metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-sulfato-bis­­[di­aqua­(1H-imidazo[4,5-f][1,10]phenanthroline)iron(II)] dihydrate

aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, People's Republic of China
*Correspondence e-mail: shenlin@fjnu.edu.cn

(Received 1 August 2010; accepted 12 August 2010; online 18 August 2010)

The title dinuclear FeII complex, [Fe2(SO4)2(C13H8N4)2(H2O)4]·2H2O, is centrosymmetric. Two sulfate anions bridge two FeII cations to form the binuclear complex. Each FeII cation is coordinated by two N atoms from a 1H-imidazo[4,5-f][1,10]phenanthroline (IP) ligand, two O atoms from two sulfate anions and two water mol­ecules in a distorted octa­hedral geometry. Extensive O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonding is present in the crystal structure. Weak ππ stacking is observed between parallel IP ring systems, the face-to-face separation being 3.428 (14) Å.

Related literature

For metal complexes with the 1H-imidazo[4,5-f][1,10]phenanthroline (IP) ligand, see: Liu et al. (2009[Liu, J.-Q., Zhang, Y.-N., Wang, Y.-Y., Jin, J.-C., Lermontova, E. K. & Shi, Q.-Z. (2009). Dalton Trans. pp. 5365-5378.]); Stephenson et al. (2008[Stephenson, M. D., Prior, T. J. & Hardie, M. J. (2008). Cryst. Growth Des. 8, 643-653.]); Wu et al. (1997[Wu, J.-Z., Ye, B.-H., Wang, L., Ji, L.-N., Zhou, J.-Y., Li, R.-H. & Zhou, Z.-Y. (1997). J. Chem. Soc. Dalton Trans. pp. 1395-1401.]); Yang et al. (2010[Yang, M.-X., Lin, S., Zheng, S.-N., Chen, X.-H. & Chen, L.-J. (2010). Inorg. Chem. Commun. 13, 1043-1046.]); Yu (2009[Yu, J. (2009). Acta Cryst. E65, m618.]). For the synthesis of IP, see: Wu et al. (1997[Wu, J.-Z., Ye, B.-H., Wang, L., Ji, L.-N., Zhou, J.-Y., Li, R.-H. & Zhou, Z.-Y. (1997). J. Chem. Soc. Dalton Trans. pp. 1395-1401.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(SO4)2(C13H8N4)2(H2O)4]·2H2O

  • Mr = 852.38

  • Monoclinic, P 21 /c

  • a = 10.2879 (9) Å

  • b = 9.0738 (8) Å

  • c = 17.0089 (16) Å

  • β = 98.892 (5)°

  • V = 1568.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.673, Tmax = 1.000

  • 11834 measured reflections

  • 3500 independent reflections

  • 2884 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.05

  • 3500 reflections

  • 259 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N1 2.175 (2)
Fe1—N2 2.172 (2)
Fe1—O1 2.0865 (17)
Fe1—O2i 2.1065 (18)
Fe1—O5 2.197 (2)
Fe1—O6 2.108 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O4ii 0.86 2.05 2.891 (3) 164
O5—H1⋯N3iii 0.86 (4) 2.00 (4) 2.807 (3) 157 (4)
O5—H2⋯O3 0.84 (2) 1.97 (2) 2.773 (3) 159 (2)
O6—H3⋯O3i 0.84 (3) 1.93 (2) 2.706 (3) 152 (3)
O6—H4⋯O7 0.84 (2) 1.79 (2) 2.633 (3) 178 (4)
O7—H5⋯O4iv 0.84 (2) 1.99 (2) 2.803 (3) 163 (3)
O7—H6⋯O3v 0.84 (2) 1.99 (2) 2.823 (3) 169 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+2, -z; (iv) -x+1, -y+2, -z; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transitional metal complexes of 1,10-Phenanthroline's derivatives still continue to attract intense interest not only because of their fascinating architectures but also because of the intriguing properties, such as magnetic, biological activity and optical properties. The IP ligand,as one of 1,10-Phenanthroline's derivatives, has recently gained a lot of interest with respect to synthesis of its novel metal compounds. It has been used to construct coordination frameworks by the direct interaction with metal ions or as secondary ligands to form discrete polynuclear, one-dimensional, two-dimensional and three-dimensional coordination networks. Its metal complexes are focused on Ru, Co, Ni, Cd, Cu, Mn and Zn complexes (Liu et al., 2009; Stephenson et al., 2008; Wu et al., 1997; Yang et al., 2010; Yu, 2009;). As an extension of the work on the structural characterization of IP complexes, the preparation and crystal structure of the title FeII complex is reported here.

In centrosymmetric dinuclear complex, the sulfate acts as an O—S—O bridge across two FeII cation, determining the formation of a dimer (Fig. 1).The FeII cation has a distorted octahedral coordination completed by two nitrogen atoms from one IP ligand, two oxygen atoms from water and two oxygen atoms from two sulfuric anions. The equatorial plane of the octahedron is defined by N1, O6, O2, O5 around Fe1, and the axial coordination sites are occupied by N2 and O1 atoms.

Strong hydrogen bonds exist in the structure (Table 2). The complicated three-dimensional hydrogen bonding network is shown in Fig. 2. The uncoordinated water molecular is a hydrogen bond acceptor from the coordinated water and a hydrogen bond donor to two O atoms of two sulfuric anions in two neighboring [Fe2(SO4)2(IP)2(H2O)2] species. The [Fe2(SO4)2(IP)2(H2O)2] molecules also form hydrogen bonds between themselves through O—H···N and N—H···O interactions from the imidazolyl ring. So [Fe2(SO4)2(C13H8N4)2(H2O)2] molecules and the uncoordinated water are connected by O—H···O, O—H···N and N—H···O hydrogen bonds into a three-dimensional network structure. There is also a π-π stacking interaction between the IP ligands of the neighboring [Fe2(SO4)2(IP)2(H2O)2] species with an interplanar separation of about 3.428 (14) Å [symmetry code = -x, 2 - y, -z].

Related literature top

For metal complexes with the 1H-imidazo[4,5-f][1,10]phenanthroline (IP) ligand, see: Liu et al. (2009); Stephenson et al. (2008); Wu et al. (1997); Yang et al. (2010); Yu (2009). For the synthesis of IP, see: Wu et al. (1997).

Experimental top

The IP was synthesized according to reference of Wu et al. (1997). A mixture of FeSO4.7H2O, benzene-1,4-dicarboxylic acid, IP and H2O in a molar ratio 1:1:1:556 was stirred for 1 h, then sealed in an 18 ml Teflon-lined stainless steel reactor and heated for 3 d at 433 K and autogeneous pressure. After allowing the reaction mixture to cool down to room temperature, yellow crystals were obtained.

Refinement top

Water H atoms were located in a difference Fourier map and refined isotropically with restrained O—H distance = 0.84 (1) Å and H···H distance = 1.44 (1) Å. The other H atoms were generated geometrically with C—H = 0.93 and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Structure description top

Transitional metal complexes of 1,10-Phenanthroline's derivatives still continue to attract intense interest not only because of their fascinating architectures but also because of the intriguing properties, such as magnetic, biological activity and optical properties. The IP ligand,as one of 1,10-Phenanthroline's derivatives, has recently gained a lot of interest with respect to synthesis of its novel metal compounds. It has been used to construct coordination frameworks by the direct interaction with metal ions or as secondary ligands to form discrete polynuclear, one-dimensional, two-dimensional and three-dimensional coordination networks. Its metal complexes are focused on Ru, Co, Ni, Cd, Cu, Mn and Zn complexes (Liu et al., 2009; Stephenson et al., 2008; Wu et al., 1997; Yang et al., 2010; Yu, 2009;). As an extension of the work on the structural characterization of IP complexes, the preparation and crystal structure of the title FeII complex is reported here.

In centrosymmetric dinuclear complex, the sulfate acts as an O—S—O bridge across two FeII cation, determining the formation of a dimer (Fig. 1).The FeII cation has a distorted octahedral coordination completed by two nitrogen atoms from one IP ligand, two oxygen atoms from water and two oxygen atoms from two sulfuric anions. The equatorial plane of the octahedron is defined by N1, O6, O2, O5 around Fe1, and the axial coordination sites are occupied by N2 and O1 atoms.

Strong hydrogen bonds exist in the structure (Table 2). The complicated three-dimensional hydrogen bonding network is shown in Fig. 2. The uncoordinated water molecular is a hydrogen bond acceptor from the coordinated water and a hydrogen bond donor to two O atoms of two sulfuric anions in two neighboring [Fe2(SO4)2(IP)2(H2O)2] species. The [Fe2(SO4)2(IP)2(H2O)2] molecules also form hydrogen bonds between themselves through O—H···N and N—H···O interactions from the imidazolyl ring. So [Fe2(SO4)2(C13H8N4)2(H2O)2] molecules and the uncoordinated water are connected by O—H···O, O—H···N and N—H···O hydrogen bonds into a three-dimensional network structure. There is also a π-π stacking interaction between the IP ligands of the neighboring [Fe2(SO4)2(IP)2(H2O)2] species with an interplanar separation of about 3.428 (14) Å [symmetry code = -x, 2 - y, -z].

For metal complexes with the 1H-imidazo[4,5-f][1,10]phenanthroline (IP) ligand, see: Liu et al. (2009); Stephenson et al. (2008); Wu et al. (1997); Yang et al. (2010); Yu (2009). For the synthesis of IP, see: Wu et al. (1997).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complound, showing 30% probability displacement ellipsoids with atoms numbering. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The three-dimensional hydrogen bonding network along the b axis.
Di-µ-sulfato-bis[diaqua(1H-imidazo[4,5-f][1,10]phenanthroline)iron(II)] dihydrate top
Crystal data top
[Fe2(SO4)2(C13H8N4)2(H2O)4]·2H2OF(000) = 872
Mr = 852.38Dx = 1.805 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3717 reflections
a = 10.2879 (9) Åθ = 3.0–27.5°
b = 9.0738 (8) ŵ = 1.14 mm1
c = 17.0089 (16) ÅT = 293 K
β = 98.892 (5)°Prism, yellow
V = 1568.7 (2) Å30.20 × 0.20 × 0.10 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
3500 independent reflections
Radiation source: fine-focus sealed tube2884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scanh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 1111
Tmin = 0.673, Tmax = 1.000l = 2221
11834 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.6512P]
where P = (Fo2 + 2Fc2)/3
3500 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.44 e Å3
9 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Fe2(SO4)2(C13H8N4)2(H2O)4]·2H2OV = 1568.7 (2) Å3
Mr = 852.38Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.2879 (9) ŵ = 1.14 mm1
b = 9.0738 (8) ÅT = 293 K
c = 17.0089 (16) Å0.20 × 0.20 × 0.10 mm
β = 98.892 (5)°
Data collection top
Rigaku Mercury CCD
diffractometer
3500 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
2884 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 1.000Rint = 0.040
11834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0409 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.44 e Å3
3500 reflectionsΔρmin = 0.47 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.31610 (3)0.68065 (4)0.03898 (2)0.02489 (13)
S10.53353 (6)0.60216 (6)0.11438 (4)0.02472 (16)
O10.46200 (17)0.71051 (18)0.05947 (11)0.0298 (4)
O20.63573 (18)0.53106 (19)0.07634 (12)0.0348 (4)
O30.44027 (17)0.48994 (19)0.13588 (11)0.0314 (4)
O40.5938 (2)0.6791 (2)0.18664 (12)0.0402 (5)
O50.20448 (19)0.5633 (2)0.04180 (11)0.0347 (4)
O60.4329 (2)0.7669 (2)0.11949 (14)0.0465 (5)
O70.4090 (4)1.0134 (3)0.20216 (16)0.0697 (8)
N10.2437 (2)0.9048 (2)0.03242 (12)0.0256 (5)
N20.1277 (2)0.6775 (2)0.11677 (12)0.0261 (5)
N30.1442 (2)1.2057 (2)0.13981 (14)0.0339 (5)
N40.2454 (2)1.0126 (2)0.20243 (13)0.0329 (5)
H4B0.30550.96140.23080.040*
C10.3070 (2)1.0173 (3)0.00618 (16)0.0297 (6)
H1A0.38911.00020.03620.036*
C20.2562 (3)1.1597 (3)0.00372 (17)0.0333 (6)
H2B0.30471.23580.03070.040*
C30.1336 (3)1.1870 (3)0.03888 (16)0.0301 (6)
H3C0.09711.28090.03990.036*
C40.0648 (2)1.0710 (3)0.08061 (15)0.0252 (5)
C50.0639 (2)1.0827 (3)0.12661 (15)0.0265 (5)
C60.1251 (2)0.9628 (3)0.16564 (14)0.0264 (5)
C70.0665 (2)0.8197 (3)0.16491 (14)0.0244 (5)
C80.1246 (3)0.6951 (3)0.20433 (16)0.0324 (6)
H8A0.20790.70070.23450.039*
C90.0566 (3)0.5653 (3)0.19772 (17)0.0339 (6)
H9A0.09400.48040.22220.041*
C100.0698 (3)0.5616 (3)0.15377 (16)0.0307 (6)
H10A0.11560.47280.15040.037*
C110.0604 (2)0.8071 (3)0.12085 (14)0.0235 (5)
C120.1247 (2)0.9309 (2)0.07685 (14)0.0225 (5)
C130.2508 (3)1.1563 (3)0.18553 (17)0.0373 (7)
H13A0.32261.21560.20420.045*
H20.266 (2)0.521 (3)0.0720 (16)0.061 (11)*
H30.484 (3)0.705 (2)0.1358 (18)0.045 (9)*
H10.165 (4)0.631 (4)0.064 (2)0.113 (19)*
H50.410 (4)1.1018 (18)0.187 (2)0.087 (15)*
H40.425 (4)0.847 (2)0.145 (2)0.085 (14)*
H60.413 (4)1.001 (4)0.2509 (9)0.080 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0230 (2)0.02412 (19)0.0261 (2)0.00472 (14)0.00072 (15)0.00128 (14)
S10.0243 (3)0.0228 (3)0.0247 (3)0.0051 (2)0.0034 (2)0.0018 (2)
O10.0280 (9)0.0261 (8)0.0323 (10)0.0032 (7)0.0052 (8)0.0037 (7)
O20.0306 (10)0.0254 (8)0.0496 (12)0.0044 (8)0.0099 (9)0.0017 (9)
O30.0305 (9)0.0295 (9)0.0342 (10)0.0033 (8)0.0046 (8)0.0048 (8)
O40.0499 (12)0.0330 (10)0.0315 (10)0.0058 (9)0.0135 (9)0.0075 (8)
O50.0322 (10)0.0370 (10)0.0345 (11)0.0040 (9)0.0038 (9)0.0017 (9)
O60.0586 (14)0.0318 (10)0.0556 (14)0.0146 (10)0.0291 (12)0.0116 (10)
O70.137 (3)0.0325 (12)0.0432 (15)0.0165 (15)0.0272 (17)0.0078 (11)
N10.0226 (10)0.0277 (10)0.0254 (11)0.0019 (8)0.0008 (9)0.0009 (9)
N20.0263 (10)0.0248 (10)0.0258 (11)0.0028 (8)0.0000 (9)0.0003 (9)
N30.0335 (12)0.0325 (11)0.0342 (13)0.0094 (10)0.0004 (10)0.0014 (10)
N40.0255 (11)0.0399 (12)0.0304 (12)0.0024 (10)0.0050 (9)0.0004 (10)
C10.0215 (12)0.0322 (13)0.0331 (14)0.0005 (10)0.0023 (11)0.0029 (11)
C20.0327 (14)0.0277 (12)0.0380 (15)0.0059 (11)0.0006 (12)0.0045 (12)
C30.0341 (14)0.0225 (11)0.0332 (14)0.0016 (10)0.0037 (12)0.0001 (10)
C40.0258 (12)0.0255 (11)0.0241 (12)0.0031 (10)0.0035 (10)0.0017 (10)
C50.0278 (12)0.0257 (12)0.0254 (13)0.0066 (10)0.0020 (10)0.0020 (10)
C60.0227 (12)0.0337 (13)0.0220 (12)0.0049 (10)0.0013 (10)0.0013 (10)
C70.0231 (12)0.0268 (12)0.0230 (12)0.0024 (10)0.0027 (10)0.0000 (10)
C80.0245 (12)0.0376 (14)0.0330 (15)0.0006 (11)0.0020 (11)0.0037 (11)
C90.0359 (14)0.0303 (13)0.0349 (15)0.0052 (12)0.0034 (12)0.0071 (11)
C100.0336 (14)0.0247 (11)0.0333 (14)0.0024 (11)0.0037 (12)0.0009 (11)
C110.0227 (11)0.0260 (11)0.0219 (12)0.0025 (10)0.0036 (10)0.0003 (9)
C120.0219 (11)0.0229 (11)0.0225 (12)0.0031 (9)0.0027 (10)0.0004 (9)
C130.0344 (15)0.0424 (15)0.0325 (15)0.0172 (12)0.0027 (12)0.0040 (12)
Geometric parameters (Å, º) top
Fe1—N12.175 (2)N4—C131.338 (4)
Fe1—N22.172 (2)N4—C61.373 (3)
Fe1—O12.0865 (17)N4—H4B0.8600
Fe1—O2i2.1065 (18)C1—C21.392 (4)
Fe1—O52.197 (2)C1—H1A0.9300
Fe1—O62.108 (2)C2—C31.377 (4)
S1—O41.4649 (18)C2—H2B0.9300
S1—O21.4665 (19)C3—C41.399 (3)
S1—O11.4723 (17)C3—H3C0.9300
S1—O31.4831 (19)C4—C121.411 (3)
O5—H20.84 (2)C4—C51.433 (3)
O5—H10.86 (4)C5—C61.375 (3)
O6—H30.84 (3)C6—C71.431 (3)
O6—H40.84 (2)C7—C81.400 (3)
O7—H50.842 (19)C7—C111.405 (3)
O7—H60.844 (18)C8—C91.366 (4)
N1—C11.329 (3)C8—H8A0.9300
N1—C121.356 (3)C9—C101.397 (4)
N2—C101.320 (3)C9—H9A0.9300
N2—C111.361 (3)C10—H10A0.9300
N3—C131.320 (4)C11—C121.452 (3)
N3—C51.387 (3)C13—H13A0.9300
O1—Fe1—O2i100.77 (7)N1—C1—C2123.0 (2)
O1—Fe1—O693.52 (9)N1—C1—H1A118.5
O2i—Fe1—O687.60 (8)C2—C1—H1A118.5
O1—Fe1—N2162.62 (8)C3—C2—C1119.5 (2)
O2i—Fe1—N291.93 (7)C3—C2—H2B120.3
O6—Fe1—N298.86 (9)C1—C2—H2B120.3
O1—Fe1—N192.70 (7)C2—C3—C4118.8 (2)
O2i—Fe1—N1165.19 (8)C2—C3—H3C120.6
O6—Fe1—N185.43 (8)C4—C3—H3C120.6
N2—Fe1—N176.29 (7)C3—C4—C12118.1 (2)
O1—Fe1—O586.66 (7)C3—C4—C5125.0 (2)
O2i—Fe1—O585.22 (8)C12—C4—C5116.9 (2)
O6—Fe1—O5172.72 (8)C6—C5—N3110.0 (2)
N2—Fe1—O582.59 (8)C6—C5—C4121.4 (2)
N1—Fe1—O5101.83 (8)N3—C5—C4128.7 (2)
O4—S1—O2109.92 (12)N4—C6—C5105.8 (2)
O4—S1—O1108.61 (10)N4—C6—C7130.6 (2)
O2—S1—O1109.63 (11)C5—C6—C7123.5 (2)
O4—S1—O3109.03 (12)C8—C7—C11118.8 (2)
O2—S1—O3110.00 (11)C8—C7—C6125.5 (2)
O1—S1—O3109.62 (10)C11—C7—C6115.7 (2)
S1—O1—Fe1130.50 (11)C9—C8—C7118.8 (2)
S1—O2—Fe1i138.81 (12)C9—C8—H8A120.6
Fe1—O5—H2100 (2)C7—C8—H8A120.6
Fe1—O5—H1105 (3)C8—C9—C10119.2 (2)
H2—O5—H1114.9 (18)C8—C9—H9A120.4
Fe1—O6—H3114.5 (19)C10—C9—H9A120.4
Fe1—O6—H4129 (2)N2—C10—C9123.4 (2)
H3—O6—H4114.8 (17)N2—C10—H10A118.3
H5—O7—H6115.9 (18)C9—C10—H10A118.3
C1—N1—C12118.2 (2)N2—C11—C7121.4 (2)
C1—N1—Fe1126.73 (16)N2—C11—C12117.0 (2)
C12—N1—Fe1114.93 (15)C7—C11—C12121.6 (2)
C10—N2—C11118.4 (2)N1—C12—C4122.2 (2)
C10—N2—Fe1126.54 (16)N1—C12—C11116.9 (2)
C11—N2—Fe1114.76 (15)C4—C12—C11120.8 (2)
C13—N3—C5104.0 (2)N3—C13—N4113.5 (2)
C13—N4—C6106.7 (2)N3—C13—H13A123.2
C13—N4—H4B126.7N4—C13—H13A123.2
C6—N4—H4B126.7
O4—S1—O1—Fe1162.26 (14)C3—C4—C5—N30.5 (4)
O2—S1—O1—Fe177.62 (16)C12—C4—C5—N3179.7 (3)
O3—S1—O1—Fe143.22 (18)C13—N4—C6—C50.8 (3)
O2i—Fe1—O1—S128.46 (16)C13—N4—C6—C7178.7 (3)
O6—Fe1—O1—S1116.68 (15)N3—C5—C6—N40.8 (3)
N2—Fe1—O1—S1107.8 (2)C4—C5—C6—N4179.4 (2)
N1—Fe1—O1—S1157.73 (15)N3—C5—C6—C7178.8 (2)
O5—Fe1—O1—S156.03 (15)C4—C5—C6—C71.0 (4)
O4—S1—O2—Fe1i123.58 (18)N4—C6—C7—C80.1 (5)
O1—S1—O2—Fe1i117.10 (18)C5—C6—C7—C8179.4 (3)
O3—S1—O2—Fe1i3.5 (2)N4—C6—C7—C11179.6 (3)
O1—Fe1—N1—C118.0 (2)C5—C6—C7—C110.2 (4)
O2i—Fe1—N1—C1137.6 (3)C11—C7—C8—C90.8 (4)
O6—Fe1—N1—C175.3 (2)C6—C7—C8—C9179.6 (3)
N2—Fe1—N1—C1175.6 (2)C7—C8—C9—C101.7 (4)
O5—Fe1—N1—C1105.1 (2)C11—N2—C10—C90.7 (4)
O1—Fe1—N1—C12166.31 (17)Fe1—N2—C10—C9174.5 (2)
O2i—Fe1—N1—C1238.2 (4)C8—C9—C10—N21.0 (4)
O6—Fe1—N1—C12100.37 (18)C10—N2—C11—C71.6 (4)
N2—Fe1—N1—C120.08 (17)Fe1—N2—C11—C7176.12 (19)
O5—Fe1—N1—C1279.15 (18)C10—N2—C11—C12177.6 (2)
O1—Fe1—N2—C10123.8 (3)Fe1—N2—C11—C123.1 (3)
O2i—Fe1—N2—C1013.4 (2)C8—C7—C11—N20.9 (4)
O6—Fe1—N2—C10101.3 (2)C6—C7—C11—N2178.7 (2)
N1—Fe1—N2—C10175.7 (2)C8—C7—C11—C12178.3 (2)
O5—Fe1—N2—C1071.5 (2)C6—C7—C11—C122.1 (4)
O1—Fe1—N2—C1150.2 (3)C1—N1—C12—C42.6 (4)
O2i—Fe1—N2—C11172.64 (18)Fe1—N1—C12—C4178.72 (19)
O6—Fe1—N2—C1184.77 (19)C1—N1—C12—C11177.6 (2)
N1—Fe1—N2—C111.72 (17)Fe1—N1—C12—C111.5 (3)
O5—Fe1—N2—C11102.43 (18)C3—C4—C12—N12.2 (4)
C12—N1—C1—C20.8 (4)C5—C4—C12—N1177.0 (2)
Fe1—N1—C1—C2176.3 (2)C3—C4—C12—C11178.0 (2)
N1—C1—C2—C31.5 (4)C5—C4—C12—C112.7 (4)
C1—C2—C3—C41.8 (4)N2—C11—C12—N13.1 (3)
C2—C3—C4—C120.1 (4)C7—C11—C12—N1176.1 (2)
C2—C3—C4—C5179.3 (3)N2—C11—C12—C4177.1 (2)
C13—N3—C5—C60.4 (3)C7—C11—C12—C43.7 (4)
C13—N3—C5—C4179.8 (3)C5—N3—C13—N40.1 (3)
C3—C4—C5—C6179.7 (3)C6—N4—C13—N30.6 (3)
C12—C4—C5—C60.5 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O4ii0.862.052.891 (3)164
O5—H1···N3iii0.86 (4)2.00 (4)2.807 (3)157 (4)
O5—H2···O30.84 (2)1.97 (2)2.773 (3)159 (2)
O6—H3···O3i0.84 (3)1.93 (2)2.706 (3)152 (3)
O6—H4···O70.84 (2)1.79 (2)2.633 (3)178 (4)
O7—H5···O4iv0.84 (2)1.99 (2)2.803 (3)163 (3)
O7—H6···O3v0.84 (2)1.99 (2)2.823 (3)169 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+3/2, z1/2; (iii) x, y+2, z; (iv) x+1, y+2, z; (v) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe2(SO4)2(C13H8N4)2(H2O)4]·2H2O
Mr852.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.2879 (9), 9.0738 (8), 17.0089 (16)
β (°) 98.892 (5)
V3)1568.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.673, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11834, 3500, 2884
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.05
No. of reflections3500
No. of parameters259
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.47

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008, SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—N12.175 (2)Fe1—O2i2.1065 (18)
Fe1—N22.172 (2)Fe1—O52.197 (2)
Fe1—O12.0865 (17)Fe1—O62.108 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O4ii0.862.052.891 (3)164
O5—H1···N3iii0.86 (4)2.00 (4)2.807 (3)157 (4)
O5—H2···O30.84 (2)1.97 (2)2.773 (3)159 (2)
O6—H3···O3i0.84 (3)1.93 (2)2.706 (3)152 (3)
O6—H4···O70.84 (2)1.79 (2)2.633 (3)178 (4)
O7—H5···O4iv0.842 (19)1.988 (16)2.803 (3)163 (3)
O7—H6···O3v0.844 (18)1.990 (19)2.823 (3)169 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+3/2, z1/2; (iii) x, y+2, z; (iv) x+1, y+2, z; (v) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20771024), the Natural Science Foundation of Fujian Province (grant No. 2008 J0142) and the Key Project Fund of Science and Technology of Fujian Province, China (grant No. 2008I0013).

References

First citationLiu, J.-Q., Zhang, Y.-N., Wang, Y.-Y., Jin, J.-C., Lermontova, E. K. & Shi, Q.-Z. (2009). Dalton Trans. pp. 5365–5378.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephenson, M. D., Prior, T. J. & Hardie, M. J. (2008). Cryst. Growth Des. 8, 643–653.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J.-Z., Ye, B.-H., Wang, L., Ji, L.-N., Zhou, J.-Y., Li, R.-H. & Zhou, Z.-Y. (1997). J. Chem. Soc. Dalton Trans. pp. 1395–1401.  CSD CrossRef Web of Science Google Scholar
First citationYang, M.-X., Lin, S., Zheng, S.-N., Chen, X.-H. & Chen, L.-J. (2010). Inorg. Chem. Commun. 13, 1043–1046.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, J. (2009). Acta Cryst. E65, m618.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds