metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(S)-2-methyl­piperazine-1,4-diium [[tri­chloridobismuthate(III)]-di-μ-chlorido]]

aDepartment of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayrzl@yahoo.com.cn

(Received 2 August 2010; accepted 5 August 2010; online 11 August 2010)

In the crystal structure of the title compound, {(C5H14N2)[BiCl5]}n, the BiIII cation is coordinated by six Cl anions in a distorted octa­hedral geometry. Two Cl anions bridge neighboring BiIII cations, forming a zigzag polymeric chain along the a axis. The discrete methylpiperazinediium cation adopts a normal chair conformation and is linked to the polymeric chains by N—H⋯Cl hydrogen bonding.

Related literature

For transition-metal complexes of 2-methyl­piperazine, see: Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14N2)[BiCl5]

  • Mr = 488.41

  • Orthorhombic, P 21 21 21

  • a = 7.719 (1) Å

  • b = 10.8997 (16) Å

  • c = 16.302 (3) Å

  • V = 1371.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.79 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.24 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.8, Tmax = 0.9

  • 14082 measured reflections

  • 3150 independent reflections

  • 3009 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.066

  • S = 1.03

  • 3150 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 1.57 e Å−3

  • Δρmin = −1.63 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1327 Friedel pairs

  • Flack parameter: −0.021 (9)

Table 1
Selected bond lengths (Å)

Bi1—Cl1 2.8245 (18)
Bi1—Cl2 2.597 (2)
Bi1—Cl3 2.561 (2)
Bi1—Cl4 2.6135 (18)
Bi1—Cl5 2.875 (2)
Bi1—Cl5i 2.820 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H6A⋯Cl1ii 0.97 2.30 3.262 (7) 171
N1—H6B⋯Cl2 0.97 2.48 3.255 (7) 137
N1—H6B⋯Cl3 0.97 2.61 3.244 (6) 124
N2—H7A⋯Cl4iii 0.97 2.33 3.242 (7) 156
N2—H7B⋯Cl1iv 0.97 2.25 3.184 (6) 161
Symmetry codes: (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iv) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chiral 2-methylpiperazine has shown tremendous scope in the synthesis of transition metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of coordination chemistry. we report here the crystal structure of the title compound.

In the crystal of the title compound, C5H14N2.BiCl5 (Fig.1), the Bi3+ cations are coordinated by six Cl- anions with distances ranging from 2.561 (2) to 2.875 (2) Å (Table 1). The values of bond angles Cl–Bi–Cl are near to 90 or 180°, which make the [BiCl6]3- octahedral geometry. The protonated piperazine ring adopts a chair conformation. The Bi3+ cations conneted through bridging chlorine atom to form a one-dimensional chain structure. The crystal structure is stabilized by intermolecular N—H···Cl hydrogen bonds (Table 2).

Related literature top

For transition-metal complexes of 2-methylpiperazine, see: Ye et al. (2009).

Experimental top

A mixture of (S)-2-methylpiperazine (2 mmol, 0.2 g), BiCl3 (2 mmol, 0.62 g) and 20% aqueous HCl (20 ml) in 10 ml water was heated at 353 K for 0.5 h. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed after 8 d.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.96 or 0.98 Å and N—H = 0.97 Å, and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Structure description top

The chiral 2-methylpiperazine has shown tremendous scope in the synthesis of transition metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of coordination chemistry. we report here the crystal structure of the title compound.

In the crystal of the title compound, C5H14N2.BiCl5 (Fig.1), the Bi3+ cations are coordinated by six Cl- anions with distances ranging from 2.561 (2) to 2.875 (2) Å (Table 1). The values of bond angles Cl–Bi–Cl are near to 90 or 180°, which make the [BiCl6]3- octahedral geometry. The protonated piperazine ring adopts a chair conformation. The Bi3+ cations conneted through bridging chlorine atom to form a one-dimensional chain structure. The crystal structure is stabilized by intermolecular N—H···Cl hydrogen bonds (Table 2).

For transition-metal complexes of 2-methylpiperazine, see: Ye et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing viewed along the a axis. Hydrogen bonds are drawn as dashed lines
catena-Poly[(S)-2-methylpiperazine-1,4-diium [[trichloridobismuthate(III)]-di-µ-chlorido]] top
Crystal data top
(C5H14N2)[BiCl5]F(000) = 904
Mr = 488.41Dx = 2.365 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3009 reflections
a = 7.719 (1) Åθ = 2.5–27.5°
b = 10.8997 (16) ŵ = 13.79 mm1
c = 16.302 (3) ÅT = 293 K
V = 1371.6 (3) Å3Block, colorless
Z = 40.28 × 0.26 × 0.24 mm
Data collection top
Rigaku SCXmini
diffractometer
3150 independent reflections
Radiation source: fine-focus sealed tube3009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 910
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.8, Tmax = 0.9l = 2121
14082 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max = 0.001
S = 1.03Δρmax = 1.57 e Å3
3150 reflectionsΔρmin = 1.63 e Å3
120 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0300 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1327 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.021 (9)
Crystal data top
(C5H14N2)[BiCl5]V = 1371.6 (3) Å3
Mr = 488.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.719 (1) ŵ = 13.79 mm1
b = 10.8997 (16) ÅT = 293 K
c = 16.302 (3) Å0.28 × 0.26 × 0.24 mm
Data collection top
Rigaku SCXmini
diffractometer
3150 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3009 reflections with I > 2σ(I)
Tmin = 0.8, Tmax = 0.9Rint = 0.089
14082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.066Δρmax = 1.57 e Å3
S = 1.03Δρmin = 1.63 e Å3
3150 reflectionsAbsolute structure: Flack (1983), 1327 Friedel pairs
120 parametersAbsolute structure parameter: 0.021 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.33206 (3)0.57633 (2)0.946205 (14)0.02412 (11)
C10.1786 (10)0.1571 (6)0.7856 (4)0.0296 (15)
H10.07370.17330.81770.036*
C20.1931 (12)0.0212 (7)0.7715 (5)0.0391 (19)
H2A0.08990.00770.74360.047*
H2B0.29170.00490.73620.047*
C30.3672 (10)0.0026 (8)0.8968 (6)0.049 (2)
H3A0.47200.02010.86610.058*
H3B0.37400.04560.94870.058*
C40.3548 (12)0.1343 (8)0.9124 (4)0.041 (2)
H4A0.25660.15120.94770.050*
H4B0.45890.16250.93990.050*
C50.1685 (13)0.2283 (9)0.7064 (5)0.059 (2)
H5A0.15390.31390.71830.089*
H5B0.07170.19970.67480.089*
H5C0.27340.21660.67580.089*
Cl10.3347 (3)0.68787 (17)0.78982 (11)0.0414 (4)
Cl20.0920 (2)0.4253 (2)0.89851 (12)0.0378 (4)
Cl30.5685 (2)0.4239 (2)0.90419 (13)0.0389 (4)
Cl40.3272 (3)0.47345 (19)1.09100 (11)0.0412 (4)
Cl50.0888 (3)0.7630 (2)0.99374 (14)0.0414 (5)
N10.3338 (8)0.2005 (5)0.8340 (4)0.0331 (13)
H6A0.43760.18950.80120.040*
H6B0.32110.28750.84490.040*
N20.2143 (8)0.0475 (5)0.8499 (4)0.0387 (16)
H7A0.11080.03630.88280.046*
H7B0.22700.13450.83880.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.02674 (15)0.02120 (14)0.02443 (15)0.00003 (11)0.00047 (11)0.00161 (10)
C10.033 (3)0.030 (4)0.026 (3)0.001 (3)0.002 (3)0.005 (3)
C20.054 (5)0.032 (4)0.031 (4)0.013 (4)0.001 (4)0.007 (3)
C30.045 (5)0.040 (5)0.060 (5)0.004 (4)0.017 (4)0.021 (4)
C40.051 (5)0.045 (5)0.028 (4)0.013 (4)0.011 (4)0.011 (3)
C50.062 (5)0.076 (7)0.040 (5)0.004 (7)0.000 (5)0.023 (5)
Cl10.0513 (10)0.0414 (10)0.0316 (9)0.0075 (11)0.0079 (10)0.0036 (8)
Cl20.0344 (9)0.0359 (10)0.0432 (10)0.0050 (9)0.0056 (8)0.0058 (10)
Cl30.0326 (8)0.0350 (10)0.0490 (11)0.0048 (9)0.0058 (8)0.0045 (11)
Cl40.0382 (9)0.0521 (11)0.0333 (9)0.0029 (11)0.0032 (9)0.0123 (8)
Cl50.0440 (9)0.0356 (11)0.0446 (11)0.0132 (8)0.0096 (8)0.0003 (9)
N10.043 (3)0.026 (3)0.031 (3)0.005 (3)0.000 (3)0.002 (2)
N20.039 (3)0.024 (3)0.053 (4)0.002 (3)0.003 (3)0.001 (3)
Geometric parameters (Å, º) top
Bi1—Cl12.8245 (18)C3—C41.517 (12)
Bi1—Cl22.597 (2)C3—H3A0.9700
Bi1—Cl32.561 (2)C3—H3B0.9700
Bi1—Cl42.6135 (18)C4—N11.476 (9)
Bi1—Cl52.875 (2)C4—H4A0.9700
Bi1—Cl5i2.820 (2)C4—H4B0.9700
C1—C21.504 (10)C5—H5A0.9600
C1—C51.509 (10)C5—H5B0.9600
C1—N11.510 (10)C5—H5C0.9600
C1—H10.9800N1—H6A0.9700
C2—N21.490 (10)N1—H6B0.9700
C2—H2A0.9700N2—H7A0.9700
C2—H2B0.9700N2—H7B0.9700
C3—N21.489 (10)
Cl3—Bi1—Cl290.97 (6)C4—C3—H3A109.4
Cl3—Bi1—Cl488.48 (7)N2—C3—H3B109.4
Cl2—Bi1—Cl489.32 (7)C4—C3—H3B109.4
Cl3—Bi1—Cl5i89.71 (8)H3A—C3—H3B108.0
Cl2—Bi1—Cl5i177.10 (7)N1—C4—C3110.0 (6)
Cl4—Bi1—Cl5i87.88 (7)N1—C4—H4A109.7
Cl3—Bi1—Cl191.88 (7)C3—C4—H4A109.7
Cl2—Bi1—Cl190.44 (7)N1—C4—H4B109.7
Cl4—Bi1—Cl1179.57 (7)C3—C4—H4B109.7
Cl5i—Bi1—Cl192.35 (7)H4A—C4—H4B108.2
Cl3—Bi1—Cl5175.20 (8)C1—C5—H5A109.5
Cl2—Bi1—Cl593.63 (8)C1—C5—H5B109.5
Cl4—Bi1—Cl592.91 (7)H5A—C5—H5B109.5
Cl5i—Bi1—Cl585.753 (13)C1—C5—H5C109.5
Cl1—Bi1—Cl586.75 (6)H5A—C5—H5C109.5
C2—C1—C5112.3 (7)H5B—C5—H5C109.5
C2—C1—N1109.2 (7)Bi1ii—Cl5—Bi1172.74 (9)
C5—C1—N1109.0 (6)C4—N1—C1112.7 (6)
C2—C1—H1108.7C4—N1—H6A109.0
C5—C1—H1108.7C1—N1—H6A109.2
N1—C1—H1108.7C4—N1—H6B109.3
N2—C2—C1111.8 (6)C1—N1—H6B108.8
N2—C2—H2A109.3H6A—N1—H6B107.8
C1—C2—H2A109.3C3—N2—C2111.2 (6)
N2—C2—H2B109.3C3—N2—H7A109.1
C1—C2—H2B109.3C2—N2—H7A108.7
H2A—C2—H2B107.9C3—N2—H7B109.7
N2—C3—C4111.1 (7)C2—N2—H7B110.0
N2—C3—H3A109.4H7A—N2—H7B108.0
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x1/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6A···Cl1iii0.972.303.262 (7)171
N1—H6B···Cl20.972.483.255 (7)137
N1—H6B···Cl30.972.613.244 (6)124
N2—H7A···Cl4iv0.972.333.242 (7)156
N2—H7B···Cl1v0.972.253.184 (6)161
Symmetry codes: (iii) x+1, y1/2, z+3/2; (iv) x1/2, y+1/2, z+2; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula(C5H14N2)[BiCl5]
Mr488.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.719 (1), 10.8997 (16), 16.302 (3)
V3)1371.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)13.79
Crystal size (mm)0.28 × 0.26 × 0.24
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.8, 0.9
No. of measured, independent and
observed [I > 2σ(I)] reflections
14082, 3150, 3009
Rint0.089
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.066, 1.03
No. of reflections3150
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.57, 1.63
Absolute structureFlack (1983), 1327 Friedel pairs
Absolute structure parameter0.021 (9)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Bi1—Cl12.8245 (18)Bi1—Cl42.6135 (18)
Bi1—Cl22.597 (2)Bi1—Cl52.875 (2)
Bi1—Cl32.561 (2)Bi1—Cl5i2.820 (2)
Symmetry code: (i) x+1/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6A···Cl1ii0.972.303.262 (7)170.7
N1—H6B···Cl20.972.483.255 (7)136.8
N1—H6B···Cl30.972.613.244 (6)123.5
N2—H7A···Cl4iii0.972.333.242 (7)155.7
N2—H7B···Cl1iv0.972.253.184 (6)160.6
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+1/2, z+2; (iv) x, y1, z.
 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology, China.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds