |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4ii | 0.87 | 1.80 | 2.668 (3) | 172 |
O5—H5B···O2iii | 0.86 | 2.12 | 2.834 (3) | 140 |
O6—H6A···O3iv | 0.87 | 1.73 | 2.576 (3) | 163 |
O6—H6B···O5v | 0.87 | 2.07 | 2.880 (2) | 154 |
O7—H7A···O4vi | 0.86 | 1.89 | 2.745 (2) | 174 |
O7—H7B···O4vii | 0.86 | 2.02 | 2.857 (3) | 166 |
Symmetry codes: (ii) x−1/2, y, −z+1/2; (iii) −x−1/2, y+1/2, z; (iv) −x, y+1/2, −z+1/2; (v) x+1/2, −y+3/2, −z; (vi) −x+1/2, −y+1, z−1/2; (vii) x+1/2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Mg2(C7H3NO4)2(H2O)6] |
Mr | 486.92 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 7.9221 (8), 12.0951 (12), 20.2989 (18) |
V (Å3) | 1945.0 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.25 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.951, 0.970 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8884, 1719, 1289 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.100, 1.06 |
No. of reflections | 1719 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.30 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Mg1—N1 | 2.2202 (19) | Mg1—O5 | 2.0953 (19) |
Mg1—O1 | 2.1011 (19) | Mg1—O6 | 2.017 (2) |
Mg1—O1i | 2.0613 (16) | Mg1—O7 | 2.033 (2) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4ii | 0.87 | 1.80 | 2.668 (3) | 171.5 |
O5—H5B···O2iii | 0.86 | 2.12 | 2.834 (3) | 139.9 |
O6—H6A···O3iv | 0.87 | 1.73 | 2.576 (3) | 163.2 |
O6—H6B···O5v | 0.87 | 2.07 | 2.880 (2) | 153.5 |
O7—H7A···O4vi | 0.86 | 1.89 | 2.745 (2) | 173.5 |
O7—H7B···O4vii | 0.86 | 2.02 | 2.857 (3) | 166.4 |
Symmetry codes: (ii) x−1/2, y, −z+1/2; (iii) −x−1/2, y+1/2, z; (iv) −x, y+1/2, −z+1/2; (v) x+1/2, −y+3/2, −z; (vi) −x+1/2, −y+1, z−1/2; (vii) x+1/2, y, −z+1/2. |
Acknowledgements
We acknowledge the Scientific Research Startup Fund of Liaocheng University (31805) and the Students Science and Technology Innovation Fund of Liaocheng University, China (SRT10060HX2).
References
Davies, R. P., Less, R. J., Lickiss, P. D. & White, A. J. P. (2007). Dalton Trans. pp. 2528–2535. Web of Science CSD CrossRef Google Scholar
Dinca, M. & Long, J. R. (2005). J. Am. Chem. Soc. 127, 9376–9377. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens. (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Magnesium(II) complexes have been extensively studied in recent year due to their wide application in synthesis of inorganic materials, catalysis of organic reactions and storage of hydrogen (Dinca & Long, 2005). In order to explore the relationship between these applications and their structures, a series of magnesium(II) complexes have been prepared and structural characterized (Davies et al., 2007). To expand research in this area, here we report a dinuclear magnesium(II) complex.
As shown in Fig.1, each magnesium(II) ion in the title complex is coordinated by two carboxyl O atoms, one pyridyl N atom and three water molecules, forming a distorted octahedral geometry (axial angle, O7—Mg1—O5 = 173.33 (9)°). Interestingly, the two adjacent magnesium(II) ions are linked by two µ2-carboxylate O atoms to form a dinuclear strucutre.
In the crystal strucutre, these dimeric molecules are linked by intermolecular O—H···O H-bonding interactions into a three-dimensional framework (Fig.2).