organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­benzyl­­idene)-1-naphthyl­amine

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: ruitaozhu@126.com

(Received 23 July 2010; accepted 11 August 2010; online 18 August 2010)

The title compound, C17H12ClN, represents a trans isomer with respect to the C=N bond; the dihedral angle between the planes of the naphthyl and benzene groups is 66.53 (5)°.

Related literature

For general background on the properties of Schiff bases, see: Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]); Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]). For related structures, see: Harada et al. (2004[Harada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578-588.]); Tariq et al. (2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12ClN

  • Mr = 265.73

  • Monoclinic, P 21 /c

  • a = 12.8416 (13) Å

  • b = 14.8771 (15) Å

  • c = 7.1971 (8) Å

  • β = 92.857 (1)°

  • V = 1373.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS . University of Göttingen, Germany.]) Tmin = 0.925, Tmax = 0.949

  • 6607 measured reflections

  • 2421 independent reflections

  • 1489 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.127

  • S = 1.03

  • 2421 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff bases have been receiving considerable attention for many years, primarily due to their importance as ligands in metal complexes with special magnetic (Weber et al., 2007), catalytic (Chen et al., 2008) and biological properties (May et al.,2004).

As a part of our studies on synthesis and structural peculiarities of Schiff bases derived from naphthylamine and arylaldehydes, we determined the structure of the title compound (Fig. 1). The molecule represents a trans-isomer with respect to the C11N1 bond. The planes of the aromatic systems of the the naphthyl and benzene groups, C1–C10 and C12–C17 respectively, form dihedral angle of 66.53 (5)°.

Related literature top

For general background on the properties of Schiff bases, see: Layer (1963); Chen et al. (2008); May et al. (2004); Weber et al. (2007). For the structures of related compounds, see: Harada et al. (2004); Tariq et al. (2010).

Experimental top

1-Naphthylamine (0.72 g, 5 mmol) and 4-chlorobenzaldehyde (0.70 g, 5 mmol) were dissolved in ethanol (20 ml). The mixture was refluxed for 6 h, and then cooled to room temperature. The reaction mixture was filtered and the filter cake was recrystallized from ethyl alcohol (yield 80%).Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The Schiff bases have been receiving considerable attention for many years, primarily due to their importance as ligands in metal complexes with special magnetic (Weber et al., 2007), catalytic (Chen et al., 2008) and biological properties (May et al.,2004).

As a part of our studies on synthesis and structural peculiarities of Schiff bases derived from naphthylamine and arylaldehydes, we determined the structure of the title compound (Fig. 1). The molecule represents a trans-isomer with respect to the C11N1 bond. The planes of the aromatic systems of the the naphthyl and benzene groups, C1–C10 and C12–C17 respectively, form dihedral angle of 66.53 (5)°.

For general background on the properties of Schiff bases, see: Layer (1963); Chen et al. (2008); May et al. (2004); Weber et al. (2007). For the structures of related compounds, see: Harada et al. (2004); Tariq et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound; displacement ellipsoids are drawn at the 30% probability level.
N-(4-Chlorobenzylidene)-1-naphthylamine top
Crystal data top
C17H12ClNF(000) = 552
Mr = 265.73Dx = 1.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1396 reflections
a = 12.8416 (13) Åθ = 3.0–21.8°
b = 14.8771 (15) ŵ = 0.26 mm1
c = 7.1971 (8) ÅT = 296 K
β = 92.857 (1)°Prism, colourless
V = 1373.3 (2) Å30.30 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2421 independent reflections
Radiation source: fine-focus sealed tube1489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.925, Tmax = 0.949k = 1713
6607 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2941P]
where P = (Fo2 + 2Fc2)/3
2421 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H12ClNV = 1373.3 (2) Å3
Mr = 265.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8416 (13) ŵ = 0.26 mm1
b = 14.8771 (15) ÅT = 296 K
c = 7.1971 (8) Å0.30 × 0.24 × 0.20 mm
β = 92.857 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2421 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1489 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.949Rint = 0.038
6607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2421 reflectionsΔρmin = 0.22 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.41202 (5)0.30834 (6)1.24470 (11)0.0803 (3)
N10.92436 (15)0.37176 (15)0.8844 (3)0.0512 (6)
C10.81851 (19)0.36531 (17)0.8206 (4)0.0481 (6)
C20.7440 (2)0.3300 (2)0.9273 (4)0.0593 (8)
H20.76340.30451.04180.071*
C30.6383 (2)0.3315 (2)0.8669 (4)0.0733 (9)
H30.58850.30710.94160.088*
C40.6086 (2)0.3681 (2)0.7013 (5)0.0713 (9)
H40.53830.36910.66350.086*
C50.6828 (2)0.40512 (19)0.5839 (4)0.0553 (7)
C60.78968 (18)0.40408 (17)0.6440 (3)0.0456 (6)
C70.8628 (2)0.44051 (18)0.5263 (4)0.0545 (7)
H70.93310.44020.56420.065*
C80.8331 (3)0.4761 (2)0.3586 (4)0.0705 (9)
H80.88300.49960.28290.085*
C90.7281 (3)0.4776 (2)0.2989 (4)0.0786 (10)
H90.70830.50220.18370.094*
C100.6545 (2)0.4433 (2)0.4087 (4)0.0710 (9)
H100.58470.44490.36790.085*
C110.97066 (19)0.30238 (18)0.9492 (3)0.0484 (6)
H110.93510.24790.94600.058*
C121.07745 (18)0.30453 (17)1.0286 (3)0.0422 (6)
C131.13264 (19)0.22522 (18)1.0563 (3)0.0482 (6)
H131.09970.17061.03060.058*
C141.23542 (19)0.2257 (2)1.1212 (3)0.0535 (7)
H141.27200.17211.13810.064*
C151.28284 (18)0.3068 (2)1.1604 (3)0.0506 (7)
C161.22982 (19)0.3865 (2)1.1386 (3)0.0544 (7)
H161.26280.44061.16860.065*
C171.12764 (19)0.38576 (18)1.0719 (3)0.0512 (7)
H171.09170.43971.05560.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0504 (4)0.1022 (8)0.0871 (6)0.0088 (4)0.0083 (4)0.0073 (5)
N10.0495 (12)0.0453 (14)0.0580 (14)0.0005 (10)0.0057 (10)0.0032 (11)
C10.0474 (14)0.0401 (16)0.0566 (16)0.0019 (12)0.0021 (12)0.0045 (13)
C20.0577 (16)0.064 (2)0.0564 (17)0.0055 (14)0.0024 (13)0.0084 (15)
C30.0532 (17)0.087 (3)0.080 (2)0.0136 (16)0.0116 (15)0.0087 (19)
C40.0469 (16)0.076 (2)0.090 (2)0.0074 (15)0.0090 (16)0.0031 (19)
C50.0555 (16)0.0449 (17)0.0643 (18)0.0041 (13)0.0087 (14)0.0053 (14)
C60.0491 (14)0.0347 (15)0.0527 (16)0.0026 (11)0.0008 (12)0.0058 (13)
C70.0585 (16)0.0439 (17)0.0614 (18)0.0009 (13)0.0067 (13)0.0023 (14)
C80.089 (2)0.059 (2)0.064 (2)0.0085 (17)0.0048 (17)0.0063 (16)
C90.107 (3)0.063 (2)0.063 (2)0.011 (2)0.0192 (19)0.0083 (17)
C100.074 (2)0.059 (2)0.077 (2)0.0077 (17)0.0272 (17)0.0013 (18)
C110.0543 (15)0.0436 (17)0.0476 (14)0.0036 (13)0.0042 (12)0.0021 (13)
C120.0498 (13)0.0404 (16)0.0366 (13)0.0005 (12)0.0034 (10)0.0047 (12)
C130.0569 (15)0.0388 (16)0.0495 (15)0.0004 (13)0.0080 (12)0.0035 (13)
C140.0576 (16)0.0502 (18)0.0531 (16)0.0134 (14)0.0082 (13)0.0073 (14)
C150.0462 (14)0.0599 (19)0.0457 (15)0.0067 (14)0.0038 (11)0.0010 (14)
C160.0536 (15)0.0518 (19)0.0574 (17)0.0033 (14)0.0015 (13)0.0066 (14)
C170.0561 (15)0.0435 (17)0.0534 (16)0.0048 (13)0.0033 (12)0.0022 (13)
Geometric parameters (Å, º) top
Cl1—C151.738 (2)C8—H80.9300
N1—C111.268 (3)C9—C101.361 (4)
N1—C11.416 (3)C9—H90.9300
C1—C21.361 (4)C10—H100.9300
C1—C61.427 (3)C11—C121.459 (3)
C2—C31.405 (4)C11—H110.9300
C2—H20.9300C12—C131.386 (3)
C3—C41.348 (4)C12—C171.397 (3)
C3—H30.9300C13—C141.378 (3)
C4—C51.416 (4)C13—H130.9300
C4—H40.9300C14—C151.375 (4)
C5—C101.414 (4)C14—H140.9300
C5—C61.419 (3)C15—C161.372 (4)
C6—C71.404 (3)C16—C171.375 (3)
C7—C81.355 (4)C16—H160.9300
C7—H70.9300C17—H170.9300
C8—C91.395 (4)
C11—N1—C1119.3 (2)C10—C9—H9119.9
C2—C1—N1122.2 (2)C8—C9—H9119.9
C2—C1—C6120.0 (2)C9—C10—C5120.9 (3)
N1—C1—C6117.6 (2)C9—C10—H10119.5
C1—C2—C3121.0 (3)C5—C10—H10119.5
C1—C2—H2119.5N1—C11—C12122.7 (2)
C3—C2—H2119.5N1—C11—H11118.6
C4—C3—C2120.5 (3)C12—C11—H11118.6
C4—C3—H3119.8C13—C12—C17118.5 (2)
C2—C3—H3119.8C13—C12—C11120.1 (2)
C3—C4—C5121.0 (3)C17—C12—C11121.3 (2)
C3—C4—H4119.5C14—C13—C12121.2 (2)
C5—C4—H4119.5C14—C13—H13119.4
C10—C5—C4122.5 (3)C12—C13—H13119.4
C10—C5—C6118.5 (3)C15—C14—C13118.8 (2)
C4—C5—C6118.9 (3)C15—C14—H14120.6
C7—C6—C5118.5 (2)C13—C14—H14120.6
C7—C6—C1122.8 (2)C16—C15—C14121.5 (2)
C5—C6—C1118.7 (2)C16—C15—Cl1119.2 (2)
C8—C7—C6121.4 (3)C14—C15—Cl1119.2 (2)
C8—C7—H7119.3C15—C16—C17119.5 (3)
C6—C7—H7119.3C15—C16—H16120.2
C7—C8—C9120.4 (3)C17—C16—H16120.2
C7—C8—H8119.8C16—C17—C12120.4 (2)
C9—C8—H8119.8C16—C17—H17119.8
C10—C9—C8120.2 (3)C12—C17—H17119.8
C11—N1—C1—C252.2 (4)C6—C7—C8—C90.2 (4)
C11—N1—C1—C6132.8 (2)C7—C8—C9—C100.1 (5)
N1—C1—C2—C3174.4 (3)C8—C9—C10—C50.4 (5)
C6—C1—C2—C30.4 (4)C4—C5—C10—C9179.5 (3)
C1—C2—C3—C40.1 (5)C6—C5—C10—C90.6 (4)
C2—C3—C4—C50.5 (5)C1—N1—C11—C12176.0 (2)
C3—C4—C5—C10179.4 (3)N1—C11—C12—C13164.6 (2)
C3—C4—C5—C60.7 (5)N1—C11—C12—C1713.0 (4)
C10—C5—C6—C70.4 (4)C17—C12—C13—C141.4 (4)
C4—C5—C6—C7179.7 (3)C11—C12—C13—C14176.3 (2)
C10—C5—C6—C1179.8 (2)C12—C13—C14—C150.7 (4)
C4—C5—C6—C10.3 (4)C13—C14—C15—C160.8 (4)
C2—C1—C6—C7179.1 (3)C13—C14—C15—Cl1179.32 (19)
N1—C1—C6—C75.8 (4)C14—C15—C16—C171.5 (4)
C2—C1—C6—C50.2 (4)Cl1—C15—C16—C17180.0 (2)
N1—C1—C6—C5174.9 (2)C15—C16—C17—C120.7 (4)
C5—C6—C7—C80.0 (4)C13—C12—C17—C160.7 (4)
C1—C6—C7—C8179.3 (3)C11—C12—C17—C16177.0 (2)

Experimental details

Crystal data
Chemical formulaC17H12ClN
Mr265.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.8416 (13), 14.8771 (15), 7.1971 (8)
β (°) 92.857 (1)
V3)1373.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.925, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
6607, 2421, 1489
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.03
No. of reflections2421
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578–588.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS . University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds