organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2,4,6-Trihy­dr­oxy­benzyl­­idene)-4-ethyl­thio­semicarbazide dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: mjamil@um.edu.my

(Received 1 August 2010; accepted 2 August 2010; online 11 August 2010)

In the title mol­ecule, C10H13N3O3S·2H2O, the thio­semi­carbazide =N—NH—C(=S)—NH– fragment [torsion angle = 0.2 (1)°] is nearly coplanar with the benzene ring [dihedral angle = 2.4 (1)°]. The benzene ring and semicarbazide moiety are located on opposite sites of the C=N bond, showing an E configuration. The hy­droxy, imino and water H atoms are engaged in extensive hydrogen bonding, forming a three-dimensional network.

Related literature

For the crystal structure of a related compound, 1-(2,3,4-trihy­droxy­benzyl­idene)-4-ethyl­thio­semicarbazide, see: Shaw­ish et al. (2010[Shawish, H. B., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o1151.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3O3S·2H2O

  • Mr = 291.33

  • Monoclinic, P 21

  • a = 4.6645 (4) Å

  • b = 10.4006 (9) Å

  • c = 13.5381 (11) Å

  • β = 98.674 (1)°

  • V = 649.27 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.973

  • 6232 measured reflections

  • 2937 independent reflections

  • 2826 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.03

  • 2937 reflections

  • 208 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1370 Friedel pairs

  • Flack parameter: −0.05 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.85 (1) 1.99 (2) 2.722 (2) 144 (2)
O2—H2o⋯O1i 0.83 (1) 2.27 (2) 2.955 (2) 140 (2)
O3—H3o⋯O1W 0.85 (2) 1.76 (2) 2.598 (2) 174 (2)
O1w—H11⋯O2w 0.84 (1) 1.94 (1) 2.785 (2) 177 (3)
O1w—H12⋯O3ii 0.84 (1) 2.22 (1) 3.002 (2) 155 (2)
O2w—H21⋯S1iii 0.84 (1) 2.45 (1) 3.279 (1) 169 (2)
O2w—H22⋯S1iv 0.84 (1) 2.49 (1) 3.292 (1) 162 (2)
N2—H2n⋯O2wv 0.86 (1) 2.13 (1) 2.965 (2) 166 (2)
N3—H3n⋯O2vi 0.86 (1) 2.26 (2) 2.934 (2) 136 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y, z; (iii) x-2, y-1, z; (iv) x-1, y-1, z; (v) [-x+1, y+{\script{1\over 2}}, -z]; (vi) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For the crystal structure of a related compound, 1-(2,3,4-trihydroxybenzylidene)-4-ethylthiosemicarbazide, see: Shawish et al. (2010).

Experimental top

2,4,6-Trihydroxybenzaldehyde (1.54 g, 10 mmol) and 4-ethylthiosemicarbazide (1.19 g, 1 mmol) were heated in ethanol (20 ml) for 2 h; acetic acid (0.5 ml) was also added. A brown solid separated from the cool solution; this was recrystallized from methanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The imino H and hydroxy H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.86±0.01 and O–H 0.84±0.01 Å; their temperature factors were freely refined.

Structure description top

For the crystal structure of a related compound, 1-(2,3,4-trihydroxybenzylidene)-4-ethylthiosemicarbazide, see: Shawish et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C10H13N3O3S.2H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
(E)-1-(2,4,6-Trihydroxybenzylidene)-4-ethylthiosemicarbazide dihydrate top
Crystal data top
C10H13N3O3S·2H2OF(000) = 308
Mr = 291.33Dx = 1.490 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3449 reflections
a = 4.6645 (4) Åθ = 2.5–28.2°
b = 10.4006 (9) ŵ = 0.27 mm1
c = 13.5381 (11) ÅT = 100 K
β = 98.674 (1)°Prism, yellow
V = 649.27 (10) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2937 independent reflections
Radiation source: fine-focus sealed tube2826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 65
Tmin = 0.923, Tmax = 0.973k = 1313
6232 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.0466P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2937 reflectionsΔρmax = 0.24 e Å3
208 parametersΔρmin = 0.19 e Å3
12 restraintsAbsolute structure: Flack (1983), 1370 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C10H13N3O3S·2H2OV = 649.27 (10) Å3
Mr = 291.33Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.6645 (4) ŵ = 0.27 mm1
b = 10.4006 (9) ÅT = 100 K
c = 13.5381 (11) Å0.30 × 0.20 × 0.10 mm
β = 98.674 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2937 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2826 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.973Rint = 0.025
6232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.24 e Å3
S = 1.03Δρmin = 0.19 e Å3
2937 reflectionsAbsolute structure: Flack (1983), 1370 Friedel pairs
208 parametersAbsolute structure parameter: 0.05 (6)
12 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.52160 (9)1.00002 (4)0.04613 (3)0.01642 (10)
O11.0480 (3)0.82234 (12)0.44254 (9)0.0175 (3)
O20.4114 (3)0.51122 (13)0.53548 (9)0.0185 (3)
O30.5005 (3)0.56687 (12)0.18897 (9)0.0171 (3)
O1W0.0357 (3)0.42702 (13)0.15044 (10)0.0204 (3)
O2W0.0077 (3)0.21977 (12)0.01907 (10)0.0197 (3)
N11.1216 (3)0.83376 (14)0.24708 (10)0.0136 (3)
N21.2187 (3)0.87300 (14)0.16047 (10)0.0139 (3)
N31.5378 (3)1.01558 (15)0.24590 (10)0.0147 (3)
C10.8575 (3)0.72575 (16)0.41274 (13)0.0133 (3)
C20.7317 (4)0.66456 (16)0.48651 (13)0.0152 (3)
H20.78590.68730.55470.018*
C30.5256 (4)0.56959 (17)0.45936 (12)0.0149 (3)
C40.4389 (4)0.53585 (15)0.36022 (12)0.0142 (3)
H40.29320.47260.34270.017*
C50.5697 (4)0.59662 (15)0.28686 (13)0.0136 (3)
C60.7848 (4)0.69196 (15)0.31126 (13)0.0126 (3)
C70.9158 (4)0.74927 (16)0.23201 (13)0.0135 (3)
H70.84770.72370.16520.016*
C81.4257 (3)0.96307 (15)0.15970 (13)0.0131 (3)
C91.7695 (4)1.11131 (17)0.25974 (13)0.0179 (4)
H9A1.85481.11880.19730.021*
H9B1.92421.08220.31330.021*
C101.6620 (5)1.24156 (18)0.28688 (17)0.0274 (4)
H10A1.82361.30280.29530.041*
H10B1.58121.23500.34950.041*
H10C1.51131.27150.23350.041*
H1O1.132 (4)0.846 (2)0.3945 (12)0.022 (6)*
H2O0.280 (4)0.462 (2)0.5106 (17)0.036 (7)*
H3O0.356 (4)0.517 (2)0.1785 (17)0.029 (6)*
H110.024 (5)0.3659 (19)0.1092 (18)0.048 (8)*
H120.122 (4)0.467 (2)0.1412 (19)0.059 (10)*
H210.127 (3)0.1711 (18)0.0304 (18)0.029 (7)*
H220.162 (3)0.178 (2)0.022 (2)0.047 (8)*
H2N1.140 (4)0.841 (2)0.1046 (10)0.020 (5)*
H3N1.476 (4)0.9852 (19)0.2978 (10)0.014 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01776 (19)0.0203 (2)0.01189 (19)0.00408 (18)0.00442 (14)0.00107 (17)
O10.0181 (6)0.0191 (6)0.0151 (6)0.0046 (5)0.0025 (5)0.0017 (5)
O20.0223 (6)0.0215 (6)0.0122 (6)0.0044 (6)0.0042 (5)0.0020 (5)
O30.0195 (6)0.0208 (6)0.0113 (6)0.0057 (5)0.0031 (5)0.0035 (5)
O1W0.0173 (7)0.0228 (7)0.0204 (7)0.0006 (5)0.0009 (5)0.0031 (5)
O2W0.0190 (7)0.0185 (7)0.0215 (7)0.0023 (6)0.0033 (6)0.0019 (5)
N10.0141 (7)0.0146 (6)0.0128 (7)0.0017 (5)0.0042 (6)0.0024 (5)
N20.0155 (7)0.0167 (7)0.0097 (7)0.0028 (5)0.0029 (6)0.0004 (5)
N30.0158 (7)0.0176 (7)0.0117 (6)0.0026 (6)0.0052 (5)0.0001 (6)
C10.0114 (8)0.0134 (7)0.0150 (8)0.0024 (6)0.0014 (6)0.0002 (6)
C20.0165 (9)0.0182 (8)0.0102 (8)0.0027 (7)0.0001 (6)0.0001 (6)
C30.0168 (8)0.0146 (8)0.0142 (8)0.0038 (7)0.0057 (6)0.0033 (6)
C40.0139 (8)0.0136 (8)0.0153 (8)0.0008 (6)0.0033 (6)0.0008 (6)
C50.0141 (8)0.0137 (7)0.0133 (8)0.0026 (6)0.0033 (6)0.0004 (6)
C60.0115 (8)0.0129 (7)0.0137 (8)0.0025 (6)0.0027 (6)0.0011 (6)
C70.0150 (8)0.0141 (8)0.0115 (8)0.0028 (6)0.0020 (6)0.0000 (6)
C80.0118 (8)0.0134 (7)0.0146 (8)0.0019 (6)0.0033 (6)0.0020 (6)
C90.0164 (9)0.0202 (8)0.0171 (9)0.0032 (7)0.0031 (7)0.0027 (7)
C100.0308 (11)0.0174 (9)0.0363 (12)0.0024 (8)0.0122 (9)0.0012 (8)
Geometric parameters (Å, º) top
S1—C81.7085 (17)N3—H3N0.86 (1)
O1—C11.362 (2)C1—C21.387 (2)
O1—H1O0.85 (1)C1—C61.409 (2)
O2—C31.3710 (19)C2—C31.389 (2)
O2—H2O0.83 (1)C2—H20.9500
O3—C51.352 (2)C3—C41.387 (2)
O3—H3O0.85 (1)C4—C51.393 (2)
O1W—H110.84 (1)C4—H40.9500
O1W—H120.84 (1)C5—C61.414 (2)
O2W—H210.84 (1)C6—C71.442 (2)
O2W—H220.84 (1)C7—H70.9500
N1—C71.294 (2)C9—C101.509 (3)
N1—N21.3809 (19)C9—H9A0.9900
N2—C81.346 (2)C9—H9B0.9900
N2—H2N0.86 (1)C10—H10A0.9800
N3—C81.323 (2)C10—H10B0.9800
N3—C91.461 (2)C10—H10C0.9800
C1—O1—H1O110.3 (16)O3—C5—C4121.98 (15)
C3—O2—H2O108.4 (17)O3—C5—C6116.47 (15)
C5—O3—H3O111.8 (16)C4—C5—C6121.55 (15)
H11—O1W—H12107.8 (15)C1—C6—C5117.44 (15)
H21—O2W—H22109.8 (15)C1—C6—C7123.77 (15)
C7—N1—N2113.40 (14)C5—C6—C7118.80 (15)
C8—N2—N1122.67 (15)N1—C7—C6123.43 (15)
C8—N2—H2N118.4 (15)N1—C7—H7118.3
N1—N2—H2N118.9 (15)C6—C7—H7118.3
C8—N3—C9125.54 (14)N3—C8—N2117.97 (15)
C8—N3—H3N115.7 (14)N3—C8—S1125.35 (13)
C9—N3—H3N118.6 (14)N2—C8—S1116.68 (13)
O1—C1—C2116.95 (15)N3—C9—C10112.11 (15)
O1—C1—C6121.56 (15)N3—C9—H9A109.2
C2—C1—C6121.46 (15)C10—C9—H9A109.2
C1—C2—C3119.14 (15)N3—C9—H9B109.2
C1—C2—H2120.4C10—C9—H9B109.2
C3—C2—H2120.4H9A—C9—H9B107.9
O2—C3—C4121.71 (16)C9—C10—H10A109.5
O2—C3—C2116.61 (15)C9—C10—H10B109.5
C4—C3—C2121.67 (15)H10A—C10—H10B109.5
C3—C4—C5118.68 (16)C9—C10—H10C109.5
C3—C4—H4120.7H10A—C10—H10C109.5
C5—C4—H4120.7H10B—C10—H10C109.5
C7—N1—N2—C8178.00 (15)O3—C5—C6—C1179.15 (15)
O1—C1—C2—C3176.95 (15)C4—C5—C6—C11.5 (2)
C6—C1—C2—C31.2 (2)O3—C5—C6—C70.6 (2)
C1—C2—C3—O2179.17 (15)C4—C5—C6—C7178.74 (15)
C1—C2—C3—C41.1 (2)N2—N1—C7—C6178.51 (14)
O2—C3—C4—C5178.27 (15)C1—C6—C7—N12.9 (3)
C2—C3—C4—C52.0 (2)C5—C6—C7—N1177.42 (15)
C3—C4—C5—O3178.64 (15)C9—N3—C8—N2177.96 (15)
C3—C4—C5—C60.6 (2)C9—N3—C8—S12.1 (2)
O1—C1—C6—C5175.63 (14)N1—N2—C8—N30.2 (2)
C2—C1—C6—C52.5 (2)N1—N2—C8—S1179.78 (12)
O1—C1—C6—C74.1 (3)C8—N3—C9—C10110.57 (19)
C2—C1—C6—C7177.80 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (1)1.99 (2)2.722 (2)144 (2)
O2—H2o···O1i0.83 (1)2.27 (2)2.955 (2)140 (2)
O3—H3o···O1W0.85 (2)1.76 (2)2.598 (2)174 (2)
O1w—H11···O2w0.84 (1)1.94 (1)2.785 (2)177 (3)
O1w—H12···O3ii0.84 (1)2.22 (1)3.002 (2)155 (2)
O2w—H21···S1iii0.84 (1)2.45 (1)3.279 (1)169 (2)
O2w—H22···S1iv0.84 (1)2.49 (1)3.292 (1)162 (2)
N2—H2n···O2wv0.86 (1)2.13 (1)2.965 (2)166 (2)
N3—H3n···O2vi0.86 (1)2.26 (2)2.934 (2)136 (2)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x1, y, z; (iii) x2, y1, z; (iv) x1, y1, z; (v) x+1, y+1/2, z; (vi) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H13N3O3S·2H2O
Mr291.33
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)4.6645 (4), 10.4006 (9), 13.5381 (11)
β (°) 98.674 (1)
V3)649.27 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.923, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
6232, 2937, 2826
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.03
No. of reflections2937
No. of parameters208
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.19
Absolute structureFlack (1983), 1370 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (1)1.99 (2)2.722 (2)144 (2)
O2—H2o···O1i0.83 (1)2.27 (2)2.955 (2)140 (2)
O3—H3o···O1W0.85 (2)1.76 (2)2.598 (2)174 (2)
O1w—H11···O2w0.84 (1)1.94 (1)2.785 (2)177 (3)
O1w—H12···O3ii0.84 (1)2.22 (1)3.002 (2)155 (2)
O2w—H21···S1iii0.84 (1)2.45 (1)3.279 (1)169 (2)
O2w—H22···S1iv0.84 (1)2.49 (1)3.292 (1)162 (2)
N2—H2n···O2wv0.86 (1)2.13 (1)2.965 (2)166 (2)
N3—H3n···O2vi0.86 (1)2.26 (2)2.934 (2)136 (2)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x1, y, z; (iii) x2, y1, z; (iv) x1, y1, z; (v) x+1, y+1/2, z; (vi) x+2, y+1/2, z+1.
 

Acknowledgements

We thank the University of Malaya (PS354/2009) and MOHE (FRGS-FP001/2009) for supporting this study. HBS also thanks the Libyan People's Bureau in Malaysia for a scholarship.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShawish, H. B., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o1151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds