metal-organic compounds
Poly[[μ2-1,2-bis(4-pyridyl)ethene-κ2N:N′]-di-μ3-bromido-dicopper(I)]
aDepartment of Biotechnology, Yuanpei University, HsinChu 30015, Taiwan, and bGeneral Education Center, Yuanpei University, HsinChu 30015, Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw
In the title polymeric CuI compound, [Cu2Br2(C12H10N2)]n, the Cu cation is coordinated by an N atom from the 1,2-bis(4-pyridyl)ethene ligand and three Br− anions in a distorted tetrahedral CuBr3N coordination geometry. Each Br− anion bridges three Cu cations related by inversion centers, forming a stair-like polymeric chain along the a axis, and the terminal N atoms of the 1,2-bis(4-pyridyl)ethene ligand, located across an inversion center, coordinate the Cu cations from neighboring chains, forming polymeric sheets.
Related literature
For related structures, see: Yang (2009); Wang (2008); Näther & Greve (2001). For stair-like structures, see: Healy et al. (1989); Jasinski et al. (1985).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
https://doi.org/10.1107/S1600536810030734/xu5009sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810030734/xu5009Isup2.hkl
CuBr (0.1097 g, 0.50 mmol) and 1,2-bis(4-pyridyl)ethene (0.0913 g, 0.50 mmol) were mixed in 10 ml deionized water. After being stirred for 30 min, the mixture was placed in a 25 ml Teflon liner reactor and heated at 423 K in an oven for 24 h. The resulting solution was slowly cooled to room temperature. The orange transparent single crystals of the title compound were obtained in 46.45% yield.
H atoms were positioned geometrically with C—H = 0.93 Å, and were refined using a riding model with Uiso(H) = 1.2Ueq(C).
In the structural investigations of compounds of CuI halide, such as bromide (Yang, 2009; Wang, 2008; Näther & Greve, 2001), has been found. A four coordination polymer, resulted from the hydrothermal treatment of CuBr with 1,2-bis(4-pyridyl)ethene.
As Fig. 1, the symmetric unit consists of one copper(I) ion, one bromide ligand and half 1,2-bis(4-pyridyl)ethene ligand, all on general positions. The CuI atom is tetrahedral and coordinated by three µ3-bridging Br atoms and the each bromide bridges the other two Cu cations, while the N atoms of 1,2-bis(4-pyridyl)ethene ligand coordinate the other Cu cations, forming the three-dimensional polymeric architecture (Fig. 2).
The polymer frameworks has four-membered Cu—Br—Cu—Br units that form the step of a stair (Healy et al., 1989; Jasinski et al., 1985) and 1,2-bis(4-pyridyl)ethene ligand across those stairs, shown as Fig. 2. Cu···Cu distances are between 2.8852 (16)~2.9332 (16) Å and Cu—Br—Cu angles are 71.21 (4)~102.99 (4), respectively.
For related structures, see: Yang (2009); Wang (2008); Näther & Greve (2001). For stair-like structures, see: Healy et al. (1989); Jasinski et al. (1985).
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).[Cu2Br2(C12H10N2)] | F(000) = 448 |
Mr = 234.56 | Dx = 2.387 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2187 reflections |
a = 3.9066 (3) Å | θ = 2.5–25.0° |
b = 15.1047 (13) Å | µ = 9.36 mm−1 |
c = 11.1050 (9) Å | T = 294 K |
β = 95.149 (2)° | Columnar, orange |
V = 652.64 (9) Å3 | 0.40 × 0.10 × 0.05 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 1162 independent reflections |
Radiation source: fine-focus sealed tube | 1083 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 9 pixels mm-1 | θmax = 25.1°, θmin = 2.3° |
CCD rotation images, thick slices scans | h = −4→4 |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | k = −17→17 |
Tmin = 0.487, Tmax = 0.938 | l = −9→13 |
3454 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.30 | w = 1/[σ2(Fo2) + (0.022P)2 + 3.3443P] where P = (Fo2 + 2Fc2)/3 |
1162 reflections | (Δ/σ)max = 0.010 |
82 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.91 e Å−3 |
[Cu2Br2(C12H10N2)] | V = 652.64 (9) Å3 |
Mr = 234.56 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.9066 (3) Å | µ = 9.36 mm−1 |
b = 15.1047 (13) Å | T = 294 K |
c = 11.1050 (9) Å | 0.40 × 0.10 × 0.05 mm |
β = 95.149 (2)° |
Nonius KappaCCD diffractometer | 1162 independent reflections |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | 1083 reflections with I > 2σ(I) |
Tmin = 0.487, Tmax = 0.938 | Rint = 0.037 |
3454 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.30 | Δρmax = 0.61 e Å−3 |
1162 reflections | Δρmin = −0.91 e Å−3 |
82 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.19561 (17) | 0.49650 (5) | 0.33505 (6) | 0.0347 (2) | |
Cu1 | 0.2671 (3) | 0.56165 (6) | 0.54908 (9) | 0.0473 (3) | |
N1 | 0.3103 (14) | 0.6931 (3) | 0.5275 (5) | 0.0343 (17) | |
C1 | 0.1767 (19) | 0.7337 (4) | 0.4255 (6) | 0.039 (2) | |
C2 | 0.2046 (19) | 0.8230 (5) | 0.4055 (7) | 0.041 (2) | |
C3 | 0.3818 (18) | 0.8766 (4) | 0.4912 (6) | 0.034 (2) | |
C4 | 0.520 (2) | 0.8355 (5) | 0.5972 (6) | 0.040 (2) | |
C5 | 0.4799 (18) | 0.7450 (4) | 0.6095 (6) | 0.037 (2) | |
C6 | 0.4128 (19) | 0.9711 (4) | 0.4647 (7) | 0.036 (2) | |
H1 | 0.05970 | 0.69940 | 0.36560 | 0.0470* | |
H2 | 0.10420 | 0.84770 | 0.33410 | 0.0490* | |
H4 | 0.63640 | 0.86840 | 0.65860 | 0.0480* | |
H5 | 0.57850 | 0.71860 | 0.67990 | 0.0440* | |
H6 | 0.30120 | 0.99200 | 0.39280 | 0.0440* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.0345 (4) | 0.0376 (4) | 0.0312 (4) | −0.0036 (3) | −0.0006 (3) | 0.0001 (3) |
Cu1 | 0.0589 (6) | 0.0302 (5) | 0.0520 (6) | −0.0054 (4) | 0.0000 (4) | 0.0062 (4) |
N1 | 0.041 (3) | 0.023 (3) | 0.039 (3) | −0.001 (2) | 0.005 (3) | 0.000 (2) |
C1 | 0.048 (4) | 0.029 (4) | 0.038 (4) | 0.002 (3) | −0.006 (3) | −0.002 (3) |
C2 | 0.049 (4) | 0.036 (4) | 0.035 (4) | 0.002 (3) | −0.006 (3) | 0.007 (3) |
C3 | 0.038 (4) | 0.023 (3) | 0.041 (4) | 0.003 (3) | 0.011 (3) | 0.006 (3) |
C4 | 0.050 (4) | 0.035 (4) | 0.035 (4) | −0.006 (3) | −0.001 (3) | −0.006 (3) |
C5 | 0.043 (4) | 0.029 (3) | 0.037 (4) | −0.004 (3) | −0.003 (3) | 0.001 (3) |
C6 | 0.043 (4) | 0.029 (4) | 0.036 (4) | 0.002 (3) | −0.001 (3) | 0.000 (3) |
Br—Cu1 | 2.5645 (12) | C3—C6 | 1.465 (9) |
Br—Cu1i | 2.4723 (13) | C4—C5 | 1.384 (10) |
Br—Cu1ii | 2.5195 (13) | C6—C6iii | 1.321 (10) |
N1—Cu1 | 2.009 (5) | C1—H1 | 0.9300 |
N1—C1 | 1.351 (8) | C2—H2 | 0.9300 |
N1—C5 | 1.332 (8) | C4—H4 | 0.9300 |
C1—C2 | 1.373 (10) | C5—H5 | 0.9300 |
C2—C3 | 1.386 (10) | C6—H6 | 0.9300 |
C3—C4 | 1.396 (10) | ||
Br···C1 | 3.724 (6) | C4···H6iii | 2.7000 |
Br···H1 | 3.1300 | C6···H4iii | 2.7800 |
Br···H2iv | 3.0900 | H1···Br | 3.1300 |
Br···H6iv | 3.0500 | H2···H6 | 2.3800 |
C1···C5v | 3.551 (10) | H2···Brix | 3.0900 |
C2···C3v | 3.527 (10) | H4···C6iii | 2.7800 |
C2···C4v | 3.570 (11) | H4···H6iii | 2.2000 |
C3···C2vi | 3.527 (10) | H5···C2x | 3.0800 |
C4···C2vi | 3.570 (11) | H6···H2 | 2.3800 |
C5···C1vi | 3.551 (10) | H6···Brix | 3.0500 |
C6···C6vii | 3.498 (10) | H6···C4iii | 2.7000 |
C2···H5viii | 3.0800 | H6···H4iii | 2.2000 |
Cu1—Br—Cu1i | 71.21 (4) | C2—C3—C6 | 118.5 (6) |
Cu1—Br—Cu1ii | 69.15 (4) | C4—C3—C6 | 124.8 (6) |
Cu1i—Br—Cu1ii | 102.99 (4) | C3—C4—C5 | 118.9 (6) |
Br—Cu1—N1 | 105.79 (16) | N1—C5—C4 | 124.6 (6) |
Br—Cu1—Bri | 108.79 (4) | C3—C6—C6iii | 124.9 (7) |
Br—Cu1—Brii | 110.86 (4) | N1—C1—H1 | 118.00 |
Bri—Cu1—N1 | 119.11 (16) | C2—C1—H1 | 118.00 |
Brii—Cu1—N1 | 109.30 (16) | C1—C2—H2 | 120.00 |
Bri—Cu1—Brii | 102.99 (4) | C3—C2—H2 | 120.00 |
Cu1—N1—C1 | 121.2 (4) | C3—C4—H4 | 121.00 |
Cu1—N1—C5 | 122.8 (4) | C5—C4—H4 | 121.00 |
C1—N1—C5 | 115.9 (5) | N1—C5—H5 | 118.00 |
N1—C1—C2 | 123.5 (6) | C4—C5—H5 | 118.00 |
C1—C2—C3 | 120.3 (7) | C3—C6—H6 | 118.00 |
C2—C3—C4 | 116.8 (6) | C6iii—C6—H6 | 118.00 |
Cu1i—Br—Cu1—N1 | −129.06 (17) | Bri—Cu1—N1—C1 | −97.7 (5) |
Cu1ii—Br—Cu1—N1 | 118.37 (17) | Cu1—N1—C1—C2 | −178.8 (6) |
Cu1i—Br—Cu1—Bri | 0.00 (4) | C5—N1—C1—C2 | −1.0 (10) |
Cu1ii—Br—Cu1—Bri | −112.57 (5) | Cu1—N1—C5—C4 | 179.0 (6) |
Cu1i—Br—Cu1—Brii | 112.57 (5) | C1—N1—C5—C4 | 1.2 (10) |
Cu1ii—Br—Cu1—Brii | 0.00 (4) | N1—C1—C2—C3 | 1.1 (11) |
Cu1i—Bri—Cu1—N1 | 121.22 (19) | C1—C2—C3—C4 | −1.3 (11) |
Cu1ii—Brii—Cu1—Br | 0.00 (4) | C1—C2—C3—C6 | 178.4 (7) |
Cu1ii—Brii—Cu1—N1 | −116.22 (17) | C2—C3—C4—C5 | 1.4 (10) |
Cu1i—Bri—Cu1—Br | 0.00 (5) | C6—C3—C4—C5 | −178.3 (7) |
Brii—Cu1—N1—C1 | 144.4 (5) | C2—C3—C6—C6iii | −176.7 (7) |
Brii—Cu1—N1—C5 | −33.2 (6) | C4—C3—C6—C6iii | 3.0 (12) |
Bri—Cu1—N1—C5 | 84.7 (5) | C3—C4—C5—N1 | −1.5 (11) |
Br—Cu1—N1—C1 | 25.0 (5) | C3—C6—C6iii—C3iii | −180.0 (7) |
Br—Cu1—N1—C5 | −152.6 (5) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) −x, y−1/2, −z+1/2; (v) x−1, y, z; (vi) x+1, y, z; (vii) −x, −y+2, −z+1; (viii) x, −y+3/2, z−1/2; (ix) −x, y+1/2, −z+1/2; (x) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Br2(C12H10N2)] |
Mr | 234.56 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 3.9066 (3), 15.1047 (13), 11.1050 (9) |
β (°) | 95.149 (2) |
V (Å3) | 652.64 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.36 |
Crystal size (mm) | 0.40 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.487, 0.938 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3454, 1162, 1083 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.096, 1.30 |
No. of reflections | 1162 |
No. of parameters | 82 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.91 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Br—Cu1 | 2.5645 (12) | Br—Cu1ii | 2.5195 (13) |
Br—Cu1i | 2.4723 (13) | N1—Cu1 | 2.009 (5) |
Br—Cu1—N1 | 105.79 (16) | Bri—Cu1—N1 | 119.11 (16) |
Br—Cu1—Bri | 108.79 (4) | Brii—Cu1—N1 | 109.30 (16) |
Br—Cu1—Brii | 110.86 (4) | Bri—Cu1—Brii | 102.99 (4) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported financially by Yuanpei University, Taiwan.
References
Healy, P. C., Kildea, J., Skelton, B. & White, A. (1989). Aust. J. Chem. 42, 79–82. CSD CrossRef CAS Google Scholar
Jasinski, J. P., Roth, N. P. & Holt, E. M. (1985). Inorg. Chim. Acta, 97, 91–97. CSD CrossRef CAS Web of Science Google Scholar
Näther, C. & Greve, J. (2001). Acta Cryst. C57, 377–378. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, W. (2008). Acta Cryst. E64, m759. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, M.-H. (2009). Acta Cryst. C65, m59–m61. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the structural investigations of compounds of CuI halide, such as bromide (Yang, 2009; Wang, 2008; Näther & Greve, 2001), has been found. A four coordination polymer, resulted from the hydrothermal treatment of CuBr with 1,2-bis(4-pyridyl)ethene.
As Fig. 1, the symmetric unit consists of one copper(I) ion, one bromide ligand and half 1,2-bis(4-pyridyl)ethene ligand, all on general positions. The CuI atom is tetrahedral and coordinated by three µ3-bridging Br atoms and the each bromide bridges the other two Cu cations, while the N atoms of 1,2-bis(4-pyridyl)ethene ligand coordinate the other Cu cations, forming the three-dimensional polymeric architecture (Fig. 2).
The polymer frameworks has four-membered Cu—Br—Cu—Br units that form the step of a stair (Healy et al., 1989; Jasinski et al., 1985) and 1,2-bis(4-pyridyl)ethene ligand across those stairs, shown as Fig. 2. Cu···Cu distances are between 2.8852 (16)~2.9332 (16) Å and Cu—Br—Cu angles are 71.21 (4)~102.99 (4), respectively.