metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,2-Bis(4-pyrid­yl)ethane-κ2N:N′]bis­­[(4′-phenyl-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)silver(I)] bis­­(tri­fluoro­methane­sulfonate)

aSchool of Chemistry and Chemical Engineering, Yu Lin University, Yulin 719000, People's Republic of China
*Correspondence e-mail: yulinmyj@126.com

(Received 25 July 2010; accepted 7 August 2010; online 18 August 2010)

In the title compound, [Ag2(C12H12N2)(C21H15N3)2](CF3SO3)2, the AgI atom is coordinated by three N atoms of one 4′-phenyl-2,2′:6′,2′′-terpyridine (phtpy) ligand and one pyridyl N atom of the 1,2-bis­(4-pyrid­yl)ethane (bpe) ligand, displaying a distorted square-planar geometry. Two AgI atoms are bridged by one trans-bpe ligand, generating a dinuclear cation. The dinuclear cation is located on a centre of inversion, which is in the middle of the ethyl­ene fragment of the bpe ligand. In the crystal, the pyridyl rings of neighboring dinuclear units are stacked by ππ inter­actions with centroid–centroid distances of 3.667 (2) and 3.835 (2) Å. The F and O atoms of the CF3SO3 anions are involved in inter­molecular C—H⋯F and C—H⋯O hydrogen-bonding inter­actions, respectively, with –CH groups from the phtpy ligands.

Related literature

For related complexes with phtpy as a ligand, see: Chen et al. (2005[Chen, H., Tagore, R., Das, S., Incarvito, C., Faller, J. W., Crabtree, R. H. & Brudvig, G. W. (2005). Inorg. Chem. 44, 7661-7670.]); Constable et al. (1990[Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.]); Hou & Li (2005[Hou, L. & Li, D. (2005). Inorg. Chem. Commun. 8, 128-130.]); Rao et al. (1997[Rao, K. M., Rao, C. R. K. & Zacharias, P. S. (1997). Polyhedron, 16, 2369-2374.]); Shi et al. (2007[Shi, W.-J., Hou, L., Li, D. & Yin, Y.-G. (2007). Inorg. Chim. Acta, 360, 588-598.]); Tu et al. (2004[Tu, Q.-D., Li, D., Wu, T., Yin, Y.-G. & Ng, S. W. (2004). Acta Cryst. E60, m1403-m1404.]); Xie et al. (2008[Xie, H.-Y., Zhang, L. & Shi, W.-J. (2008). Acta Cryst. E64, m42-m43.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C12H12N2)(C21H15N3)2](CF3O3S)2

  • Mr = 1316.86

  • Monoclinic, P 21 /c

  • a = 7.8345 (8) Å

  • b = 17.4048 (17) Å

  • c = 20.5608 (18) Å

  • β = 108.795 (3)°

  • V = 2654.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 295 K

  • 0.18 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.855, Tmax = 0.916

  • 14927 measured reflections

  • 5194 independent reflections

  • 4170 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.08

  • 5194 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.52 3.360 (4) 150
C20—H20⋯F1i 0.93 2.56 3.251 (5) 132
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4'-Phenyl-2,2':6',2"-terpyridine (phtpy) is an excellent chelating ligand and arising from its good coordinating abilities with a broad variety of transition metal ions, such as CuI, AgI, MnII, NiII, CuII, ZnII and RuII metal ions, it has recently been the focus of several investigations (Chen et al., 2005; Constable et al., 1990; Hou & Li, 2005; Rao et al., 1997; Shi et al., 2007; Tu et al., 2004; Xie et al., 2008). Some of the reported complexes exhibit interesting photoluminescent and magnetic properties. We report here the synthesis and crystal structure of a new AgI complex incorporating both phtpy and 1,2-bis(4-pyridy)ethane (bpe) as ligands.

In the title compound, [Ag2(C12H12N2)(C21H15N3)2] (CF3SO3)2, the asymmetric unit is composed of one Ag atom, one phtpy ligand, one half bpe ligand and one CF3SO3- anion, as shown in Fig. 1. The AgI centre is four-coordinated by three N atoms of one phtpy ligand and one pyridyl N atom of the bpe ligand, resulting in a distorted square-planar geometry. The sum of the angles about the AgI centre is 385.02°. The bpe ligand exhibits a trans-mode at the ethylene unit (C24/C27/C27ii/C24ii, symmetry code, ii = 2-x, 1-y, 1-z) and bridges the two AgI centres to generate a dinuclear structure, which is located on a center of inversion in the middle of the ethylene group of the bpe ligand. In the solid state, the phtpy ligands are π-stacking with phtpy units from neighboring complexes so as to form stacks along the a-axis of the cell. Alternating phtpy units in the stacks have opposite orientation with one phtpy unit of each dinuclear complex being part of one stack, while the other phtpy unit is part of the next neighboring stack. The interdigitating π-stacked columns thus form layers of connected stacks that stretch perpendicular to the c-axis of the unit cell. Closest entroid-to-centroid distances within the stacks are of 3.835 (2) Å and 3.667 (2) Å for the distances of the N3 pyridyl and the N1iii and N2i pyridyl rings, respectively (Fig. 2). (Symmetry operators: i = 1-x, -y, 1-z, iii = 2-x, -y, 1-z). In addition, the F1 and O1 atoms of CF3SO3- anions are involved in intermolecular C-H···F and C-H···O hydrogen bonding interactions, respectively, with -CH groups from the phtpy ligands (Fig. 3).

Related literature top

For related complexes with phtpy as a ligand, see: Chen et al. (2005); Constable et al. (1990); Hou & Li (2005); Rao et al. (1997); Shi et al. (2007); Tu et al. (2004); Xie et al. (2008).

Experimental top

The ligand 4'-phenyl-2,2':6',2"-terpyridine (phtpy) was synthesized according to the documented method (Constable et al., 1990). A mixture of silver trifluoromethanesulfonate (0.05 mmol, 12.8 mg), phtpy (0.1 mmol, 30.9 mg), 1,2-bis(4-pyridy)ethane (0.05 mmol, 9.2 mg) and 8 ml acetonitrile was stirred in a 25 ml beaker at room temperature for 3 h. After filtration, the filtrate was placed at room temperature for one week to give yellow prismatic crystals of the title compound. Yield: 22.4 mg (34 %). Mp: above 573 K. Anal. C, 51.08; H, 3.21; N, 8.51 %. Found: C, 51.12; H, 3.24; N, 8.46 %. IR (KBr, cm-1): 3061, 2925, 1601, 1472, 1408, 1301, 1252, 1015, 875.

Refinement top

The carbon-bound H atoms were placed at calculated positions (C—H = 0.93 Å or 0.97 Å) and refined as riding, with U(H) = 1.2Ueq(C), for aryl and ethylene H atoms, respectively.

Structure description top

4'-Phenyl-2,2':6',2"-terpyridine (phtpy) is an excellent chelating ligand and arising from its good coordinating abilities with a broad variety of transition metal ions, such as CuI, AgI, MnII, NiII, CuII, ZnII and RuII metal ions, it has recently been the focus of several investigations (Chen et al., 2005; Constable et al., 1990; Hou & Li, 2005; Rao et al., 1997; Shi et al., 2007; Tu et al., 2004; Xie et al., 2008). Some of the reported complexes exhibit interesting photoluminescent and magnetic properties. We report here the synthesis and crystal structure of a new AgI complex incorporating both phtpy and 1,2-bis(4-pyridy)ethane (bpe) as ligands.

In the title compound, [Ag2(C12H12N2)(C21H15N3)2] (CF3SO3)2, the asymmetric unit is composed of one Ag atom, one phtpy ligand, one half bpe ligand and one CF3SO3- anion, as shown in Fig. 1. The AgI centre is four-coordinated by three N atoms of one phtpy ligand and one pyridyl N atom of the bpe ligand, resulting in a distorted square-planar geometry. The sum of the angles about the AgI centre is 385.02°. The bpe ligand exhibits a trans-mode at the ethylene unit (C24/C27/C27ii/C24ii, symmetry code, ii = 2-x, 1-y, 1-z) and bridges the two AgI centres to generate a dinuclear structure, which is located on a center of inversion in the middle of the ethylene group of the bpe ligand. In the solid state, the phtpy ligands are π-stacking with phtpy units from neighboring complexes so as to form stacks along the a-axis of the cell. Alternating phtpy units in the stacks have opposite orientation with one phtpy unit of each dinuclear complex being part of one stack, while the other phtpy unit is part of the next neighboring stack. The interdigitating π-stacked columns thus form layers of connected stacks that stretch perpendicular to the c-axis of the unit cell. Closest entroid-to-centroid distances within the stacks are of 3.835 (2) Å and 3.667 (2) Å for the distances of the N3 pyridyl and the N1iii and N2i pyridyl rings, respectively (Fig. 2). (Symmetry operators: i = 1-x, -y, 1-z, iii = 2-x, -y, 1-z). In addition, the F1 and O1 atoms of CF3SO3- anions are involved in intermolecular C-H···F and C-H···O hydrogen bonding interactions, respectively, with -CH groups from the phtpy ligands (Fig. 3).

For related complexes with phtpy as a ligand, see: Chen et al. (2005); Constable et al. (1990); Hou & Li (2005); Rao et al. (1997); Shi et al. (2007); Tu et al. (2004); Xie et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level, and H atoms were omitted for clarity; symmetry code, ii: 2-x, 1-y, 1-z.
[Figure 2] Fig. 2. Packing diagram of the title compound showing the intermolecular ππ stacking interactions. The H atoms and CF3SO3- anions have been omitted for clarity.
[Figure 3] Fig. 3. Packing diagram of the title compound showing the intermolecular ππ and C-H···F and C-H···O hydrogen bonding interactions. The H atoms not involved in hydrogen bonding have been omitted for clarity.
[µ-1,2-Bis(4-pyridyl)ethane-κ2N:N']bis[(4'-phenyl- 2,2':6',2''-terpyridine-κ3N,N',N'')silver(I)] bis(trifluoromethanesulfonate) top
Crystal data top
[Ag2(C12H12N2)(C21H15N3)2](CF3O3S)2F(000) = 1324
Mr = 1316.86Dx = 1.648 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4745 reflections
a = 7.8345 (8) Åθ = 2.3–25.0°
b = 17.4048 (17) ŵ = 0.90 mm1
c = 20.5608 (18) ÅT = 295 K
β = 108.795 (3)°Prism, yellow
V = 2654.1 (4) Å30.18 × 0.12 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX area-detector
diffractometer
5194 independent reflections
Radiation source: fine-focus sealed tube4170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.855, Tmax = 0.916k = 2121
14927 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.7584P]
where P = (Fo2 + 2Fc2)/3
5194 reflections(Δ/σ)max = 0.002
361 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Ag2(C12H12N2)(C21H15N3)2](CF3O3S)2V = 2654.1 (4) Å3
Mr = 1316.86Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.8345 (8) ŵ = 0.90 mm1
b = 17.4048 (17) ÅT = 295 K
c = 20.5608 (18) Å0.18 × 0.12 × 0.10 mm
β = 108.795 (3)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
5194 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4170 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.916Rint = 0.022
14927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.08Δρmax = 0.54 e Å3
5194 reflectionsΔρmin = 0.50 e Å3
361 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.83117 (4)0.124375 (13)0.540004 (13)0.06447 (14)
N10.8764 (4)0.10707 (15)0.42457 (14)0.0530 (6)
N20.7513 (3)0.00035 (13)0.49378 (11)0.0402 (5)
N30.7565 (3)0.04668 (14)0.61909 (12)0.0484 (6)
N40.8557 (4)0.25065 (15)0.54219 (14)0.0568 (7)
C10.9334 (5)0.1619 (2)0.39122 (19)0.0605 (8)
H10.96850.20870.41330.073*
C20.9433 (5)0.1533 (2)0.32641 (18)0.0598 (8)
H20.98410.19300.30500.072*
C30.8911 (4)0.0840 (2)0.29400 (17)0.0559 (8)
H30.89610.07590.24990.067*
C40.8311 (4)0.02665 (18)0.32742 (16)0.0508 (7)
H40.79440.02040.30600.061*
C50.8262 (4)0.03988 (16)0.39343 (14)0.0420 (6)
C60.7646 (4)0.02060 (16)0.43270 (14)0.0400 (6)
C70.7215 (4)0.09458 (17)0.40732 (14)0.0434 (6)
H70.73680.10860.36590.052*
C80.6551 (4)0.14803 (17)0.44398 (14)0.0416 (6)
C90.6437 (4)0.12466 (15)0.50720 (15)0.0428 (6)
H90.60120.15850.53350.051*
C100.6957 (4)0.05081 (15)0.53104 (13)0.0392 (6)
C110.6937 (4)0.02467 (16)0.60008 (14)0.0413 (6)
C120.6375 (4)0.07108 (19)0.64369 (15)0.0508 (7)
H120.59590.12050.63010.061*
C130.6430 (5)0.0442 (2)0.70717 (16)0.0605 (9)
H130.60550.07510.73690.073*
C140.7046 (5)0.0293 (2)0.72631 (17)0.0638 (9)
H140.70830.04920.76870.077*
C150.7597 (5)0.0717 (2)0.68126 (16)0.0602 (8)
H150.80230.12110.69430.072*
C160.5957 (4)0.22547 (16)0.41550 (14)0.0445 (6)
C170.5324 (4)0.23678 (18)0.34475 (16)0.0529 (7)
H170.52900.19570.31540.063*
C180.4746 (5)0.3084 (2)0.31780 (18)0.0636 (9)
H180.43240.31510.27040.076*
C190.4789 (5)0.36933 (19)0.3599 (2)0.0645 (9)
H190.44010.41740.34130.077*
C200.5409 (5)0.35943 (19)0.43023 (18)0.0620 (9)
H200.54360.40090.45910.074*
C210.5990 (5)0.28787 (18)0.45772 (16)0.0549 (8)
H210.64080.28150.50520.066*
C220.9687 (5)0.2898 (2)0.59487 (19)0.0624 (9)
H221.02670.26360.63540.075*
C231.0020 (6)0.3663 (2)0.5915 (2)0.0690 (10)
H231.08110.39100.62930.083*
C240.9185 (5)0.40753 (19)0.5317 (2)0.0635 (9)
C250.8000 (5)0.36723 (19)0.4785 (2)0.0642 (9)
H250.73810.39230.43780.077*
C260.7729 (5)0.29046 (19)0.48535 (18)0.0595 (8)
H260.69260.26470.44850.071*
C270.9537 (7)0.4920 (2)0.5257 (2)0.0888 (14)
H27A0.83990.51940.51270.107*
H27B1.02740.51110.57020.107*
S10.31230 (14)0.32504 (6)0.30585 (5)0.0664 (3)
F10.3391 (4)0.41393 (17)0.41012 (12)0.1064 (9)
F20.1381 (4)0.44991 (16)0.31985 (14)0.1094 (9)
F30.0908 (5)0.3532 (2)0.37338 (19)0.1285 (12)
O10.3771 (5)0.26387 (17)0.35204 (17)0.1020 (10)
O20.4462 (6)0.3727 (2)0.2939 (2)0.1197 (14)
O30.1655 (5)0.3085 (2)0.24617 (16)0.1157 (13)
C280.2121 (6)0.3884 (2)0.35363 (19)0.0699 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0906 (2)0.03503 (16)0.0624 (2)0.00525 (11)0.01721 (15)0.00040 (10)
N10.0587 (16)0.0431 (13)0.0574 (16)0.0039 (12)0.0192 (13)0.0038 (12)
N20.0405 (13)0.0391 (12)0.0383 (12)0.0027 (10)0.0087 (10)0.0011 (10)
N30.0579 (15)0.0387 (13)0.0437 (13)0.0068 (11)0.0097 (12)0.0030 (10)
N40.0702 (18)0.0383 (14)0.0629 (18)0.0016 (12)0.0229 (15)0.0024 (12)
C10.069 (2)0.0446 (18)0.069 (2)0.0084 (16)0.0233 (18)0.0044 (16)
C20.058 (2)0.0544 (19)0.071 (2)0.0026 (16)0.0265 (18)0.0187 (17)
C30.0556 (19)0.063 (2)0.0527 (18)0.0014 (15)0.0224 (15)0.0094 (15)
C40.0536 (18)0.0489 (17)0.0503 (17)0.0017 (14)0.0175 (15)0.0034 (13)
C50.0362 (14)0.0428 (15)0.0446 (15)0.0033 (12)0.0096 (12)0.0051 (12)
C60.0350 (14)0.0418 (15)0.0405 (14)0.0034 (11)0.0082 (12)0.0043 (11)
C70.0459 (16)0.0438 (15)0.0402 (14)0.0005 (13)0.0133 (13)0.0010 (12)
C80.0417 (15)0.0416 (14)0.0409 (14)0.0001 (11)0.0125 (12)0.0007 (12)
C90.0418 (15)0.0432 (16)0.0415 (15)0.0010 (12)0.0109 (12)0.0018 (12)
C100.0356 (14)0.0387 (14)0.0398 (14)0.0046 (11)0.0076 (11)0.0014 (11)
C110.0372 (15)0.0444 (15)0.0398 (14)0.0090 (12)0.0089 (12)0.0022 (12)
C120.0510 (18)0.0525 (17)0.0503 (16)0.0020 (14)0.0184 (14)0.0024 (14)
C130.059 (2)0.080 (2)0.0469 (17)0.0030 (17)0.0224 (16)0.0042 (16)
C140.068 (2)0.077 (2)0.0449 (17)0.0126 (18)0.0164 (16)0.0142 (17)
C150.078 (2)0.0487 (18)0.0493 (18)0.0056 (16)0.0140 (17)0.0080 (14)
C160.0462 (16)0.0434 (15)0.0445 (15)0.0040 (12)0.0156 (13)0.0028 (12)
C170.063 (2)0.0490 (17)0.0467 (17)0.0053 (15)0.0183 (15)0.0011 (13)
C180.074 (2)0.065 (2)0.0492 (18)0.0133 (17)0.0163 (17)0.0135 (16)
C190.078 (2)0.0494 (19)0.066 (2)0.0161 (16)0.0222 (19)0.0162 (16)
C200.083 (3)0.0430 (17)0.063 (2)0.0105 (16)0.0269 (19)0.0012 (15)
C210.071 (2)0.0472 (17)0.0462 (17)0.0063 (15)0.0181 (15)0.0018 (13)
C220.076 (2)0.0504 (19)0.062 (2)0.0000 (17)0.0233 (18)0.0037 (16)
C230.084 (3)0.054 (2)0.074 (2)0.0155 (18)0.033 (2)0.0126 (18)
C240.087 (3)0.0404 (17)0.079 (2)0.0082 (17)0.049 (2)0.0047 (16)
C250.076 (2)0.0498 (19)0.070 (2)0.0067 (17)0.028 (2)0.0167 (16)
C260.060 (2)0.0495 (18)0.066 (2)0.0042 (15)0.0171 (17)0.0005 (16)
C270.140 (4)0.043 (2)0.111 (3)0.012 (2)0.079 (3)0.002 (2)
S10.0776 (6)0.0679 (6)0.0576 (5)0.0045 (5)0.0271 (5)0.0090 (4)
F10.135 (2)0.109 (2)0.0634 (14)0.0154 (18)0.0157 (15)0.0260 (14)
F20.151 (3)0.0865 (18)0.0858 (17)0.0446 (17)0.0304 (17)0.0173 (14)
F30.143 (3)0.121 (2)0.168 (3)0.009 (2)0.115 (3)0.007 (2)
O10.134 (3)0.0624 (18)0.104 (2)0.0260 (18)0.032 (2)0.0056 (16)
O20.133 (3)0.129 (3)0.134 (3)0.035 (2)0.094 (3)0.016 (2)
O30.108 (2)0.154 (3)0.0690 (19)0.007 (2)0.0062 (18)0.049 (2)
C280.097 (3)0.064 (2)0.050 (2)0.003 (2)0.026 (2)0.0051 (17)
Geometric parameters (Å, º) top
Ag1—N42.205 (3)C14—C151.360 (5)
Ag1—N32.330 (3)C14—H140.9300
Ag1—N22.360 (2)C15—H150.9300
Ag1—N12.528 (3)C16—C211.386 (4)
N1—C51.331 (4)C16—C171.391 (4)
N1—C11.333 (4)C17—C181.379 (5)
N2—C101.336 (4)C17—H170.9300
N2—C61.344 (4)C18—C191.363 (5)
N3—C151.343 (4)C18—H180.9300
N3—C111.346 (4)C19—C201.380 (5)
N4—C261.334 (4)C19—H190.9300
N4—C221.343 (4)C20—C211.383 (4)
C1—C21.368 (5)C20—H200.9300
C1—H10.9300C21—H210.9300
C2—C31.374 (5)C22—C231.363 (5)
C2—H20.9300C22—H220.9300
C3—C41.377 (4)C23—C241.392 (5)
C3—H30.9300C23—H230.9300
C4—C51.389 (4)C24—C251.376 (5)
C4—H40.9300C24—C271.507 (5)
C5—C61.498 (4)C25—C261.367 (5)
C6—C71.390 (4)C25—H250.9300
C7—C81.399 (4)C26—H260.9300
C7—H70.9300C27—C27i1.487 (8)
C8—C91.392 (4)C27—H27A0.9700
C8—C161.483 (4)C27—H27B0.9700
C9—C101.389 (4)S1—O11.408 (3)
C9—H90.9300S1—O31.415 (3)
C10—C111.496 (4)S1—O21.420 (3)
C11—C121.380 (4)S1—C281.815 (4)
C12—C131.374 (4)F1—C281.338 (5)
C12—H120.9300F2—C281.305 (4)
C13—C141.378 (5)F3—C281.301 (5)
C13—H130.9300
N4—Ag1—N3127.16 (9)C15—C14—C13117.9 (3)
N4—Ag1—N2158.38 (9)C15—C14—H14121.0
N3—Ag1—N269.91 (8)C13—C14—H14121.0
N4—Ag1—N195.75 (9)N3—C15—C14124.0 (3)
N3—Ag1—N1136.79 (8)N3—C15—H15118.0
N2—Ag1—N167.19 (8)C14—C15—H15118.0
C5—N1—C1118.5 (3)C21—C16—C17118.2 (3)
C5—N1—Ag1116.58 (19)C21—C16—C8121.7 (3)
C1—N1—Ag1124.7 (2)C17—C16—C8120.1 (3)
C10—N2—C6119.5 (2)C18—C17—C16120.5 (3)
C10—N2—Ag1118.15 (17)C18—C17—H17119.7
C6—N2—Ag1122.28 (18)C16—C17—H17119.7
C15—N3—C11118.0 (3)C19—C18—C17120.7 (3)
C15—N3—Ag1122.9 (2)C19—C18—H18119.7
C11—N3—Ag1118.89 (18)C17—C18—H18119.7
C26—N4—C22116.9 (3)C18—C19—C20119.8 (3)
C26—N4—Ag1119.0 (2)C18—C19—H19120.1
C22—N4—Ag1123.5 (2)C20—C19—H19120.1
N1—C1—C2123.8 (3)C19—C20—C21120.0 (3)
N1—C1—H1118.1C19—C20—H20120.0
C2—C1—H1118.1C21—C20—H20120.0
C1—C2—C3117.8 (3)C20—C21—C16120.8 (3)
C1—C2—H2121.1C20—C21—H21119.6
C3—C2—H2121.1C16—C21—H21119.6
C2—C3—C4119.3 (3)N4—C22—C23122.8 (4)
C2—C3—H3120.3N4—C22—H22118.6
C4—C3—H3120.3C23—C22—H22118.6
C3—C4—C5119.2 (3)C22—C23—C24120.4 (4)
C3—C4—H4120.4C22—C23—H23119.8
C5—C4—H4120.4C24—C23—H23119.8
N1—C5—C4121.3 (3)C25—C24—C23116.3 (3)
N1—C5—C6117.1 (3)C25—C24—C27121.8 (4)
C4—C5—C6121.7 (3)C23—C24—C27121.9 (4)
N2—C6—C7121.3 (3)C26—C25—C24120.3 (3)
N2—C6—C5116.7 (2)C26—C25—H25119.9
C7—C6—C5122.0 (3)C24—C25—H25119.9
C6—C7—C8120.1 (3)N4—C26—C25123.4 (3)
C6—C7—H7119.9N4—C26—H26118.3
C8—C7—H7119.9C25—C26—H26118.3
C9—C8—C7117.1 (3)C27i—C27—C24112.7 (4)
C9—C8—C16121.9 (3)C27i—C27—H27A109.1
C7—C8—C16121.0 (3)C24—C27—H27A109.1
C10—C9—C8120.0 (3)C27i—C27—H27B109.1
C10—C9—H9120.0C24—C27—H27B109.1
C8—C9—H9120.0H27A—C27—H27B107.8
N2—C10—C9121.8 (3)O1—S1—O3116.6 (2)
N2—C10—C11116.5 (2)O1—S1—O2115.6 (3)
C9—C10—C11121.7 (3)O3—S1—O2114.1 (3)
N3—C11—C12121.0 (3)O1—S1—C28102.68 (18)
N3—C11—C10116.2 (2)O3—S1—C28102.7 (2)
C12—C11—C10122.8 (3)O2—S1—C28102.2 (2)
C13—C12—C11119.9 (3)F3—C28—F2108.0 (4)
C13—C12—H12120.0F3—C28—F1107.4 (3)
C11—C12—H12120.0F2—C28—F1105.6 (3)
C12—C13—C14119.2 (3)F3—C28—S1111.7 (3)
C12—C13—H13120.4F2—C28—S1113.9 (3)
C14—C13—H13120.4F1—C28—S1109.9 (3)
N4—Ag1—N1—C5163.1 (2)Ag1—N2—C10—C111.4 (3)
N3—Ag1—N1—C510.5 (3)C8—C9—C10—N22.4 (4)
N2—Ag1—N1—C53.2 (2)C8—C9—C10—C11177.1 (3)
N4—Ag1—N1—C111.7 (3)C15—N3—C11—C121.1 (4)
N3—Ag1—N1—C1174.7 (2)Ag1—N3—C11—C12176.1 (2)
N2—Ag1—N1—C1177.9 (3)C15—N3—C11—C10178.9 (3)
N4—Ag1—N2—C10142.1 (3)Ag1—N3—C11—C106.2 (3)
N3—Ag1—N2—C103.26 (19)N2—C10—C11—N33.1 (4)
N1—Ag1—N2—C10177.9 (2)C9—C10—C11—N3176.4 (3)
N4—Ag1—N2—C639.7 (4)N2—C10—C11—C12179.2 (3)
N3—Ag1—N2—C6174.9 (2)C9—C10—C11—C121.2 (4)
N1—Ag1—N2—C60.24 (19)N3—C11—C12—C130.9 (5)
N4—Ag1—N3—C1514.9 (3)C10—C11—C12—C13178.5 (3)
N2—Ag1—N3—C15179.7 (3)C11—C12—C13—C140.1 (5)
N1—Ag1—N3—C15173.1 (2)C12—C13—C14—C150.8 (5)
N4—Ag1—N3—C11159.7 (2)C11—N3—C15—C140.4 (5)
N2—Ag1—N3—C115.1 (2)Ag1—N3—C15—C14175.1 (3)
N1—Ag1—N3—C1112.3 (3)C13—C14—C15—N30.5 (6)
N3—Ag1—N4—C26131.2 (2)C9—C8—C16—C2127.9 (5)
N2—Ag1—N4—C266.7 (4)C7—C8—C16—C21153.6 (3)
N1—Ag1—N4—C2643.2 (3)C9—C8—C16—C17151.3 (3)
N3—Ag1—N4—C2257.8 (3)C7—C8—C16—C1727.2 (4)
N2—Ag1—N4—C22164.2 (2)C21—C16—C17—C180.0 (5)
N1—Ag1—N4—C22127.7 (3)C8—C16—C17—C18179.1 (3)
C5—N1—C1—C20.1 (5)C16—C17—C18—C190.2 (6)
Ag1—N1—C1—C2174.6 (3)C17—C18—C19—C200.2 (6)
N1—C1—C2—C30.1 (5)C18—C19—C20—C210.2 (6)
C1—C2—C3—C40.1 (5)C19—C20—C21—C160.1 (6)
C2—C3—C4—C50.5 (5)C17—C16—C21—C200.0 (5)
C1—N1—C5—C40.5 (4)C8—C16—C21—C20179.2 (3)
Ag1—N1—C5—C4174.6 (2)C26—N4—C22—C231.0 (5)
C1—N1—C5—C6179.4 (3)Ag1—N4—C22—C23170.1 (3)
Ag1—N1—C5—C65.5 (3)N4—C22—C23—C240.3 (6)
C3—C4—C5—N10.7 (5)C22—C23—C24—C251.6 (6)
C3—C4—C5—C6179.2 (3)C22—C23—C24—C27179.2 (4)
C10—N2—C6—C70.1 (4)C23—C24—C25—C261.7 (6)
Ag1—N2—C6—C7178.2 (2)C27—C24—C25—C26179.2 (4)
C10—N2—C6—C5179.5 (2)C22—N4—C26—C251.0 (5)
Ag1—N2—C6—C52.4 (3)Ag1—N4—C26—C25170.5 (3)
N1—C5—C6—N25.3 (4)C24—C25—C26—N40.4 (6)
C4—C5—C6—N2174.8 (3)C25—C24—C27—C27i66.6 (7)
N1—C5—C6—C7175.3 (3)C23—C24—C27—C27i114.3 (6)
C4—C5—C6—C74.7 (4)O1—S1—C28—F356.0 (4)
N2—C6—C7—C82.9 (4)O3—S1—C28—F365.4 (4)
C5—C6—C7—C8176.5 (3)O2—S1—C28—F3176.1 (3)
C6—C7—C8—C93.1 (4)O1—S1—C28—F2178.7 (3)
C6—C7—C8—C16175.5 (3)O3—S1—C28—F257.3 (4)
C7—C8—C9—C100.5 (4)O2—S1—C28—F261.2 (4)
C16—C8—C9—C10178.0 (3)O1—S1—C28—F163.1 (3)
C6—N2—C10—C92.7 (4)O3—S1—C28—F1175.5 (3)
Ag1—N2—C10—C9179.0 (2)O2—S1—C28—F157.1 (3)
C6—N2—C10—C11176.8 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1ii0.932.523.360 (4)150
C20—H20···F1ii0.932.563.251 (5)132
Symmetry code: (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag2(C12H12N2)(C21H15N3)2](CF3O3S)2
Mr1316.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.8345 (8), 17.4048 (17), 20.5608 (18)
β (°) 108.795 (3)
V3)2654.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.855, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
14927, 5194, 4170
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.08
No. of reflections5194
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.50

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.523.360 (4)150.1
C20—H20···F1i0.932.563.251 (5)131.9
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was supported by grants from the Natural Science Foundation of Shaanxi Province (Nos. 2010K14-02-23) and the Scientific Research Plan projects of Shaanxi Education Department (Nos. 09JK837).

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H., Tagore, R., Das, S., Incarvito, C., Faller, J. W., Crabtree, R. H. & Brudvig, G. W. (2005). Inorg. Chem. 44, 7661–7670.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationConstable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54.  CSD CrossRef CAS Web of Science Google Scholar
First citationHou, L. & Li, D. (2005). Inorg. Chem. Commun. 8, 128–130.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, K. M., Rao, C. R. K. & Zacharias, P. S. (1997). Polyhedron, 16, 2369–2374.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W.-J., Hou, L., Li, D. & Yin, Y.-G. (2007). Inorg. Chim. Acta, 360, 588–598.  Web of Science CSD CrossRef CAS Google Scholar
First citationTu, Q.-D., Li, D., Wu, T., Yin, Y.-G. & Ng, S. W. (2004). Acta Cryst. E60, m1403–m1404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, H.-Y., Zhang, L. & Shi, W.-J. (2008). Acta Cryst. E64, m42–m43.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds