organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-(Di­fluoro­meth­­oxy)phen­yl]-N-(3,4-dimeth­­oxy­phen­yl)-1H-1,2,4-triazole-3-carboxamide

aCollege of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, bSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 317000, People's Republic of China, and cZhejiang University of Technology, Hangzhou 310014, People's Republic of China, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, People's Republic of China
*Correspondence e-mail: yuguangw@zjut.edu.cn

(Received 17 May 2010; accepted 26 July 2010; online 11 August 2010)

Two crystallographically independent mol­ecules, A and B, with similar conformations are present in the asymmetric unit of the title compound, C18H16F2N4O4. In mol­ecule A, the plane of the 1,2,4-triazole ring is tilted relative of the 4-difluoro­meth­oxy-substituted and the 3,4-dimeth­oxy-substituted benzene rings by 6.5 (2) and 16.4 (1)°, respectively. The –CHF2 group is twisted away from the plane of the benzene ring, with a dihedral angle between the O—C bond of the OCHF2 group and the plane of the adjacent phenyl ring of 38.6 (3)°. The corresponding parameters for mol­ecule B are 7.7 (1), 9.5 (2) and 25.2 (2)°. In both mol­ecules, the conformations are stabilized by intra­molecular N—H⋯N and C—H⋯O hydrogen bonds. There are also C—H⋯π contacts between the methyl groups and the benzene rings, and ππ stacking inter­actions between the benzene rings of adjacent parallel A mol­ecules [centroid–centroid distance = 3.8942 (17) Å]. ππ inter­actions are also observed between the triazole ring and one of the benzene rings of parallel B mol­ecules [centroid–centroid distance = 3.7055 (16) Å].

Related literature

For the biological and pharmacological activity of 1,2,4-triazoles, see: Almasirad et al. (2004[Almasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057-6059.]); Amir & Shikha (2004[Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem., 39, 535-545.]); Ibrahim (2009[Ibrahim, D. A. (2009). Eur. J. Med. Chem. 44, 2776-2781.]); Kalluraya et al. (1996[Kalluraya, B., Shetty, S. N., Gunaga, P. & Holla, B. S. (1996). Boll. Chim. Farm. 135, 638-642.]); Kondo et al. (1992[Kondo, K., Kono, H., Simmons, K. A., Dixson, J. A., Halling, B. P., Plummer, E. L., Plummer, M. J. & Tymonko, J. M. (1992). US Patent No. 5108486.]); Kanazawa et al. (1988[Kanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol. 8, 644-673.]); Labanauskas et al. (2004[Labanauskas, L., Udrenaite, E., Gaidelis, P. & Brukštus, A. (2004). Il Farm. 59, 255-259.]); Tozkoparan et al. (2007[Tozkoparan, B., Küpeli, E., Yeşilada, E. & Ertan, M. (2007). Bioorg. Med. Chem. 15, 1808-1814.]); Vlasova et al. (1971[Vlasova, L. A., Shamaeva, E. M., Afanaséva, G. B. & Postvskii, I. Y. (1971). Pharm. Chem. J. 5, 473-477.]); Wahbi et al. (1995[Wahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem. 30, 955-962.]). For details of the synthesis, see: Drutkowski et al. (2002[Drutkowski, G., Donner, Ch., Schulze, I. & Frohberg, P. (2002). Tetrahedron, 58, 5317-5326.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16F2N4O4

  • Mr = 390.35

  • Triclinic, [P \overline 1]

  • a = 9.4015 (19) Å

  • b = 12.138 (2) Å

  • c = 16.270 (3) Å

  • α = 77.345 (2)°

  • β = 88.040 (2)°

  • γ = 87.376 (2)°

  • V = 1809.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 294 K

  • 0.45 × 0.39 × 0.31 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.965

  • 13864 measured reflections

  • 6692 independent reflections

  • 4477 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.147

  • S = 1.02

  • 6692 reflections

  • 509 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg5 are the centroids of the C1–C6 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯O7 0.93 2.29 2.891 (3) 122
C6—H6A⋯O3 0.93 2.32 2.895 (3) 120
N1—H1A⋯N2 0.86 2.33 2.767 (3) 112
N5—H5A⋯N7 0.86 2.33 2.776 (3) 112
C11—H11A⋯O7i 0.93 2.51 3.406 (3) 162
C17—H17A⋯O7i 0.93 2.26 3.190 (3) 174
C8—H8A⋯O1ii 0.96 2.59 3.533 (3) 167
C31—H31A⋯O3iii 0.93 2.27 3.169 (3) 163
C8—H8CCg5 0.96 2.74 3.615 (3) 152
C25—H25BCg2iv 0.96 2.68 3.578 (3) 157
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y, -z+2; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2,4-Triazoles and their derivatives have attracted our attention because of their diverse biological and pharmacological activities, such as anticonvulsant (Almasirad et al. 2004; Kanazawa et al. 1988), anticancer (Ibrahim 2009), antitubercular (Kalluraya et al. 1996; Vlasova et al. 1971), anti-inflammatory (Labanauskas et al., 2004), and their herbicidal (Kondo et al. 1992) and analgesic properties (Amir & Shikha 2004; Tozkoparan et al. 2007). Also, antifungal activity of aromatic ethers possessing a 1H-1,2,4-triazole ring has been reported (Wahbi et al. 1995). We report here the crystal structure of one such 1,2,4-triazole (Fig. 1).

The asymmetric unit of the title compound contains two crystallographically independent molecules A and B, made up of C1 to C18 and C19 to C36, respectively. In both molecules, bond lengths and angles are within normal ranges. In the triazole ring of molecule A, the bond lengths of N3—C10 (1.312 (3) Å) and N2—C11 (1.316 (3) Å) indicate double bond character, while the distance of N2—C10 (1.357 (3) Å) is in the range for N—C single bonds; in the same way, the bond lengths of 1.314 (3) and 1.315 (3) Å point towards double bond character for N6—C28 and N7—C29, the bond length of N7—C28 (1.361 (3) Å) is indicative for an N—C single bond in molecule B. The O7 and O3 atoms are located in both molecules on the same side of the molecule (that of N6 and N3, respectively). In molecule A, the plane of the 1,2,4-triazole ring is tilted against that of the 4-difluoromethoxy-substituted (C12–C17) and the 3,4-dimethoxy-substituted (C1–C6) benzene rings by 6.5 (2)° and 16.4 (1)°, respectively. The CHF2 group is twisted away from the plane of the benzene ring, with a dihedral angle between the O—C bond of the OCHF2 group and the plane of the adjacent phenyl ring of 38.7 (3)°. In molecule B, the plane of the 1,2,4-triazole ring is tilted against that of the the 4-difluoromethoxy-substituted (C30–C35) and 3,4-dimethoxy-substituted (C19–C24) benzene rings by 7.7 (2)° and 9.5 (2)°, respectively. Its CHF2 group is also twisted away from the plane of the benzene ring with a dihedral angle between the O—C bond of the OCHF2 group and the plane of the adjacent phenyl ring of 25.2 (2)°. The two molecules are not coplanar with each other and exhibit torsion angles of 44.79 (8)° (between the C1–C6 benzene rings and C19–C24 benzene rings) and 11.6 (1)° (between the C12–C17 benzene rings and C30–C35 benzene rings), respectively.

The conformations of the two molecules are stabilized by intramolecular N—H···N hydrogen bonds and intra and intermolecular C—H···O hydrogen bonds (Table 1). There are also C—H···π contacts between the methyl groups and the benzene rings. The closest distance between the benzene rings of adjacent parallel A molecules is 3.33 Å indicating ππ stacking. Between parallel B molecules ππ interactions are observed between the triazole ring and one of the benzene rings (the closest distance is 3.32 Å). These weak interactions lead to the formation of a three-dimensional network as shown in Fig. 2.

Related literature top

For the biological and pharmacological activity of 1,2,4-triazoles, see: Almasirad et al. (2004); Amir et al. (2004); Ibrahim (2009); Kalluraya et al. (1996); Kondo et al. (1992); Kanazawa et al. (1988); Labanauskas et al. (2004); Tozkoparan et al. (2007); Vlasova et al. (1971); Wahbi et al. (1995). For details of the synthesis, see: Drutkowski et al. (2002).

Experimental top

The general procedure for the synthesis of the title compound is based on a literature procedure (Drutkowski et al., 2002). 2-amine-N-(3,4-dimethoxy-phenyl)-2-[(4-difluoromethoxy- phenyl)hydrazono]acetamide (10 mmol), 1.5 ml of a 37%-solution of formaldehyde (20 mmol) and 0.1 g p-toluene sulfonic acid were heated to reflux in approximately 50 ml ethanol. The reaction was complete after 10 h (the reaction progress was controlled by TLC). The mixture was cooled to room temperature and the solvent was evaporated. The solid product was collected and recrystallized from 2-propanol. The yield of the reaction was 38%. Mp: 466-468K. MS (EI, 70 eV, Agilent 5975 inert mass selective detector): m/z 390 (M+, 100). IR (Bruker Vector 22 spectrometer): νmax (cm-1) 3388, 3118, 1691, 1552, 1523, 1471, 1416,1222, 1124, 1031, 985, 841, 782, 639. 1H NMR (CDCl3, 400MHz, Bruker Avance spectrometer): δ 9.22(1H, s), 8.74 (1H, s), 7.85-7.42 (3H, m), 7.28-6.84 (4H, m), 6.75-6.39 (1H, t), 4.02 (3H, s), 3.94 (3H, s).

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl C, and Uiso(H) = 1.2Ueq(C, N) for all other H atoms.

Structure description top

1,2,4-Triazoles and their derivatives have attracted our attention because of their diverse biological and pharmacological activities, such as anticonvulsant (Almasirad et al. 2004; Kanazawa et al. 1988), anticancer (Ibrahim 2009), antitubercular (Kalluraya et al. 1996; Vlasova et al. 1971), anti-inflammatory (Labanauskas et al., 2004), and their herbicidal (Kondo et al. 1992) and analgesic properties (Amir & Shikha 2004; Tozkoparan et al. 2007). Also, antifungal activity of aromatic ethers possessing a 1H-1,2,4-triazole ring has been reported (Wahbi et al. 1995). We report here the crystal structure of one such 1,2,4-triazole (Fig. 1).

The asymmetric unit of the title compound contains two crystallographically independent molecules A and B, made up of C1 to C18 and C19 to C36, respectively. In both molecules, bond lengths and angles are within normal ranges. In the triazole ring of molecule A, the bond lengths of N3—C10 (1.312 (3) Å) and N2—C11 (1.316 (3) Å) indicate double bond character, while the distance of N2—C10 (1.357 (3) Å) is in the range for N—C single bonds; in the same way, the bond lengths of 1.314 (3) and 1.315 (3) Å point towards double bond character for N6—C28 and N7—C29, the bond length of N7—C28 (1.361 (3) Å) is indicative for an N—C single bond in molecule B. The O7 and O3 atoms are located in both molecules on the same side of the molecule (that of N6 and N3, respectively). In molecule A, the plane of the 1,2,4-triazole ring is tilted against that of the 4-difluoromethoxy-substituted (C12–C17) and the 3,4-dimethoxy-substituted (C1–C6) benzene rings by 6.5 (2)° and 16.4 (1)°, respectively. The CHF2 group is twisted away from the plane of the benzene ring, with a dihedral angle between the O—C bond of the OCHF2 group and the plane of the adjacent phenyl ring of 38.7 (3)°. In molecule B, the plane of the 1,2,4-triazole ring is tilted against that of the the 4-difluoromethoxy-substituted (C30–C35) and 3,4-dimethoxy-substituted (C19–C24) benzene rings by 7.7 (2)° and 9.5 (2)°, respectively. Its CHF2 group is also twisted away from the plane of the benzene ring with a dihedral angle between the O—C bond of the OCHF2 group and the plane of the adjacent phenyl ring of 25.2 (2)°. The two molecules are not coplanar with each other and exhibit torsion angles of 44.79 (8)° (between the C1–C6 benzene rings and C19–C24 benzene rings) and 11.6 (1)° (between the C12–C17 benzene rings and C30–C35 benzene rings), respectively.

The conformations of the two molecules are stabilized by intramolecular N—H···N hydrogen bonds and intra and intermolecular C—H···O hydrogen bonds (Table 1). There are also C—H···π contacts between the methyl groups and the benzene rings. The closest distance between the benzene rings of adjacent parallel A molecules is 3.33 Å indicating ππ stacking. Between parallel B molecules ππ interactions are observed between the triazole ring and one of the benzene rings (the closest distance is 3.32 Å). These weak interactions lead to the formation of a three-dimensional network as shown in Fig. 2.

For the biological and pharmacological activity of 1,2,4-triazoles, see: Almasirad et al. (2004); Amir et al. (2004); Ibrahim (2009); Kalluraya et al. (1996); Kondo et al. (1992); Kanazawa et al. (1988); Labanauskas et al. (2004); Tozkoparan et al. (2007); Vlasova et al. (1971); Wahbi et al. (1995). For details of the synthesis, see: Drutkowski et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom numbering scheme and the ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. CH-π interactions and π-π stacking interactions.
1-[4-(Difluoromethoxy)phenyl]-N-(3,4-dimethoxyphenyl)-1H- 1,2,4-triazole-3-carboxamide top
Crystal data top
C18H16F2N4O4Z = 4
Mr = 390.35F(000) = 808
Triclinic, P1Dx = 1.433 Mg m3
a = 9.4015 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.138 (2) ÅCell parameters from 3656 reflections
c = 16.270 (3) Åθ = 2.4–22.6°
α = 77.345 (2)°µ = 0.12 mm1
β = 88.040 (2)°T = 294 K
γ = 87.376 (2)°Block, colorless
V = 1809.1 (6) Å30.45 × 0.39 × 0.31 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6692 independent reflections
Radiation source: fine-focus sealed tube4477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scanθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.949, Tmax = 0.965k = 1414
13864 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.5044P]
where P = (Fo2 + 2Fc2)/3
6692 reflections(Δ/σ)max = 0.001
509 parametersΔρmax = 0.48 e Å3
12 restraintsΔρmin = 0.34 e Å3
Crystal data top
C18H16F2N4O4γ = 87.376 (2)°
Mr = 390.35V = 1809.1 (6) Å3
Triclinic, P1Z = 4
a = 9.4015 (19) ÅMo Kα radiation
b = 12.138 (2) ŵ = 0.12 mm1
c = 16.270 (3) ÅT = 294 K
α = 77.345 (2)°0.45 × 0.39 × 0.31 mm
β = 88.040 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6692 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4477 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.965Rint = 0.020
13864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05012 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
6692 reflectionsΔρmin = 0.34 e Å3
509 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2892 (3)0.4118 (2)1.37589 (19)0.1691 (12)
F20.2201 (3)0.26170 (19)1.45438 (13)0.1348 (9)
F30.1983 (3)0.00133 (18)1.41169 (13)0.1326 (9)
F40.1523 (2)0.09493 (19)1.32178 (16)0.1239 (7)
O10.7795 (2)0.64315 (15)0.59135 (11)0.0854 (6)
O20.9274 (2)0.45986 (15)0.59554 (11)0.0740 (5)
O30.48397 (19)0.29964 (14)0.91556 (11)0.0664 (5)
O40.1729 (2)0.28577 (17)1.32169 (14)0.0956 (7)
O51.4711 (2)0.25405 (15)0.60847 (12)0.0726 (5)
O61.3643 (2)0.06175 (15)0.61500 (12)0.0774 (5)
O70.98744 (19)0.24742 (14)0.91141 (12)0.0718 (5)
O80.2832 (2)0.05283 (16)1.28611 (12)0.0853 (6)
N10.5169 (2)0.48188 (16)0.84610 (12)0.0561 (5)
H1A0.48810.55020.84590.067*
N20.3146 (2)0.55824 (16)0.95026 (12)0.0539 (5)
N30.2702 (2)0.37827 (15)1.01521 (12)0.0528 (5)
N40.18439 (19)0.45224 (15)1.04774 (11)0.0494 (5)
N51.0411 (2)0.10370 (16)0.84462 (12)0.0575 (5)
H5A1.01820.03600.84430.069*
N60.7726 (2)0.11814 (15)1.00419 (12)0.0549 (5)
N70.8388 (2)0.02784 (16)0.94376 (12)0.0544 (5)
N80.6917 (2)0.02766 (15)1.03503 (12)0.0501 (5)
C10.6230 (2)0.46897 (19)0.78493 (14)0.0504 (5)
C20.6469 (3)0.56221 (19)0.71933 (15)0.0570 (6)
H2A0.59320.62890.71750.068*
C30.7485 (3)0.5570 (2)0.65761 (15)0.0578 (6)
C40.8284 (3)0.4564 (2)0.65991 (15)0.0559 (6)
C50.8042 (3)0.3651 (2)0.72421 (15)0.0575 (6)
H5B0.85750.29820.72580.069*
C60.7021 (3)0.3699 (2)0.78718 (15)0.0554 (6)
H6A0.68720.30700.83040.067*
C70.7015 (5)0.7467 (2)0.5852 (2)0.1142 (14)
H7A0.72750.79770.53350.171*
H7B0.72260.77910.63200.171*
H7C0.60150.73370.58590.171*
C81.0015 (3)0.3576 (2)0.58939 (17)0.0751 (8)
H8A1.06210.37040.53980.113*
H8B0.93430.30170.58590.113*
H8C1.05830.33150.63830.113*
C90.4546 (2)0.4004 (2)0.90504 (14)0.0508 (6)
C100.3447 (2)0.44616 (18)0.95750 (14)0.0478 (5)
C110.2133 (3)0.55853 (19)1.00804 (15)0.0534 (6)
H11A0.16790.62321.01980.064*
C120.0877 (2)0.41099 (19)1.11610 (14)0.0513 (6)
C130.0736 (3)0.2964 (2)1.1441 (2)0.0861 (10)
H13A0.12240.24581.11670.103*
C140.0134 (4)0.2578 (2)1.2127 (2)0.0979 (11)
H14A0.02250.18051.23250.117*
C150.0870 (3)0.3319 (2)1.25244 (17)0.0681 (7)
C160.0769 (3)0.4452 (2)1.22283 (16)0.0641 (7)
H16A0.12950.49571.24860.077*
C170.0116 (3)0.4850 (2)1.15448 (15)0.0574 (6)
H17A0.01940.56241.13440.069*
C180.1793 (4)0.3348 (3)1.3868 (2)0.0925 (10)
H18A0.08920.36831.39460.111*
C191.1504 (2)0.14830 (19)0.78631 (14)0.0526 (6)
C201.2112 (3)0.2503 (2)0.78470 (16)0.0573 (6)
H20A1.18170.29330.82340.069*
C211.3170 (3)0.2879 (2)0.72463 (16)0.0575 (6)
H21A1.35630.35730.72280.069*
C221.3648 (3)0.2252 (2)0.66795 (15)0.0557 (6)
C231.3058 (3)0.1200 (2)0.67165 (15)0.0571 (6)
C241.1994 (3)0.0835 (2)0.72955 (15)0.0583 (6)
H24A1.15930.01440.73100.070*
C251.4982 (3)0.3698 (2)0.58133 (19)0.0810 (9)
H25A1.56850.37970.53640.122*
H25B1.53270.39760.62750.122*
H25C1.41180.41080.56160.122*
C261.3106 (4)0.0464 (3)0.6163 (2)0.0979 (11)
H26A1.36120.07940.57490.147*
H26B1.21110.03840.60390.147*
H26C1.32320.09440.67110.147*
C270.9680 (3)0.1532 (2)0.90072 (15)0.0545 (6)
C280.8581 (2)0.08040 (19)0.95009 (15)0.0512 (6)
C290.7337 (2)0.05840 (19)0.99824 (14)0.0523 (6)
H29A0.69400.12911.00980.063*
C300.5838 (2)0.03304 (18)1.09822 (14)0.0491 (5)
C310.5146 (2)0.06285 (19)1.13650 (15)0.0517 (6)
H31A0.53620.13051.12000.062*
C320.4136 (3)0.05910 (19)1.19900 (15)0.0546 (6)
H32A0.36640.12391.22480.066*
C330.3829 (3)0.0410 (2)1.22304 (16)0.0614 (6)
C340.4491 (3)0.1375 (2)1.18296 (18)0.0736 (8)
H34A0.42540.20541.19850.088*
C350.5496 (3)0.1346 (2)1.12029 (17)0.0657 (7)
H35A0.59400.20011.09310.079*
C360.2545 (4)0.0386 (3)1.34734 (19)0.0779 (8)
H36A0.34000.08681.36310.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.177 (2)0.127 (2)0.190 (3)0.0216 (18)0.092 (2)0.0273 (18)
F20.189 (2)0.1205 (17)0.0903 (14)0.0618 (16)0.0480 (14)0.0101 (12)
F30.206 (2)0.1030 (15)0.0909 (14)0.0314 (15)0.0642 (15)0.0315 (12)
F40.1062 (15)0.1181 (17)0.158 (2)0.0444 (13)0.0259 (14)0.0495 (15)
O10.1324 (18)0.0492 (11)0.0658 (12)0.0047 (11)0.0329 (12)0.0012 (9)
O20.0851 (13)0.0655 (12)0.0656 (11)0.0040 (10)0.0265 (10)0.0061 (9)
O30.0839 (12)0.0448 (10)0.0719 (11)0.0095 (8)0.0226 (9)0.0179 (8)
O40.1259 (18)0.0696 (13)0.0957 (15)0.0441 (12)0.0581 (14)0.0289 (12)
O50.0794 (12)0.0547 (11)0.0801 (12)0.0121 (9)0.0209 (10)0.0082 (9)
O60.1040 (15)0.0593 (11)0.0720 (12)0.0199 (10)0.0162 (11)0.0205 (9)
O70.0788 (12)0.0438 (10)0.0874 (13)0.0029 (9)0.0128 (10)0.0045 (9)
O80.1141 (16)0.0582 (12)0.0792 (13)0.0001 (11)0.0334 (12)0.0117 (10)
N10.0673 (13)0.0437 (11)0.0565 (12)0.0032 (9)0.0119 (10)0.0109 (9)
N20.0607 (12)0.0472 (11)0.0537 (11)0.0052 (9)0.0059 (10)0.0114 (9)
N30.0577 (12)0.0455 (11)0.0571 (11)0.0056 (9)0.0071 (9)0.0158 (9)
N40.0527 (11)0.0432 (10)0.0530 (11)0.0059 (8)0.0056 (9)0.0120 (9)
N50.0611 (12)0.0479 (11)0.0615 (12)0.0102 (9)0.0024 (10)0.0054 (10)
N60.0558 (12)0.0426 (11)0.0619 (12)0.0032 (9)0.0024 (10)0.0017 (9)
N70.0546 (12)0.0499 (12)0.0565 (12)0.0000 (9)0.0048 (10)0.0063 (9)
N80.0528 (11)0.0419 (10)0.0529 (11)0.0017 (8)0.0059 (9)0.0036 (9)
C10.0587 (14)0.0465 (13)0.0473 (13)0.0077 (11)0.0043 (11)0.0127 (10)
C20.0749 (16)0.0417 (13)0.0545 (14)0.0034 (11)0.0065 (12)0.0120 (11)
C30.0777 (17)0.0454 (13)0.0486 (13)0.0115 (12)0.0062 (12)0.0062 (11)
C40.0612 (15)0.0565 (15)0.0495 (13)0.0098 (12)0.0090 (11)0.0108 (11)
C50.0587 (15)0.0531 (14)0.0573 (14)0.0019 (11)0.0058 (12)0.0062 (11)
C60.0598 (14)0.0501 (14)0.0527 (14)0.0061 (11)0.0064 (12)0.0035 (11)
C70.202 (4)0.0477 (18)0.082 (2)0.010 (2)0.033 (2)0.0023 (15)
C80.0755 (18)0.082 (2)0.0618 (16)0.0098 (15)0.0139 (14)0.0073 (14)
C90.0580 (14)0.0476 (14)0.0489 (13)0.0098 (11)0.0023 (11)0.0144 (11)
C100.0529 (13)0.0451 (13)0.0475 (12)0.0090 (10)0.0012 (11)0.0132 (10)
C110.0581 (14)0.0435 (13)0.0580 (14)0.0027 (11)0.0024 (12)0.0106 (11)
C120.0519 (13)0.0463 (13)0.0562 (14)0.0097 (10)0.0058 (11)0.0121 (11)
C130.107 (2)0.0462 (15)0.103 (2)0.0101 (15)0.0483 (19)0.0191 (15)
C140.129 (3)0.0442 (15)0.117 (3)0.0235 (16)0.063 (2)0.0168 (16)
C150.0795 (18)0.0539 (15)0.0723 (17)0.0220 (13)0.0276 (14)0.0172 (13)
C160.0734 (17)0.0507 (14)0.0705 (17)0.0087 (12)0.0176 (14)0.0201 (12)
C170.0700 (16)0.0412 (13)0.0620 (15)0.0099 (11)0.0109 (13)0.0138 (11)
C180.109 (3)0.081 (2)0.086 (2)0.033 (2)0.036 (2)0.0145 (19)
C190.0524 (13)0.0496 (13)0.0518 (13)0.0051 (11)0.0062 (11)0.0009 (11)
C200.0594 (15)0.0479 (14)0.0638 (15)0.0041 (11)0.0013 (12)0.0100 (11)
C210.0600 (15)0.0428 (13)0.0689 (16)0.0071 (11)0.0024 (13)0.0095 (12)
C220.0545 (14)0.0479 (14)0.0593 (15)0.0053 (11)0.0011 (12)0.0003 (11)
C230.0689 (16)0.0504 (14)0.0516 (14)0.0052 (12)0.0023 (12)0.0096 (11)
C240.0660 (16)0.0491 (14)0.0590 (15)0.0141 (12)0.0054 (12)0.0066 (11)
C250.093 (2)0.0598 (17)0.087 (2)0.0234 (15)0.0228 (17)0.0089 (15)
C260.139 (3)0.070 (2)0.095 (2)0.029 (2)0.014 (2)0.0370 (18)
C270.0541 (14)0.0440 (14)0.0593 (15)0.0037 (11)0.0050 (12)0.0016 (11)
C280.0496 (13)0.0458 (13)0.0540 (14)0.0027 (10)0.0094 (11)0.0017 (11)
C290.0576 (14)0.0437 (13)0.0548 (14)0.0019 (11)0.0073 (12)0.0081 (11)
C300.0547 (14)0.0419 (12)0.0487 (13)0.0002 (10)0.0067 (11)0.0054 (10)
C310.0554 (14)0.0397 (12)0.0589 (14)0.0011 (10)0.0069 (12)0.0083 (10)
C320.0607 (15)0.0428 (13)0.0574 (14)0.0047 (11)0.0011 (12)0.0041 (11)
C330.0734 (17)0.0524 (15)0.0572 (15)0.0014 (12)0.0069 (13)0.0110 (12)
C340.102 (2)0.0450 (14)0.0749 (18)0.0055 (14)0.0198 (16)0.0183 (13)
C350.0866 (19)0.0410 (13)0.0681 (16)0.0094 (12)0.0084 (15)0.0091 (12)
C360.095 (2)0.0670 (18)0.0727 (19)0.0179 (16)0.0196 (17)0.0168 (15)
Geometric parameters (Å, º) top
F1—C181.351 (4)C7—H7B0.9600
F2—C181.311 (3)C7—H7C0.9600
F3—C361.314 (3)C8—H8A0.9600
F4—C361.332 (3)C8—H8B0.9600
O1—C31.361 (3)C8—H8C0.9600
O1—C71.411 (4)C9—C101.483 (3)
O2—C41.372 (3)C11—H11A0.9300
O2—C81.416 (3)C12—C171.366 (3)
O3—C91.218 (3)C12—C131.377 (3)
O4—C181.322 (4)C13—C141.371 (4)
O4—C151.392 (3)C13—H13A0.9300
O5—C221.369 (3)C14—C151.368 (4)
O5—C251.409 (3)C14—H14A0.9300
O6—C231.366 (3)C15—C161.361 (3)
O6—C261.424 (3)C16—C171.378 (3)
O7—C271.216 (3)C16—H16A0.9300
O8—C361.350 (3)C17—H17A0.9300
O8—C331.393 (3)C18—H18A0.9800
N1—C91.356 (3)C19—C201.382 (3)
N1—C11.413 (3)C19—C241.393 (3)
N1—H1A0.8600C20—C211.390 (3)
N2—C111.316 (3)C20—H20A0.9300
N2—C101.357 (3)C21—C221.371 (3)
N3—C101.311 (3)C21—H21A0.9300
N3—N41.360 (2)C22—C231.403 (3)
N4—C111.346 (3)C23—C241.370 (3)
N4—C121.429 (3)C24—H24A0.9300
N5—C271.351 (3)C25—H25A0.9600
N5—C191.417 (3)C25—H25B0.9600
N5—H5A0.8600C25—H25C0.9600
N6—C281.314 (3)C26—H26A0.9600
N6—N81.358 (2)C26—H26B0.9600
N7—C291.315 (3)C26—H26C0.9600
N7—C281.361 (3)C27—C281.486 (3)
N8—C291.351 (3)C29—H29A0.9300
N8—C301.430 (3)C30—C311.375 (3)
C1—C61.379 (3)C30—C351.379 (3)
C1—C21.396 (3)C31—C321.374 (3)
C2—C31.371 (3)C31—H31A0.9300
C2—H2A0.9300C32—C331.371 (3)
C3—C41.399 (3)C32—H32A0.9300
C4—C51.368 (3)C33—C341.374 (4)
C5—C61.389 (3)C34—C351.372 (4)
C5—H5B0.9300C34—H34A0.9300
C6—H6A0.9300C35—H35A0.9300
C7—H7A0.9600C36—H36A0.9800
C3—O1—C7117.8 (2)C15—C16—H16A120.2
C4—O2—C8117.75 (19)C17—C16—H16A120.2
C18—O4—C15118.3 (2)C12—C17—C16120.2 (2)
C22—O5—C25117.4 (2)C12—C17—H17A119.9
C23—O6—C26117.3 (2)C16—C17—H17A119.9
C36—O8—C33118.7 (2)F2—C18—O4109.3 (3)
C9—N1—C1128.4 (2)F2—C18—F1102.3 (3)
C9—N1—H1A115.8O4—C18—F1108.2 (3)
C1—N1—H1A115.8F2—C18—H18A112.2
C11—N2—C10102.26 (19)O4—C18—H18A112.2
C10—N3—N4102.11 (18)F1—C18—H18A112.2
C11—N4—N3109.35 (18)C20—C19—C24119.4 (2)
C11—N4—C12130.75 (19)C20—C19—N5123.3 (2)
N3—N4—C12119.84 (18)C24—C19—N5117.3 (2)
C27—N5—C19128.7 (2)C19—C20—C21119.3 (2)
C27—N5—H5A115.6C19—C20—H20A120.3
C19—N5—H5A115.6C21—C20—H20A120.3
C28—N6—N8102.17 (18)C22—C21—C20121.6 (2)
C29—N7—C28102.6 (2)C22—C21—H21A119.2
C29—N8—N6109.58 (19)C20—C21—H21A119.2
C29—N8—C30130.09 (19)O5—C22—C21125.5 (2)
N6—N8—C30120.31 (18)O5—C22—C23115.7 (2)
C6—C1—C2119.3 (2)C21—C22—C23118.8 (2)
C6—C1—N1123.3 (2)O6—C23—C24125.6 (2)
C2—C1—N1117.3 (2)O6—C23—C22114.5 (2)
C3—C2—C1121.1 (2)C24—C23—C22119.9 (2)
C3—C2—H2A119.5C23—C24—C19120.9 (2)
C1—C2—H2A119.5C23—C24—H24A119.5
O1—C3—C2125.3 (2)C19—C24—H24A119.5
O1—C3—C4115.1 (2)O5—C25—H25A109.5
C2—C3—C4119.5 (2)O5—C25—H25B109.5
C5—C4—O2125.7 (2)H25A—C25—H25B109.5
C5—C4—C3119.2 (2)O5—C25—H25C109.5
O2—C4—C3115.1 (2)H25A—C25—H25C109.5
C4—C5—C6121.6 (2)H25B—C25—H25C109.5
C4—C5—H5B119.2O6—C26—H26A109.5
C6—C5—H5B119.2O6—C26—H26B109.5
C1—C6—C5119.3 (2)H26A—C26—H26B109.5
C1—C6—H6A120.4O6—C26—H26C109.5
C5—C6—H6A120.4H26A—C26—H26C109.5
O1—C7—H7A109.5H26B—C26—H26C109.5
O1—C7—H7B109.5O7—C27—N5125.0 (2)
H7A—C7—H7B109.5O7—C27—C28121.9 (2)
O1—C7—H7C109.5N5—C27—C28113.1 (2)
H7A—C7—H7C109.5N6—C28—N7115.4 (2)
H7B—C7—H7C109.5N6—C28—C27120.8 (2)
O2—C8—H8A109.5N7—C28—C27123.7 (2)
O2—C8—H8B109.5N7—C29—N8110.2 (2)
H8A—C8—H8B109.5N7—C29—H29A124.9
O2—C8—H8C109.5N8—C29—H29A124.9
H8A—C8—H8C109.5C31—C30—C35120.4 (2)
H8B—C8—H8C109.5C31—C30—N8119.9 (2)
O3—C9—N1124.9 (2)C35—C30—N8119.7 (2)
O3—C9—C10122.1 (2)C32—C31—C30120.2 (2)
N1—C9—C10113.0 (2)C32—C31—H31A119.9
N3—C10—N2115.7 (2)C30—C31—H31A119.9
N3—C10—C9120.8 (2)C33—C32—C31119.4 (2)
N2—C10—C9123.5 (2)C33—C32—H32A120.3
N2—C11—N4110.6 (2)C31—C32—H32A120.3
N2—C11—H11A124.7C32—C33—C34120.3 (2)
N4—C11—H11A124.7C32—C33—O8123.5 (2)
C17—C12—C13120.2 (2)C34—C33—O8116.2 (2)
C17—C12—N4120.1 (2)C35—C34—C33120.7 (2)
C13—C12—N4119.7 (2)C35—C34—H34A119.6
C14—C13—C12119.1 (3)C33—C34—H34A119.6
C14—C13—H13A120.5C34—C35—C30118.9 (2)
C12—C13—H13A120.5C34—C35—H35A120.6
C15—C14—C13120.7 (3)C30—C35—H35A120.6
C15—C14—H14A119.6F3—C36—F4105.4 (3)
C13—C14—H14A119.6F3—C36—O8107.1 (2)
C16—C15—C14120.1 (2)F4—C36—O8109.0 (3)
C16—C15—O4122.8 (2)F3—C36—H36A111.7
C14—C15—O4117.0 (2)F4—C36—H36A111.7
C15—C16—C17119.7 (2)O8—C36—H36A111.7
C10—N3—N4—C110.3 (2)C15—O4—C18—F2157.7 (3)
C10—N3—N4—C12177.88 (19)C15—O4—C18—F191.6 (3)
C28—N6—N8—C290.3 (2)C27—N5—C19—C207.4 (4)
C28—N6—N8—C30179.11 (18)C27—N5—C19—C24174.0 (2)
C9—N1—C1—C614.1 (4)C24—C19—C20—C212.1 (3)
C9—N1—C1—C2165.7 (2)N5—C19—C20—C21179.4 (2)
C6—C1—C2—C30.5 (4)C19—C20—C21—C221.4 (4)
N1—C1—C2—C3179.7 (2)C25—O5—C22—C2124.7 (4)
C7—O1—C3—C20.1 (4)C25—O5—C22—C23157.9 (2)
C7—O1—C3—C4179.5 (3)C20—C21—C22—O5178.0 (2)
C1—C2—C3—O1180.0 (2)C20—C21—C22—C230.6 (4)
C1—C2—C3—C40.6 (4)C26—O6—C23—C240.2 (4)
C8—O2—C4—C57.0 (4)C26—O6—C23—C22179.1 (2)
C8—O2—C4—C3173.7 (2)O5—C22—C23—O60.3 (3)
O1—C3—C4—C5179.9 (2)C21—C22—C23—O6177.4 (2)
C2—C3—C4—C50.4 (4)O5—C22—C23—C24179.6 (2)
O1—C3—C4—O20.7 (3)C21—C22—C23—C241.9 (4)
C2—C3—C4—O2179.8 (2)O6—C23—C24—C19178.0 (2)
O2—C4—C5—C6179.4 (2)C22—C23—C24—C191.3 (4)
C3—C4—C5—C60.1 (4)C20—C19—C24—C230.7 (4)
C2—C1—C6—C50.2 (3)N5—C19—C24—C23179.4 (2)
N1—C1—C6—C5180.0 (2)C19—N5—C27—O71.5 (4)
C4—C5—C6—C10.0 (4)C19—N5—C27—C28178.6 (2)
C1—N1—C9—O31.5 (4)N8—N6—C28—N70.1 (2)
C1—N1—C9—C10178.8 (2)N8—N6—C28—C27179.70 (19)
N4—N3—C10—N20.3 (3)C29—N7—C28—N60.1 (3)
N4—N3—C10—C9179.93 (19)C29—N7—C28—C27179.4 (2)
C11—N2—C10—N30.2 (3)O7—C27—C28—N63.7 (3)
C11—N2—C10—C9179.8 (2)N5—C27—C28—N6176.4 (2)
O3—C9—C10—N33.1 (3)O7—C27—C28—N7175.8 (2)
N1—C9—C10—N3177.2 (2)N5—C27—C28—N74.1 (3)
O3—C9—C10—N2176.5 (2)C28—N7—C29—N80.3 (2)
N1—C9—C10—N23.2 (3)N6—N8—C29—N70.4 (2)
C10—N2—C11—N40.0 (2)C30—N8—C29—N7179.06 (19)
N3—N4—C11—N20.2 (3)C29—N8—C30—C316.5 (3)
C12—N4—C11—N2177.4 (2)N6—N8—C30—C31171.98 (19)
C11—N4—C12—C173.5 (4)C29—N8—C30—C35173.4 (2)
N3—N4—C12—C17173.5 (2)N6—N8—C30—C358.1 (3)
C11—N4—C12—C13177.7 (3)C35—C30—C31—C322.0 (3)
N3—N4—C12—C135.3 (3)N8—C30—C31—C32178.12 (19)
C17—C12—C13—C142.5 (5)C30—C31—C32—C330.3 (3)
N4—C12—C13—C14176.3 (3)C31—C32—C33—C342.2 (4)
C12—C13—C14—C150.9 (6)C31—C32—C33—O8179.5 (2)
C13—C14—C15—C161.5 (5)C36—O8—C33—C3226.1 (4)
C13—C14—C15—O4180.0 (3)C36—O8—C33—C34155.6 (3)
C18—O4—C15—C1639.6 (5)C32—C33—C34—C352.0 (4)
C18—O4—C15—C14141.9 (4)O8—C33—C34—C35179.6 (2)
C14—C15—C16—C172.3 (5)C33—C34—C35—C300.2 (4)
O4—C15—C16—C17179.3 (3)C31—C30—C35—C342.2 (4)
C13—C12—C17—C161.7 (4)N8—C30—C35—C34177.9 (2)
N4—C12—C17—C16177.1 (2)C33—O8—C36—F3159.3 (3)
C15—C16—C17—C120.7 (4)C33—O8—C36—F487.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg5 are the centroids of the C1–C6 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20A···O70.932.292.891 (3)122
C6—H6A···O30.932.322.895 (3)120
N1—H1A···N20.862.332.767 (3)112
N5—H5A···N70.862.332.776 (3)112
C11—H11A···O7i0.932.513.406 (3)162
C17—H17A···O7i0.932.263.190 (3)174
C8—H8A···O1ii0.962.593.533 (3)167
C31—H31A···O3iii0.932.273.169 (3)163
C8—H8C···Cg50.962.743.615 (3)152
C25—H25B···Cg2iv0.962.683.578 (3)157
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+1; (iii) x+1, y, z+2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H16F2N4O4
Mr390.35
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.4015 (19), 12.138 (2), 16.270 (3)
α, β, γ (°)77.345 (2), 88.040 (2), 87.376 (2)
V3)1809.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.45 × 0.39 × 0.31
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
13864, 6692, 4477
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.147, 1.02
No. of reflections6692
No. of parameters509
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg5 are the centroids of the C1–C6 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20A···O70.932.292.891 (3)121.5
C6—H6A···O30.932.322.895 (3)120.1
N1—H1A···N20.862.332.767 (3)111.9
N5—H5A···N70.862.332.776 (3)112.2
C11—H11A···O7i0.932.513.406 (3)162.0
C17—H17A···O7i0.932.263.190 (3)173.7
C8—H8A···O1ii0.962.593.533 (3)167.2
C31—H31A···O3iii0.932.273.169 (3)162.5
C8—H8C···Cg50.962.743.615 (3)152
C25—H25B···Cg2iv0.962.683.578 (3)157
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+1; (iii) x+1, y, z+2; (iv) x+1, y, z.
 

Acknowledgements

The authors are grateful for financial support from the Education Office Foundation of Zhejiang Province (project No. Y200803795) and the Zhejiang Province Natural Science Foundation of China (project No. Y4090410.)

References

First citationAlmasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057–6059.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAmir, M. & Shikha, K. (2004). Eur. J. Med. Chem., 39, 535–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrutkowski, G., Donner, Ch., Schulze, I. & Frohberg, P. (2002). Tetrahedron, 58, 5317–5326.  Web of Science CrossRef CAS Google Scholar
First citationIbrahim, D. A. (2009). Eur. J. Med. Chem. 44, 2776–2781.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B., Shetty, S. N., Gunaga, P. & Holla, B. S. (1996). Boll. Chim. Farm. 135, 638–642.  CAS PubMed Google Scholar
First citationKanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol. 8, 644–673.  Google Scholar
First citationKondo, K., Kono, H., Simmons, K. A., Dixson, J. A., Halling, B. P., Plummer, E. L., Plummer, M. J. & Tymonko, J. M. (1992). US Patent No. 5108486.  Google Scholar
First citationLabanauskas, L., Udrenaite, E., Gaidelis, P. & Brukštus, A. (2004). Il Farm. 59, 255–259.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTozkoparan, B., Küpeli, E., Yeşilada, E. & Ertan, M. (2007). Bioorg. Med. Chem. 15, 1808–1814.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVlasova, L. A., Shamaeva, E. M., Afanaséva, G. B. & Postvskii, I. Y. (1971). Pharm. Chem. J. 5, 473–477.  CrossRef Google Scholar
First citationWahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem. 30, 955–962.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds