metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine)-1κ2N,N′;3κ2N,N′-hexa-μ-methacrylato-1:2κ6O:O′;2:3κ6O:O′-(nitrato-2κ2O,O′)-1,3-dicobalt(II)-2-terbium(III)

aDepartment of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: chemdpwu@yahoo.com.cn

(Received 30 July 2010; accepted 3 August 2010; online 11 August 2010)

In the title trinuclear cobalt–terbium complex, [Co2Tb(C4H5O2)6(NO3)(C10H8N2)2], the central TbIII and each of the CoII ions are bridged by three carboxyl­ate groups of the methacrylate anions. The TbIII cation is coordinated by six O atoms from six methacrylate anions and two O atoms from a chelating nitrate anion in a distorted square-anti­prismatic geometry. Each CoII ion is coordinated by three O atoms from three methyl­acrylate anions and two N atoms of a 2,2′-bypiridine ligand in a distorted square-pyramidal geometry. In the crystal structure, ππ stacking between the pyridine rings [centroid–centroid distances = 3.682 (8) and 3.760 (8) Å] is observed and weak inter­molecular C—H⋯O hydrogen bonding is also present.

Related literature

For the crystal structures of analogous complexes, see: Wu & Guo (2004[Wu, B. & Guo, Y. (2004). Acta Cryst. E60, m1356-m1358.]); Zhu et al. (2005[Zhu, Y., Lu, W.-M., Ma, M. & Chen, F. (2005). Acta Cryst. E61, m1610-m1612.]); Wu (2008[Wu, B. (2008). J. Coord. Chem. 61, 2558-2562.]); Wu & Hou (2010[Wu, B. & Hou, T. (2010). Acta Cryst. E66, m457.]). For details of the preparation of TbL3·H2O (HL = CH2C(CH3)COOH), see: Lu et al. (1995[Lu, W.-M., Wu, J.-B., Dong, N., Chun, W.-G., Gu, J.-M. & Liang, K.-L. (1995). Acta Cryst. C51, 1568-1570.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2Tb(C4H5O2)6(NO3)(C10H8N2)2]

  • Mr = 1161.64

  • Triclinic, [P \overline 1]

  • a = 11.3717 (6) Å

  • b = 13.4396 (5) Å

  • c = 16.3572 (8) Å

  • α = 103.912 (2)°

  • β = 99.950 (2)°

  • γ = 99.845 (3)°

  • V = 2330.26 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 293 K

  • 0.32 × 0.31 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.495, Tmax = 0.709

  • 13172 measured reflections

  • 8051 independent reflections

  • 7272 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.060

  • S = 1.03

  • 8051 reflections

  • 610 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O9i 0.93 2.46 3.299 (4) 150
C9—H9⋯O7i 0.93 2.54 3.291 (4) 138
C38—H38⋯O11ii 0.93 2.58 3.457 (4) 157
C42—H42⋯O9iii 0.93 2.42 3.259 (5) 150
C43—H43⋯O8iii 0.93 2.57 3.316 (4) 138
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The study of heterometallic complexes containing d-transition metal and lanthanide(III) cations connected by bridging ligands is being actively pursued because of their relevance in solid-state technology and as models for magnetic studies. As a contribution to a structural study of heterometallic complexes containing d-transition metal and rare-earth(III) cations (Wu & Guo, 2004; Zhu et al., 2005; Wu, 2008), herewith we report the synthesis and crystal structure of the title compound, (I).

The crystal structure of the title Co—Tb—Co trinuclear complex is similar to the known crystal structures of the Zn—Ce—Zn, Zn—Nd—Zn, Co—Gd—Co and Co—Ce—Co complexes (Wu & Guo, 2004; Zhu et al., 2005; Wu, 2008; Wu & Hou, 2010). The TbIII center is coordinated by six O atoms from six methacrylato ligands and two O atoms from nitrate anion in a distorted square-antiprismatic geometry. Each CoII ion is coordinated by three O atoms from three methacrylato ligands and two N atoms from 2,2'-bypiridine ligand in a distorted pyramidal geometry. The TbIII and each of two CoII ions are bridged by three bidentate methacrylato ligands. Two Tb···Co separations are almost equal. The separations of Tb···Co1 and Tb···Co2 are 3.937 (1) and 3.822 (1) Å, respectively.

In the crystal structure, π-π interactions between the aromatic rings [centroid-centroid distances of 3.682 (8) and 3.760 (8) Å, respectively] link molecules into chains propagated in direction [01–1]. The aromatic stacking interactions are responsible for the supramolecular assemblies. Weak intermolecular C—H···O hydrogen bonds stabilize further the crystal packing (Table 1).

Related literature top

For the crystal structures of analogous complexes, see: Wu & Guo (2004); Zhu et al. (2005); Wu (2008); Wu & Hou (2010). For details of the preparation of TbL3.H2O (HL = CH2C(CH3)COOH), see: Lu et al. (1995).

Experimental top

TbL3.H2O (864 mg, 2.0 mmol; HL = CH2C(CH3)COOH) and Co(NO3)2.6H2O (435 mg, 1.5 mmol) were dissolved in 15 ml water, and the pH adjusted to 4.0 using HL. An ethanol solution (3 ml) of 2,2'-bipyridine (234 mg, 1.5 mmol) was added into the above solution with stirring. After filtration, the filtrate was allowed to stand at room temperature and single crystals suitable for X-ray work were obtained after two weeks.

Refinement top

H atoms were placed in idealized locations with C–H distances 0.93 - 0.96 Å and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Structure description top

The study of heterometallic complexes containing d-transition metal and lanthanide(III) cations connected by bridging ligands is being actively pursued because of their relevance in solid-state technology and as models for magnetic studies. As a contribution to a structural study of heterometallic complexes containing d-transition metal and rare-earth(III) cations (Wu & Guo, 2004; Zhu et al., 2005; Wu, 2008), herewith we report the synthesis and crystal structure of the title compound, (I).

The crystal structure of the title Co—Tb—Co trinuclear complex is similar to the known crystal structures of the Zn—Ce—Zn, Zn—Nd—Zn, Co—Gd—Co and Co—Ce—Co complexes (Wu & Guo, 2004; Zhu et al., 2005; Wu, 2008; Wu & Hou, 2010). The TbIII center is coordinated by six O atoms from six methacrylato ligands and two O atoms from nitrate anion in a distorted square-antiprismatic geometry. Each CoII ion is coordinated by three O atoms from three methacrylato ligands and two N atoms from 2,2'-bypiridine ligand in a distorted pyramidal geometry. The TbIII and each of two CoII ions are bridged by three bidentate methacrylato ligands. Two Tb···Co separations are almost equal. The separations of Tb···Co1 and Tb···Co2 are 3.937 (1) and 3.822 (1) Å, respectively.

In the crystal structure, π-π interactions between the aromatic rings [centroid-centroid distances of 3.682 (8) and 3.760 (8) Å, respectively] link molecules into chains propagated in direction [01–1]. The aromatic stacking interactions are responsible for the supramolecular assemblies. Weak intermolecular C—H···O hydrogen bonds stabilize further the crystal packing (Table 1).

For the crystal structures of analogous complexes, see: Wu & Guo (2004); Zhu et al. (2005); Wu (2008); Wu & Hou (2010). For details of the preparation of TbL3.H2O (HL = CH2C(CH3)COOH), see: Lu et al. (1995).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms have been omitted for clarity.
Bis(2,2'-bipyridine)-1κ2N,N';3κ2N,N'-hexa- µ-methacrylato-1:2κ6O:O';2:3κ6O:O'- (nitrato-2κ2O,O')-1,3-dicobalt(II)-2-terbium(III) top
Crystal data top
[Co2Tb(C4H5O2)6(NO3)(C10H8N2)2]Z = 2
Mr = 1161.64F(000) = 1168
Triclinic, P1Dx = 1.656 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 11.3717 (6) ÅCell parameters from 10681 reflections
b = 13.4396 (5) Åθ = 2.0–27.5°
c = 16.3572 (8) ŵ = 2.28 mm1
α = 103.912 (2)°T = 293 K
β = 99.950 (2)°Block, brown
γ = 99.845 (3)°0.32 × 0.31 × 0.15 mm
V = 2330.26 (19) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8051 independent reflections
Radiation source: fine-focus sealed tube7272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.00 pixels mm-1θmax = 25.1°, θmin = 1.3°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1616
Tmin = 0.495, Tmax = 0.709l = 1919
13172 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0316P)2 + 2.6217P]
where P = (Fo2 + 2Fc2)/3
8051 reflections(Δ/σ)max = 0.001
610 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Co2Tb(C4H5O2)6(NO3)(C10H8N2)2]γ = 99.845 (3)°
Mr = 1161.64V = 2330.26 (19) Å3
Triclinic, P1Z = 2
a = 11.3717 (6) ÅMo Kα radiation
b = 13.4396 (5) ŵ = 2.28 mm1
c = 16.3572 (8) ÅT = 293 K
α = 103.912 (2)°0.32 × 0.31 × 0.15 mm
β = 99.950 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8051 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
7272 reflections with I > 2σ(I)
Tmin = 0.495, Tmax = 0.709Rint = 0.031
13172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
8051 reflectionsΔρmin = 0.87 e Å3
610 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb0.349851 (12)0.235738 (10)0.240894 (8)0.01582 (5)
Co10.28569 (3)0.09556 (3)0.41926 (2)0.01591 (9)
Co20.28401 (3)0.42261 (3)0.10445 (2)0.01763 (9)
O10.45584 (18)0.17936 (16)0.47967 (13)0.0221 (4)
O20.47217 (19)0.26143 (17)0.37769 (13)0.0268 (5)
O30.19771 (19)0.21432 (16)0.45824 (14)0.0253 (5)
O40.2203 (2)0.2614 (3)0.33945 (16)0.0486 (7)
O50.33886 (19)0.01681 (16)0.33430 (13)0.0237 (5)
O60.2821 (2)0.06055 (17)0.23263 (16)0.0308 (5)
O70.5251 (2)0.14495 (17)0.22325 (14)0.0272 (5)
O80.56465 (19)0.31214 (17)0.23419 (14)0.0253 (5)
O90.7096 (2)0.2241 (2)0.22484 (17)0.0405 (6)
O100.15112 (19)0.22751 (18)0.16450 (14)0.0270 (5)
O110.13244 (19)0.30122 (16)0.05503 (14)0.0243 (5)
O120.35412 (19)0.19272 (17)0.09420 (13)0.0255 (5)
O130.38403 (19)0.33206 (16)0.04124 (13)0.0235 (4)
O140.36667 (18)0.41464 (16)0.24671 (13)0.0229 (4)
O150.43760 (19)0.53596 (16)0.18666 (13)0.0253 (5)
N10.1041 (2)0.00293 (19)0.36608 (15)0.0189 (5)
N20.2646 (2)0.01087 (18)0.50865 (15)0.0173 (5)
N30.6023 (2)0.2265 (2)0.22695 (17)0.0263 (6)
N40.1622 (2)0.5164 (2)0.14918 (16)0.0225 (5)
N50.2614 (2)0.50765 (19)0.01371 (16)0.0208 (5)
C10.0287 (3)0.0066 (2)0.29172 (19)0.0235 (6)
H10.05600.03590.25850.028*
C20.0880 (3)0.0713 (3)0.2625 (2)0.0263 (7)
H20.13750.07270.21040.032*
C30.1289 (3)0.1337 (2)0.31281 (19)0.0234 (6)
H30.20660.17780.29500.028*
C40.0520 (3)0.1294 (2)0.39046 (19)0.0215 (6)
H40.07830.16980.42550.026*
C50.0650 (3)0.0639 (2)0.41511 (18)0.0183 (6)
C60.1558 (3)0.0565 (2)0.49490 (18)0.0180 (6)
C70.1328 (3)0.1151 (2)0.55283 (19)0.0221 (6)
H70.05680.15980.54380.027*
C80.2248 (3)0.1057 (2)0.6238 (2)0.0262 (7)
H80.21090.14430.66270.031*
C90.3378 (3)0.0386 (2)0.6366 (2)0.0248 (7)
H90.40090.03200.68340.030*
C100.3538 (3)0.0187 (2)0.57728 (19)0.0226 (6)
H100.42910.06400.58530.027*
C110.5147 (3)0.2422 (2)0.44716 (18)0.0184 (6)
C120.6439 (3)0.2969 (2)0.4958 (2)0.0235 (6)
C130.6891 (3)0.2726 (3)0.5778 (2)0.0353 (8)
H13A0.77460.30500.59920.053*
H13B0.67760.19780.56760.053*
H13C0.64430.29920.61960.053*
C140.7116 (3)0.3622 (3)0.4627 (3)0.0372 (8)
H14A0.79190.39530.49150.045*
H14B0.67830.37450.41090.045*
C150.1775 (3)0.2680 (2)0.40533 (18)0.0217 (6)
C160.0906 (3)0.3387 (2)0.4226 (2)0.0232 (6)
C170.0866 (3)0.3841 (2)0.5151 (2)0.0293 (7)
H17A0.02810.42790.51760.044*
H17B0.16610.42540.54670.044*
H17C0.06310.32820.54010.044*
C180.0152 (4)0.3511 (3)0.3553 (3)0.0415 (9)
H18A0.01740.31630.29930.050*
H18B0.03940.39460.36440.050*
C190.3180 (2)0.0150 (2)0.2567 (2)0.0206 (6)
C200.3335 (3)0.1085 (2)0.19035 (19)0.0209 (6)
C210.3480 (3)0.2036 (2)0.2209 (2)0.0299 (7)
H21A0.35760.25810.17400.045*
H21B0.27670.22820.24060.045*
H21C0.41900.18530.26740.045*
C220.3347 (3)0.1025 (3)0.1107 (2)0.0348 (8)
H22A0.34490.15950.06950.042*
H22B0.32520.04110.09600.042*
C230.0991 (3)0.2310 (2)0.09099 (19)0.0219 (6)
C240.0130 (3)0.1450 (2)0.0413 (2)0.0246 (7)
C250.0923 (3)0.1017 (3)0.0924 (3)0.0394 (9)
H25A0.15440.04310.05500.059*
H25B0.13040.15490.12000.059*
H25C0.04400.07880.13550.059*
C260.0316 (3)0.1097 (3)0.0457 (2)0.0336 (8)
H26A0.09780.05490.07670.040*
H26B0.02170.14020.07450.040*
C270.3746 (3)0.2350 (2)0.03536 (19)0.0215 (6)
C280.3872 (3)0.1660 (2)0.04942 (19)0.0227 (6)
C290.3929 (3)0.0663 (3)0.0578 (2)0.0327 (8)
H29A0.40090.02470.11000.039*
H29B0.38880.03810.01150.039*
C300.3930 (3)0.2180 (3)0.1208 (2)0.0328 (8)
H30A0.39750.16740.17210.049*
H30B0.46430.27450.10380.049*
H30C0.32100.24520.13210.049*
C310.4425 (3)0.5002 (2)0.25101 (19)0.0206 (6)
C320.5337 (3)0.5618 (2)0.33372 (19)0.0216 (6)
C330.5287 (3)0.5358 (3)0.4066 (2)0.0303 (7)
H33A0.58330.57560.45790.036*
H33B0.47070.47780.40640.036*
C340.6245 (3)0.6542 (3)0.3283 (2)0.0351 (8)
H34A0.67480.69010.38470.053*
H34B0.58140.70140.30670.053*
H34C0.67510.62990.28990.053*
C350.1151 (3)0.5158 (3)0.2190 (2)0.0286 (7)
H350.14270.47670.25510.034*
C360.0271 (3)0.5709 (3)0.2390 (2)0.0364 (8)
H360.00310.56980.28820.044*
C370.0150 (3)0.6276 (3)0.1847 (2)0.0353 (8)
H370.07490.66470.19670.042*
C380.0321 (3)0.6291 (2)0.1125 (2)0.0282 (7)
H380.00450.66700.07530.034*
C390.1215 (3)0.5727 (2)0.09632 (19)0.0221 (6)
C400.1818 (3)0.5716 (2)0.02266 (19)0.0215 (6)
C410.1620 (3)0.6338 (3)0.0332 (2)0.0308 (7)
H410.10640.67690.02680.037*
C420.2259 (3)0.6308 (3)0.0981 (2)0.0362 (8)
H420.21290.67110.13630.043*
C430.3096 (3)0.5670 (3)0.1056 (2)0.0328 (8)
H430.35490.56510.14790.039*
C440.3244 (3)0.5060 (3)0.0484 (2)0.0267 (7)
H440.37990.46270.05350.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb0.01728 (8)0.01693 (8)0.01758 (8)0.00519 (5)0.00563 (5)0.01065 (5)
Co10.01583 (19)0.01565 (19)0.01852 (19)0.00300 (15)0.00508 (15)0.00846 (15)
Co20.0185 (2)0.0171 (2)0.01853 (19)0.00386 (15)0.00212 (16)0.00884 (15)
O10.0193 (10)0.0230 (11)0.0249 (11)0.0003 (9)0.0041 (9)0.0119 (9)
O20.0259 (11)0.0333 (13)0.0215 (11)0.0032 (10)0.0023 (9)0.0127 (9)
O30.0244 (11)0.0215 (11)0.0310 (12)0.0075 (9)0.0049 (9)0.0082 (9)
O40.0281 (13)0.088 (2)0.0312 (14)0.0155 (14)0.0114 (11)0.0144 (14)
O50.0238 (11)0.0247 (11)0.0223 (11)0.0069 (9)0.0054 (9)0.0050 (9)
O60.0237 (11)0.0229 (12)0.0546 (15)0.0070 (9)0.0135 (11)0.0227 (11)
O70.0278 (12)0.0296 (12)0.0331 (12)0.0115 (10)0.0109 (10)0.0187 (10)
O80.0252 (11)0.0279 (12)0.0307 (12)0.0072 (9)0.0108 (9)0.0186 (9)
O90.0241 (12)0.0699 (19)0.0515 (15)0.0244 (12)0.0213 (12)0.0427 (14)
O100.0198 (11)0.0374 (13)0.0260 (11)0.0060 (9)0.0033 (9)0.0144 (10)
O110.0226 (11)0.0178 (11)0.0316 (11)0.0018 (9)0.0011 (9)0.0108 (9)
O120.0299 (12)0.0320 (12)0.0210 (11)0.0125 (10)0.0091 (9)0.0128 (9)
O130.0245 (11)0.0234 (11)0.0260 (11)0.0081 (9)0.0072 (9)0.0099 (9)
O140.0210 (10)0.0177 (11)0.0317 (11)0.0051 (9)0.0063 (9)0.0093 (9)
O150.0273 (11)0.0231 (11)0.0255 (11)0.0027 (9)0.0005 (9)0.0128 (9)
N10.0193 (12)0.0189 (13)0.0202 (12)0.0039 (10)0.0057 (10)0.0079 (10)
N20.0173 (12)0.0188 (12)0.0186 (12)0.0048 (10)0.0057 (10)0.0091 (10)
N30.0224 (14)0.0377 (16)0.0293 (14)0.0118 (12)0.0092 (11)0.0227 (12)
N40.0224 (13)0.0229 (13)0.0218 (13)0.0050 (11)0.0020 (11)0.0077 (10)
N50.0189 (12)0.0223 (13)0.0228 (13)0.0031 (10)0.0029 (10)0.0116 (10)
C10.0220 (15)0.0286 (17)0.0229 (15)0.0039 (13)0.0067 (13)0.0127 (13)
C20.0219 (16)0.0348 (18)0.0227 (15)0.0051 (13)0.0025 (13)0.0113 (13)
C30.0195 (15)0.0198 (15)0.0269 (16)0.0002 (12)0.0048 (13)0.0021 (12)
C40.0238 (15)0.0168 (15)0.0265 (16)0.0045 (12)0.0088 (13)0.0085 (12)
C50.0220 (15)0.0133 (14)0.0214 (14)0.0054 (11)0.0075 (12)0.0050 (11)
C60.0200 (15)0.0163 (14)0.0220 (14)0.0085 (12)0.0092 (12)0.0071 (11)
C70.0249 (16)0.0177 (15)0.0281 (16)0.0038 (12)0.0101 (13)0.0121 (12)
C80.0337 (18)0.0255 (17)0.0280 (16)0.0108 (14)0.0094 (14)0.0184 (13)
C90.0275 (16)0.0280 (17)0.0232 (15)0.0124 (13)0.0040 (13)0.0123 (13)
C100.0197 (15)0.0238 (16)0.0274 (16)0.0062 (12)0.0047 (13)0.0124 (13)
C110.0195 (14)0.0166 (14)0.0191 (14)0.0061 (11)0.0055 (12)0.0026 (11)
C120.0187 (15)0.0205 (15)0.0276 (16)0.0026 (12)0.0027 (13)0.0029 (12)
C130.0255 (17)0.047 (2)0.0315 (18)0.0077 (15)0.0025 (15)0.0140 (16)
C140.0226 (17)0.036 (2)0.053 (2)0.0016 (15)0.0057 (16)0.0198 (17)
C150.0170 (14)0.0263 (16)0.0187 (15)0.0002 (12)0.0057 (12)0.0028 (12)
C160.0232 (15)0.0193 (15)0.0312 (16)0.0041 (12)0.0099 (13)0.0125 (13)
C170.0368 (18)0.0188 (16)0.0389 (18)0.0107 (14)0.0166 (15)0.0113 (14)
C180.047 (2)0.041 (2)0.045 (2)0.0197 (18)0.0093 (18)0.0233 (18)
C190.0125 (13)0.0190 (15)0.0313 (17)0.0016 (11)0.0078 (12)0.0105 (12)
C200.0158 (14)0.0231 (16)0.0223 (15)0.0007 (12)0.0048 (12)0.0058 (12)
C210.0326 (18)0.0189 (16)0.0344 (18)0.0053 (13)0.0050 (15)0.0028 (13)
C220.0280 (18)0.047 (2)0.0315 (18)0.0074 (16)0.0087 (15)0.0140 (16)
C230.0184 (15)0.0221 (16)0.0283 (16)0.0085 (12)0.0061 (13)0.0093 (13)
C240.0200 (15)0.0199 (16)0.0340 (17)0.0054 (12)0.0006 (13)0.0111 (13)
C250.0281 (18)0.040 (2)0.050 (2)0.0012 (16)0.0056 (17)0.0205 (18)
C260.0332 (18)0.0247 (17)0.0382 (19)0.0045 (14)0.0039 (15)0.0096 (14)
C270.0143 (14)0.0299 (17)0.0223 (15)0.0062 (12)0.0021 (12)0.0115 (13)
C280.0182 (15)0.0315 (17)0.0195 (15)0.0042 (13)0.0064 (12)0.0087 (13)
C290.0376 (19)0.0330 (19)0.0327 (18)0.0079 (15)0.0194 (16)0.0105 (15)
C300.0382 (19)0.040 (2)0.0220 (16)0.0088 (16)0.0088 (15)0.0095 (14)
C310.0179 (14)0.0176 (15)0.0280 (16)0.0079 (12)0.0040 (12)0.0077 (12)
C320.0224 (15)0.0210 (15)0.0230 (15)0.0082 (12)0.0038 (12)0.0073 (12)
C330.042 (2)0.0243 (17)0.0219 (16)0.0064 (14)0.0029 (14)0.0044 (13)
C340.0314 (18)0.034 (2)0.0337 (18)0.0055 (15)0.0004 (15)0.0124 (15)
C350.0292 (17)0.0303 (18)0.0254 (16)0.0033 (14)0.0048 (14)0.0094 (13)
C360.0314 (19)0.045 (2)0.0309 (18)0.0080 (16)0.0091 (15)0.0054 (16)
C370.0272 (18)0.0343 (19)0.040 (2)0.0126 (15)0.0056 (15)0.0004 (15)
C380.0268 (17)0.0203 (16)0.0325 (17)0.0050 (13)0.0004 (14)0.0032 (13)
C390.0179 (15)0.0167 (15)0.0259 (15)0.0006 (12)0.0041 (12)0.0037 (12)
C400.0225 (15)0.0148 (14)0.0251 (15)0.0008 (12)0.0002 (12)0.0079 (12)
C410.0335 (18)0.0233 (17)0.0366 (18)0.0075 (14)0.0008 (15)0.0156 (14)
C420.046 (2)0.0308 (19)0.0366 (19)0.0034 (16)0.0041 (16)0.0246 (16)
C430.0317 (18)0.038 (2)0.0320 (18)0.0003 (15)0.0083 (15)0.0210 (15)
C440.0255 (16)0.0283 (17)0.0282 (16)0.0046 (13)0.0057 (14)0.0126 (13)
Geometric parameters (Å, º) top
Tb—O62.312 (2)C13—H13A0.9600
Tb—O22.334 (2)C13—H13B0.9600
Tb—O122.340 (2)C13—H13C0.9600
Tb—O102.356 (2)C14—H14A0.9300
Tb—O142.357 (2)C14—H14B0.9300
Tb—O42.369 (2)C15—C161.499 (4)
Tb—O82.514 (2)C16—C181.337 (5)
Tb—O72.530 (2)C16—C171.501 (4)
Co1—O12.012 (2)C17—H17A0.9600
Co1—O52.042 (2)C17—H17B0.9600
Co1—O32.057 (2)C17—H17C0.9600
Co1—N22.078 (2)C18—H18A0.9300
Co1—N12.160 (2)C18—H18B0.9300
Co2—O132.029 (2)C19—C201.509 (4)
Co2—O112.051 (2)C20—C221.327 (4)
Co2—N52.088 (2)C20—C211.503 (4)
Co2—O152.115 (2)C21—H21A0.9600
Co2—N42.133 (3)C21—H21B0.9600
Co2—O142.389 (2)C21—H21C0.9600
O1—C111.260 (3)C22—H22A0.9300
O2—C111.260 (3)C22—H22B0.9300
O3—C151.269 (4)C23—C241.518 (4)
O4—C151.248 (4)C24—C261.354 (5)
O5—C191.257 (4)C24—C251.473 (5)
O6—C191.277 (4)C25—H25A0.9600
O7—N31.263 (3)C25—H25B0.9600
O8—N31.282 (3)C25—H25C0.9600
O9—N31.232 (3)C26—H26A0.9300
O10—C231.260 (4)C26—H26B0.9300
O11—C231.266 (4)C27—C281.516 (4)
O12—C271.265 (4)C28—C291.328 (5)
O13—C271.269 (4)C28—C301.503 (4)
O14—C311.293 (4)C29—H29A0.9300
O15—C311.254 (4)C29—H29B0.9300
N1—C11.346 (4)C30—H30A0.9600
N1—C51.352 (4)C30—H30B0.9600
N2—C101.347 (4)C30—H30C0.9600
N2—C61.350 (4)C31—C321.508 (4)
N4—C351.343 (4)C32—C331.328 (4)
N4—C391.352 (4)C32—C341.503 (4)
N5—C441.338 (4)C33—H33A0.9300
N5—C401.353 (4)C33—H33B0.9300
C1—C21.390 (4)C34—H34A0.9600
C1—H10.9300C34—H34B0.9600
C2—C31.389 (4)C34—H34C0.9600
C2—H20.9300C35—C361.381 (5)
C3—C41.395 (4)C35—H350.9300
C3—H30.9300C36—C371.379 (5)
C4—C51.396 (4)C36—H360.9300
C4—H40.9300C37—C381.382 (5)
C5—C61.489 (4)C37—H370.9300
C6—C71.401 (4)C38—C391.393 (4)
C7—C81.386 (4)C38—H380.9300
C7—H70.9300C39—C401.484 (4)
C8—C91.389 (5)C40—C411.394 (4)
C8—H80.9300C41—C421.383 (5)
C9—C101.392 (4)C41—H410.9300
C9—H90.9300C42—C431.387 (5)
C10—H100.9300C42—H420.9300
C11—C121.509 (4)C43—C441.391 (4)
C12—C141.341 (5)C43—H430.9300
C12—C131.483 (4)C44—H440.9300
O6—Tb—O289.72 (8)C14—C12—C13123.8 (3)
O6—Tb—O1291.10 (8)C14—C12—C11119.2 (3)
O2—Tb—O12141.89 (7)C13—C12—C11116.9 (3)
O6—Tb—O1086.68 (8)C12—C13—H13A109.5
O2—Tb—O10144.54 (7)C12—C13—H13B109.5
O12—Tb—O1073.50 (7)H13A—C13—H13B109.5
O6—Tb—O14165.64 (7)C12—C13—H13C109.5
O2—Tb—O1497.02 (7)H13A—C13—H13C109.5
O12—Tb—O1491.36 (7)H13B—C13—H13C109.5
O10—Tb—O1480.47 (7)C12—C14—H14A120.0
O6—Tb—O483.07 (10)C12—C14—H14B120.0
O2—Tb—O473.78 (8)H14A—C14—H14B120.0
O12—Tb—O4144.05 (8)O4—C15—O3124.3 (3)
O10—Tb—O470.76 (8)O4—C15—C16119.4 (3)
O14—Tb—O486.65 (9)O3—C15—C16116.2 (3)
O6—Tb—O8122.83 (7)C18—C16—C15118.5 (3)
O2—Tb—O873.60 (7)C18—C16—C17123.8 (3)
O12—Tb—O874.10 (7)C15—C16—C17117.5 (3)
O10—Tb—O8136.02 (7)C16—C17—H17A109.5
O14—Tb—O871.39 (7)C16—C17—H17B109.5
O4—Tb—O8137.65 (9)H17A—C17—H17B109.5
O6—Tb—O771.84 (7)C16—C17—H17C109.5
O2—Tb—O771.68 (7)H17A—C17—H17C109.5
O12—Tb—O772.45 (7)H17B—C17—H17C109.5
O10—Tb—O7138.97 (7)C16—C18—H18A120.0
O14—Tb—O7122.32 (7)C16—C18—H18B120.0
O4—Tb—O7136.89 (8)H18A—C18—H18B120.0
O8—Tb—O751.00 (7)O5—C19—O6122.9 (3)
O1—Co1—O595.93 (8)O5—C19—C20117.3 (3)
O1—Co1—O396.07 (8)O6—C19—C20119.8 (3)
O5—Co1—O3156.98 (8)C22—C20—C21124.4 (3)
O1—Co1—N296.20 (9)C22—C20—C19119.4 (3)
O5—Co1—N296.25 (9)C21—C20—C19116.2 (2)
O3—Co1—N2101.89 (9)C20—C21—H21A109.5
O1—Co1—N1173.49 (8)C20—C21—H21B109.5
O5—Co1—N184.80 (9)H21A—C21—H21B109.5
O3—Co1—N185.48 (9)C20—C21—H21C109.5
N2—Co1—N177.30 (9)H21A—C21—H21C109.5
O13—Co2—O1189.61 (9)H21B—C21—H21C109.5
O13—Co2—N594.45 (9)C20—C22—H22A120.0
O11—Co2—N5100.68 (9)C20—C22—H22B120.0
O13—Co2—O1594.95 (9)H22A—C22—H22B120.0
O11—Co2—O15164.39 (8)O10—C23—O11125.1 (3)
N5—Co2—O1593.85 (9)O10—C23—C24118.0 (3)
O13—Co2—N4170.11 (9)O11—C23—C24116.9 (3)
O11—Co2—N486.32 (9)C26—C24—C25123.9 (3)
N5—Co2—N477.49 (10)C26—C24—C23119.1 (3)
O15—Co2—N491.34 (9)C25—C24—C23117.0 (3)
O13—Co2—O1497.41 (8)C24—C25—H25A109.5
O11—Co2—O14106.35 (8)C24—C25—H25B109.5
N5—Co2—O14150.45 (9)H25A—C25—H25B109.5
O15—Co2—O1458.29 (7)C24—C25—H25C109.5
N4—Co2—O1492.38 (8)H25A—C25—H25C109.5
C11—O1—Co1121.33 (18)H25B—C25—H25C109.5
C11—O2—Tb158.9 (2)C24—C26—H26A120.0
C15—O3—Co1115.23 (19)C24—C26—H26B120.0
C15—O4—Tb162.7 (2)H26A—C26—H26B120.0
C19—O5—Co1116.41 (19)O12—C27—O13124.7 (3)
C19—O6—Tb141.31 (19)O12—C27—C28118.6 (3)
N3—O7—Tb95.80 (17)O13—C27—C28116.6 (3)
N3—O8—Tb96.05 (16)C29—C28—C30123.5 (3)
C23—O10—Tb138.55 (19)C29—C28—C27120.7 (3)
C23—O11—Co2125.38 (19)C30—C28—C27115.8 (3)
C27—O12—Tb141.3 (2)C28—C29—H29A120.0
C27—O13—Co2124.09 (18)C28—C29—H29B120.0
C31—O14—Tb143.88 (18)H29A—C29—H29B120.0
C31—O14—Co284.09 (17)C28—C30—H30A109.5
Tb—O14—Co2107.30 (8)C28—C30—H30B109.5
C31—O15—Co297.56 (18)H30A—C30—H30B109.5
C1—N1—C5119.0 (2)C28—C30—H30C109.5
C1—N1—Co1126.30 (19)H30A—C30—H30C109.5
C5—N1—Co1114.68 (19)H30B—C30—H30C109.5
C10—N2—C6119.5 (2)O15—C31—O14120.0 (3)
C10—N2—Co1123.40 (19)O15—C31—C32118.6 (3)
C6—N2—Co1117.13 (18)O14—C31—C32121.3 (3)
O9—N3—O7121.5 (3)C33—C32—C34123.5 (3)
O9—N3—O8121.4 (3)C33—C32—C31120.3 (3)
O7—N3—O8117.1 (2)C34—C32—C31116.2 (3)
C35—N4—C39118.8 (3)C32—C33—H33A120.0
C35—N4—Co2125.8 (2)C32—C33—H33B120.0
C39—N4—Co2115.0 (2)H33A—C33—H33B120.0
C44—N5—C40119.4 (3)C32—C34—H34A109.5
C44—N5—Co2124.1 (2)C32—C34—H34B109.5
C40—N5—Co2116.35 (19)H34A—C34—H34B109.5
N1—C1—C2122.8 (3)C32—C34—H34C109.5
N1—C1—H1118.6H34A—C34—H34C109.5
C2—C1—H1118.6H34B—C34—H34C109.5
C3—C2—C1118.4 (3)N4—C35—C36122.4 (3)
C3—C2—H2120.8N4—C35—H35118.8
C1—C2—H2120.8C36—C35—H35118.8
C2—C3—C4119.1 (3)C37—C36—C35118.7 (3)
C2—C3—H3120.4C37—C36—H36120.6
C4—C3—H3120.4C35—C36—H36120.6
C3—C4—C5119.3 (3)C36—C37—C38119.7 (3)
C3—C4—H4120.3C36—C37—H37120.1
C5—C4—H4120.3C38—C37—H37120.1
N1—C5—C4121.3 (3)C37—C38—C39118.8 (3)
N1—C5—C6115.1 (2)C37—C38—H38120.6
C4—C5—C6123.7 (3)C39—C38—H38120.6
N2—C6—C7120.9 (3)N4—C39—C38121.5 (3)
N2—C6—C5115.7 (2)N4—C39—C40115.0 (3)
C7—C6—C5123.3 (3)C38—C39—C40123.5 (3)
C8—C7—C6119.1 (3)N5—C40—C41121.1 (3)
C8—C7—H7120.4N5—C40—C39115.6 (2)
C6—C7—H7120.4C41—C40—C39123.3 (3)
C7—C8—C9119.9 (3)C42—C41—C40119.4 (3)
C7—C8—H8120.1C42—C41—H41120.3
C9—C8—H8120.1C40—C41—H41120.3
C10—C9—C8118.0 (3)C43—C42—C41119.3 (3)
C10—C9—H9121.0C43—C42—H42120.4
C8—C9—H9121.0C41—C42—H42120.4
N2—C10—C9122.5 (3)C42—C43—C44118.6 (3)
N2—C10—H10118.7C42—C43—H43120.7
C9—C10—H10118.7C44—C43—H43120.7
O2—C11—O1124.1 (3)N5—C44—C43122.2 (3)
O2—C11—C12119.0 (3)N5—C44—H44118.9
O1—C11—C12116.9 (3)C43—C44—H44118.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O9i0.932.463.299 (4)150
C9—H9···O7i0.932.543.291 (4)138
C38—H38···O11ii0.932.583.457 (4)157
C42—H42···O9iii0.932.423.259 (5)150
C43—H43···O8iii0.932.573.316 (4)138
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co2Tb(C4H5O2)6(NO3)(C10H8N2)2]
Mr1161.64
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.3717 (6), 13.4396 (5), 16.3572 (8)
α, β, γ (°)103.912 (2), 99.950 (2), 99.845 (3)
V3)2330.26 (19)
Z2
Radiation typeMo Kα
µ (mm1)2.28
Crystal size (mm)0.32 × 0.31 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.495, 0.709
No. of measured, independent and
observed [I > 2σ(I)] reflections
13172, 8051, 7272
Rint0.031
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 1.03
No. of reflections8051
No. of parameters610
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.87

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O9i0.932.463.299 (4)150
C9—H9···O7i0.932.543.291 (4)138
C38—H38···O11ii0.932.583.457 (4)157
C42—H42···O9iii0.932.423.259 (5)150
C43—H43···O8iii0.932.573.316 (4)138
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLu, W.-M., Wu, J.-B., Dong, N., Chun, W.-G., Gu, J.-M. & Liang, K.-L. (1995). Acta Cryst. C51, 1568–1570.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, B. (2008). J. Coord. Chem. 61, 2558–2562.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, B. & Guo, Y. (2004). Acta Cryst. E60, m1356–m1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, B. & Hou, T. (2010). Acta Cryst. E66, m457.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhu, Y., Lu, W.-M., Ma, M. & Chen, F. (2005). Acta Cryst. E61, m1610–m1612.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds