metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Oxido-bis­­({2,2′-[o-phenylenebis(nitrilo­methyl­idyne)]diphenolato}iron(III)) methanol monosolvate dihydrate

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and bSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: xiaopingshen@163.com

(Received 29 July 2010; accepted 5 August 2010; online 11 August 2010)

The title complex, [Fe2(C20H14N2O2)2O]·CH4O·2H2O, is composed of μ-oxido-bridged ferric 2,2′-[o-phenylene­bis(nitrilo­methylidyne)]diphenolate (salphen) dimers, one methanol mol­ecule and two H2O mol­ecules. Each iron(III) ion, surrounded by two coordinating N and O atoms from the salphen ligand and one bridging O atom, shows a five-coordinate square-pyramidal geometry. One of the two solvent water mol­ecules is disordered over three positions with occupancies of 0.44 (1), 0.37 (1) and 0.19 (1).

Related literature

For background to μ-oxo-diiron(III) complexes, see: Kurtz et al. (1990[Kurtz, D. M. Jr (1990). Chem. Rev. 90, 585-606.]); Vincent et al. (1990[Vincent, J. B., Oliver-Lilley, G. L. & Averill, B. A. (1990). Chem. Rev. 90, 1447-1467.]); Reedijk & Bouwman (1999[Reedijk, J. & Bouwman, E. (1999). Bioinorganic Catalysis, 2nd ed. New York: Marcel Dekker.]); Oyaizu et al. (2001[Oyaizu, K., Dewi, E. L. & Tsuchida, E. (2001). Inorg. Chim. Acta, 321, 205-208.]). For related structures, see: Ashmawy & Ujaimi (1991[Ashmawy, F. M. & Ujaimi, A. R. (1991). Inorg. Chim. Acta, 187, 155-158.]); Elmali et al. (1993[Elmali, A., Atakol, O., Svoboda, I. & Fuess, H. (1993). Z. Kristallogr. 203, 275-278.]); Oyaizu et al. (2001[Oyaizu, K., Dewi, E. L. & Tsuchida, E. (2001). Inorg. Chim. Acta, 321, 205-208.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C20H14N2O2)2O]·CH4O·2H2O

  • Mr = 824.44

  • Triclinic, [P \overline 1]

  • a = 13.042 (3) Å

  • b = 13.249 (3) Å

  • c = 13.724 (3) Å

  • α = 116.60 (3)°

  • β = 110.50 (3)°

  • γ = 93.80 (3)°

  • V = 1914.4 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 298 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Rigaku CCD area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan.]) Tmin = 0.841, Tmax = 0.854

  • 15784 measured reflections

  • 6858 independent reflections

  • 4753 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.158

  • S = 1.05

  • 6858 reflections

  • 519 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O7i 0.82 2.15 2.916 (6) 156
O7—H7WB⋯O6 0.99 1.87 2.808 (6) 158
O7—H7WA⋯O3 0.96 2.17 3.090 (5) 160
O7—H7WA⋯O4 0.96 2.62 3.330 (5) 131
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

µ-Oxo-diiron(III) complexes are of considerable interest to chemists and biologists because of their interesting electronic structures and the magnetic interactions between the two iron(III) centers, and the role played by the oxo-bridged dinuclear iron centres in proteins (Kurtz et al., 1990; Vincent et al., 1990; Oyaizu et al., 2001). The Fe—Fe distances and the corresponding the Fe—O—Fe bond lengths and the angles are the most important factors that determine the electronic and magnetic properties of these complexes (Reedijk et al., 1999). It is important to note that the crystal structure of µ-oxo-bridged ferric salphen dimers [salphenH2= N,N'-o-phenylenebis(salicylideneimine)] depend strongly on the presence and type of lattice solvent molecules: [{FeIII(salphen)}2O].CH2Cl2.C4H10O (Oyaizu et al., 2001); [{FeIII(salphen)}2O].DMSO (Ashmawy et al., 1991) and [{FeIII(salphen)}2O].C4H8O2 (Elmali et al., 1993). By using a different solvent system, we obtained a new methanol dihydrate solvate of the µ-oxo-diiron(III) complex, [{FeIII(salphen)}2O].CH3OH.2H2O. Herein, the crystal structure of this solvate is presented.

The title complex is composed of one µ-oxo-diiron(III) unit of [{FeIII(salphen)}2O], one methanol molecule and two H2O molecules (Fig. 1). Each iron(III) atom, surrounded by each two coordinating N and O atoms from the salphen ligand, extends outwards of the mean N2O2 plane towards the bridging oxygen atom by as much as 0.588 (3) and 0.583 (3) Å for Fe(1) and Fe(2), respectively. The iron atoms thus substantially protrude from the ligand planes and show a typical five-coordinate square-pyramidal geometry. The Fe—O (bridging) bond lengths are 1.786 (3) and 1.784 (3) Å for Fe(1) and Fe(2), respectively. The Fe—O—Fe angle of 146.68 (16)° is almost equal to the value of 146.7 (4)° reported for [{FeIII(salphen)}2O].DMSO (Ashmawy et al., 1991), and is bigger than the values of 141 (1)° and 145.0 (3)° reported for [{FeIII(salphen)}2O].CH2Cl2.C4H10O (Oyaizu et al., 2001) and [{FeIII(salphen)}2O].C4H8O2 (Elmali et al., 1993), respectively. The Fe···Fe distance of 3.420 (3) Å is consistent with the values (3.35–3.55 Å) reported for µ-oxo-diiron(III) complexes with macrocyclic ligands (Oyaizu et al., 2001). One of the two interstitial water molecules in the structure was found to be svererly disordered and has been refined as disordered over three positions with occupancies of 43.9 (4)%, 37 (1)% and 19 (1)% for O8, O9 and O10, respectively. Hydrogen atoms for the disordered water molecule could not be located and were omitted from the refinement.

There are some hydrogen-bonding interactions between methanol and water molecules, and between the water molecules and the salphen ligand. These hydrogen bonding interactions lead to a group of four oxygen atoms - two water and two methanol molecules - that are arranged around a crystallographic inversion center in a quadratic square pattern. The water molecules of the unit form additional bifurcated hydrogen bonds twoards the two oxygen atoms (O3, O4) of a salphen ligand of adjacent [{FeIII(salphen)}2O] complexes thus binding the complexes together by H-bonds via the square H2O/MeOH units (Table 1, Fig. 2). The oxygen atoms of the other salphen ligand of the complex (O1, O2) show signs of hydrogen bonding interactions with the disordered water molecule.

Related literature top

For background to µ-oxo-diiron(III) complexes, see: Kurtz et al. (1990); Vincent et al. (1990); Reedijk et al. (1999); Oyaizu et al. (2001). For related structures, see: Ashmawy & Ujaimi (1991); Elmali et al. (1993); Oyaizu et al. (2001).

Experimental top

Red prismatic crystals of the title complex were obtained by slow evaporation of a MeOH and H2O (V/V = 1:1, 10 mL) mixture of {Fe(salphen)(C2H5OH)2}Cl (0.1 mmol) in the dark at room temperature. The resulting crystals were collected, washed with H2O and MeOH, respectively, and dried in air. Melting point = 446.6 K. IR (KBr, cm-1): 3416(s), 2958(m), 2921(m), 2115(w), 1605(s), 1581(s), 1532(s), 1462(s), 1446(m), 1381(m), 1323(m), 1193(m), 1158(m), 1050(m), 745(m), 540(m).

Refinement top

All non-H atoms were refined anisotropically. The (C)H atoms of the salphenH2 ligand were placed in calculated positions (C - H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The (C)H atoms of the methanol molecule were placed geometrically (C - H = 0.96 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C). The (O)H atoms of the methanol molecule was placed geometrically (O - H = 0.82 Å) with Uiso(H) = 1.5Ueq(O). The (O)H atoms of water molecule (O7) were located in a difference Fourier map and refined as riding with Uiso(H) = 1.2Ueq(O). The other water molecule in the structure was found to be svererly disordered and has been refined as disordered over three positions with occupancies of 43.9 (4)%, 37 (1)% and 19 (1)% for O8, O9 and O10, respectively, summing up to 100%. Hydrogen atoms for the disordered water molecule could not be loctated and were omitted from the refinement.

Structure description top

µ-Oxo-diiron(III) complexes are of considerable interest to chemists and biologists because of their interesting electronic structures and the magnetic interactions between the two iron(III) centers, and the role played by the oxo-bridged dinuclear iron centres in proteins (Kurtz et al., 1990; Vincent et al., 1990; Oyaizu et al., 2001). The Fe—Fe distances and the corresponding the Fe—O—Fe bond lengths and the angles are the most important factors that determine the electronic and magnetic properties of these complexes (Reedijk et al., 1999). It is important to note that the crystal structure of µ-oxo-bridged ferric salphen dimers [salphenH2= N,N'-o-phenylenebis(salicylideneimine)] depend strongly on the presence and type of lattice solvent molecules: [{FeIII(salphen)}2O].CH2Cl2.C4H10O (Oyaizu et al., 2001); [{FeIII(salphen)}2O].DMSO (Ashmawy et al., 1991) and [{FeIII(salphen)}2O].C4H8O2 (Elmali et al., 1993). By using a different solvent system, we obtained a new methanol dihydrate solvate of the µ-oxo-diiron(III) complex, [{FeIII(salphen)}2O].CH3OH.2H2O. Herein, the crystal structure of this solvate is presented.

The title complex is composed of one µ-oxo-diiron(III) unit of [{FeIII(salphen)}2O], one methanol molecule and two H2O molecules (Fig. 1). Each iron(III) atom, surrounded by each two coordinating N and O atoms from the salphen ligand, extends outwards of the mean N2O2 plane towards the bridging oxygen atom by as much as 0.588 (3) and 0.583 (3) Å for Fe(1) and Fe(2), respectively. The iron atoms thus substantially protrude from the ligand planes and show a typical five-coordinate square-pyramidal geometry. The Fe—O (bridging) bond lengths are 1.786 (3) and 1.784 (3) Å for Fe(1) and Fe(2), respectively. The Fe—O—Fe angle of 146.68 (16)° is almost equal to the value of 146.7 (4)° reported for [{FeIII(salphen)}2O].DMSO (Ashmawy et al., 1991), and is bigger than the values of 141 (1)° and 145.0 (3)° reported for [{FeIII(salphen)}2O].CH2Cl2.C4H10O (Oyaizu et al., 2001) and [{FeIII(salphen)}2O].C4H8O2 (Elmali et al., 1993), respectively. The Fe···Fe distance of 3.420 (3) Å is consistent with the values (3.35–3.55 Å) reported for µ-oxo-diiron(III) complexes with macrocyclic ligands (Oyaizu et al., 2001). One of the two interstitial water molecules in the structure was found to be svererly disordered and has been refined as disordered over three positions with occupancies of 43.9 (4)%, 37 (1)% and 19 (1)% for O8, O9 and O10, respectively. Hydrogen atoms for the disordered water molecule could not be located and were omitted from the refinement.

There are some hydrogen-bonding interactions between methanol and water molecules, and between the water molecules and the salphen ligand. These hydrogen bonding interactions lead to a group of four oxygen atoms - two water and two methanol molecules - that are arranged around a crystallographic inversion center in a quadratic square pattern. The water molecules of the unit form additional bifurcated hydrogen bonds twoards the two oxygen atoms (O3, O4) of a salphen ligand of adjacent [{FeIII(salphen)}2O] complexes thus binding the complexes together by H-bonds via the square H2O/MeOH units (Table 1, Fig. 2). The oxygen atoms of the other salphen ligand of the complex (O1, O2) show signs of hydrogen bonding interactions with the disordered water molecule.

For background to µ-oxo-diiron(III) complexes, see: Kurtz et al. (1990); Vincent et al. (1990); Reedijk et al. (1999); Oyaizu et al. (2001). For related structures, see: Ashmawy & Ujaimi (1991); Elmali et al. (1993); Oyaizu et al. (2001).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with atom labels and 30% probability displacement ellipsoids; H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Hydrogen bonding interactions of the title complex; the disordered water molecule is omitted for clarity. Symmetry code: (i) -x, -y+1, -z+1.
µ-Oxido-bis({2,2'-[o- phenylenebis(nitrilomethylidyne)]diphenolato}iron(III)) methanol monosolvate dihydrate top
Crystal data top
[Fe2(C20H14N2O2)2O]·CH4O·2H2OZ = 2
Mr = 824.44F(000) = 848
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Melting point: 446.6 K
a = 13.042 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.249 (3) ÅCell parameters from 7899 reflections
c = 13.724 (3) Åθ = 2.7–28.9°
α = 116.60 (3)°µ = 0.82 mm1
β = 110.50 (3)°T = 298 K
γ = 93.80 (3)°Prism, red
V = 1914.4 (12) Å30.22 × 0.20 × 0.20 mm
Data collection top
Rigaku Model? CCD area-detector
diffractometer
6858 independent reflections
Radiation source: fine-focus sealed tube4753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 14.63 pixels mm-1θmax = 25.3°, θmin = 3.0°
phi and ω scansh = 1315
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.841, Tmax = 0.854l = 1316
15784 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0832P)2]
where P = (Fo2 + 2Fc2)/3
6858 reflections(Δ/σ)max < 0.001
519 parametersΔρmax = 0.59 e Å3
4 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Fe2(C20H14N2O2)2O]·CH4O·2H2Oγ = 93.80 (3)°
Mr = 824.44V = 1914.4 (12) Å3
Triclinic, P1Z = 2
a = 13.042 (3) ÅMo Kα radiation
b = 13.249 (3) ŵ = 0.82 mm1
c = 13.724 (3) ÅT = 298 K
α = 116.60 (3)°0.22 × 0.20 × 0.20 mm
β = 110.50 (3)°
Data collection top
Rigaku Model? CCD area-detector
diffractometer
6858 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4753 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.854Rint = 0.040
15784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0514 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.05Δρmax = 0.59 e Å3
6858 reflectionsΔρmin = 0.34 e Å3
519 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.29364 (4)0.63148 (4)0.11270 (5)0.04383 (19)
Fe20.31765 (4)0.64507 (4)0.37482 (4)0.04180 (19)
O10.2687 (3)0.7573 (2)0.0824 (3)0.0654 (8)
O20.4527 (2)0.6843 (2)0.1582 (3)0.0634 (8)
O30.1917 (2)0.6451 (2)0.4169 (2)0.0561 (7)
O40.3020 (2)0.4836 (2)0.3307 (3)0.0613 (8)
O50.2735 (2)0.6584 (2)0.2435 (2)0.0512 (7)
O60.1044 (3)0.5981 (4)0.6541 (4)0.1005 (12)
H60.04140.60720.62560.151*
O70.1409 (4)0.4394 (4)0.4574 (3)0.1024 (12)
O80.4974 (9)0.0920 (8)0.9275 (10)0.103 (3)0.439 (4)
O90.4522 (8)0.1400 (10)0.8664 (11)0.077 (5)0.367 (14)
O100.5116 (18)0.0771 (17)0.8511 (15)0.068 (10)0.194 (14)
N10.1355 (2)0.5283 (3)0.0380 (3)0.0431 (7)
N20.3115 (3)0.4595 (3)0.0466 (3)0.0433 (7)
N30.3882 (2)0.8219 (3)0.5153 (3)0.0432 (7)
N40.4954 (2)0.6660 (2)0.4389 (3)0.0408 (7)
C10.1774 (4)0.7752 (4)0.0167 (4)0.0558 (10)
C20.1821 (4)0.8892 (4)0.0354 (5)0.0755 (14)
H20.24640.95020.09550.091*
C30.0925 (5)0.9108 (5)0.0347 (6)0.0900 (17)
H30.09710.98650.02150.108*
C40.0050 (5)0.8223 (5)0.1247 (6)0.0900 (17)
H40.06410.83790.17320.108*
C50.0128 (4)0.7132 (4)0.1409 (5)0.0703 (13)
H50.07940.65450.19920.084*
C60.0777 (3)0.6856 (4)0.0714 (4)0.0529 (10)
C70.0635 (3)0.5673 (4)0.0968 (3)0.0502 (10)
H70.00320.51300.16130.060*
C80.1129 (3)0.4083 (3)0.0722 (3)0.0434 (9)
C90.0074 (3)0.3275 (4)0.1464 (4)0.0544 (10)
H90.05570.35030.17870.065*
C100.0034 (4)0.2133 (4)0.1720 (4)0.0692 (13)
H100.07400.15900.22260.083*
C110.0890 (4)0.1786 (4)0.1238 (4)0.0688 (13)
H110.08000.10160.14040.083*
C120.1933 (4)0.2558 (4)0.0520 (4)0.0597 (11)
H120.25530.23130.02030.072*
C130.2079 (3)0.3717 (3)0.0258 (3)0.0426 (9)
C140.4083 (3)0.4325 (4)0.0679 (4)0.0511 (10)
H140.40540.35340.03670.061*
C150.5183 (3)0.5133 (4)0.1349 (3)0.0508 (10)
C160.6140 (4)0.4682 (5)0.1558 (4)0.0675 (13)
H160.60280.38840.12780.081*
C170.7222 (4)0.5385 (6)0.2158 (5)0.0794 (16)
H170.78390.50740.23130.095*
C180.7388 (4)0.6556 (6)0.2532 (4)0.0799 (16)
H180.81250.70310.29210.096*
C190.6498 (4)0.7042 (5)0.2346 (4)0.0702 (13)
H190.66350.78380.26040.084*
C200.5363 (3)0.6337 (4)0.1761 (4)0.0548 (11)
C210.1505 (3)0.7323 (4)0.4700 (4)0.0517 (10)
C220.0402 (4)0.7060 (4)0.4609 (4)0.0624 (12)
H220.00270.62840.41620.075*
C230.0049 (4)0.7924 (5)0.5166 (5)0.0818 (16)
H230.07770.77250.50990.098*
C240.0557 (5)0.9092 (5)0.5830 (6)0.101 (2)
H240.02290.96760.61770.121*
C250.1636 (4)0.9372 (4)0.5965 (5)0.0924 (18)
H250.20601.01510.64490.111*
C260.2139 (4)0.8500 (4)0.5382 (4)0.0590 (11)
C270.3295 (4)0.8878 (4)0.5621 (4)0.0578 (11)
H270.36620.96680.61610.069*
C280.5039 (3)0.8682 (3)0.5481 (3)0.0424 (9)
C290.5628 (3)0.9868 (3)0.6164 (4)0.0525 (10)
H290.52591.04280.64640.063*
C300.6742 (4)1.0215 (4)0.6398 (4)0.0614 (11)
H300.71241.10070.68470.074*
C310.7297 (4)0.9379 (4)0.5960 (4)0.0645 (12)
H310.80550.96140.61250.077*
C320.6732 (3)0.8196 (4)0.5278 (4)0.0558 (11)
H320.71050.76440.49720.067*
C330.5609 (3)0.7839 (3)0.5052 (3)0.0427 (9)
C340.5450 (3)0.5817 (3)0.4215 (3)0.0449 (9)
H340.62390.60260.45400.054*
C350.4890 (3)0.4598 (3)0.3569 (3)0.0432 (9)
C360.5582 (4)0.3811 (3)0.3384 (4)0.0558 (10)
H360.63620.41060.36960.067*
C370.5117 (4)0.2625 (4)0.2752 (4)0.0658 (12)
H370.55770.21180.26250.079*
C380.3965 (4)0.2190 (4)0.2305 (4)0.0693 (13)
H380.36490.13840.18660.083*
C390.3272 (4)0.2930 (4)0.2499 (4)0.0691 (13)
H390.24980.26150.22090.083*
C400.3718 (3)0.4161 (3)0.3133 (4)0.0503 (10)
C410.1861 (5)0.7092 (5)0.7313 (5)0.0967 (18)
H41A0.15000.76820.76460.145*
H41B0.21800.72740.68590.145*
H41C0.24530.70680.79520.145*
H7WB0.14940.50260.53660.116*
H7WA0.17250.49610.44290.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0386 (3)0.0414 (3)0.0389 (3)0.0049 (3)0.0090 (2)0.0168 (3)
Fe20.0351 (3)0.0388 (3)0.0406 (3)0.0037 (2)0.0097 (2)0.0171 (3)
O10.0621 (19)0.0489 (16)0.0628 (19)0.0002 (14)0.0035 (15)0.0300 (15)
O20.0445 (16)0.0534 (17)0.071 (2)0.0017 (14)0.0187 (15)0.0212 (15)
O30.0485 (16)0.0500 (16)0.0631 (18)0.0052 (14)0.0257 (14)0.0227 (14)
O40.0406 (15)0.0438 (15)0.086 (2)0.0047 (13)0.0159 (15)0.0312 (15)
O50.0489 (15)0.0534 (15)0.0409 (15)0.0117 (13)0.0140 (12)0.0198 (13)
O60.082 (3)0.105 (3)0.094 (3)0.013 (2)0.025 (2)0.044 (2)
O70.104 (3)0.107 (3)0.084 (3)0.006 (2)0.033 (2)0.048 (2)
O80.151 (9)0.083 (6)0.102 (7)0.030 (6)0.061 (7)0.064 (6)
O90.056 (6)0.060 (6)0.130 (9)0.008 (5)0.036 (6)0.063 (6)
O100.069 (14)0.057 (12)0.036 (10)0.037 (10)0.033 (8)0.009 (7)
N10.0367 (17)0.0464 (18)0.0414 (18)0.0088 (15)0.0140 (14)0.0206 (15)
N20.0392 (17)0.0455 (17)0.0414 (18)0.0088 (15)0.0137 (14)0.0218 (15)
N30.0376 (17)0.0428 (17)0.0430 (18)0.0070 (15)0.0128 (15)0.0204 (14)
N40.0364 (16)0.0388 (16)0.0364 (17)0.0026 (14)0.0103 (14)0.0154 (14)
C10.064 (3)0.051 (2)0.057 (3)0.015 (2)0.025 (2)0.032 (2)
C20.077 (3)0.064 (3)0.087 (4)0.015 (3)0.026 (3)0.046 (3)
C30.092 (4)0.077 (4)0.136 (5)0.038 (3)0.053 (4)0.075 (4)
C40.072 (4)0.097 (4)0.128 (5)0.038 (3)0.032 (4)0.082 (4)
C50.053 (3)0.078 (3)0.083 (3)0.026 (3)0.021 (2)0.047 (3)
C60.054 (3)0.056 (2)0.054 (3)0.020 (2)0.023 (2)0.031 (2)
C70.037 (2)0.058 (2)0.042 (2)0.0086 (19)0.0101 (17)0.0205 (19)
C80.039 (2)0.040 (2)0.039 (2)0.0032 (17)0.0140 (17)0.0138 (17)
C90.040 (2)0.056 (3)0.050 (2)0.001 (2)0.0145 (19)0.019 (2)
C100.057 (3)0.052 (3)0.063 (3)0.014 (2)0.015 (2)0.012 (2)
C110.075 (3)0.043 (2)0.072 (3)0.000 (2)0.024 (3)0.024 (2)
C120.065 (3)0.049 (2)0.060 (3)0.012 (2)0.021 (2)0.029 (2)
C130.044 (2)0.040 (2)0.035 (2)0.0047 (18)0.0138 (17)0.0149 (17)
C140.054 (3)0.057 (2)0.051 (2)0.020 (2)0.022 (2)0.033 (2)
C150.038 (2)0.073 (3)0.043 (2)0.013 (2)0.0155 (19)0.032 (2)
C160.057 (3)0.105 (4)0.067 (3)0.036 (3)0.033 (2)0.057 (3)
C170.043 (3)0.146 (5)0.062 (3)0.033 (3)0.022 (2)0.061 (4)
C180.038 (3)0.131 (5)0.049 (3)0.004 (3)0.013 (2)0.035 (3)
C190.047 (3)0.083 (3)0.051 (3)0.005 (3)0.016 (2)0.019 (2)
C200.038 (2)0.076 (3)0.043 (2)0.007 (2)0.0164 (19)0.026 (2)
C210.040 (2)0.062 (3)0.045 (2)0.007 (2)0.0121 (19)0.026 (2)
C220.044 (2)0.075 (3)0.056 (3)0.009 (2)0.018 (2)0.027 (2)
C230.042 (3)0.102 (4)0.072 (3)0.013 (3)0.020 (3)0.024 (3)
C240.058 (3)0.092 (4)0.119 (5)0.027 (3)0.044 (3)0.022 (4)
C250.067 (3)0.059 (3)0.113 (5)0.012 (3)0.040 (3)0.012 (3)
C260.046 (2)0.055 (3)0.067 (3)0.013 (2)0.024 (2)0.023 (2)
C270.051 (2)0.043 (2)0.059 (3)0.006 (2)0.018 (2)0.015 (2)
C280.040 (2)0.042 (2)0.035 (2)0.0020 (17)0.0100 (17)0.0169 (17)
C290.054 (3)0.039 (2)0.051 (2)0.0057 (19)0.019 (2)0.0158 (18)
C300.052 (3)0.047 (2)0.056 (3)0.007 (2)0.014 (2)0.013 (2)
C310.042 (2)0.058 (3)0.070 (3)0.006 (2)0.020 (2)0.019 (2)
C320.042 (2)0.048 (2)0.057 (3)0.0008 (19)0.018 (2)0.014 (2)
C330.038 (2)0.041 (2)0.036 (2)0.0014 (17)0.0097 (17)0.0158 (17)
C340.039 (2)0.049 (2)0.043 (2)0.0033 (18)0.0144 (18)0.0241 (18)
C350.048 (2)0.041 (2)0.038 (2)0.0071 (18)0.0160 (18)0.0213 (17)
C360.060 (3)0.049 (2)0.059 (3)0.017 (2)0.024 (2)0.029 (2)
C370.077 (3)0.058 (3)0.070 (3)0.030 (3)0.034 (3)0.035 (2)
C380.076 (3)0.040 (2)0.070 (3)0.011 (2)0.014 (3)0.024 (2)
C390.052 (3)0.050 (3)0.080 (3)0.001 (2)0.005 (2)0.031 (2)
C400.048 (2)0.041 (2)0.052 (2)0.0055 (19)0.0114 (19)0.0236 (19)
C410.082 (4)0.111 (5)0.085 (4)0.017 (4)0.027 (3)0.047 (4)
Geometric parameters (Å, º) top
Fe1—O51.786 (3)C12—H120.9300
Fe1—O11.912 (3)C14—C151.429 (5)
Fe1—O21.921 (3)C14—H140.9300
Fe1—N22.106 (3)C15—C201.404 (6)
Fe1—N12.123 (3)C15—C161.413 (5)
Fe2—O51.784 (3)C16—C171.365 (7)
Fe2—O41.919 (3)C16—H160.9300
Fe2—O31.922 (3)C17—C181.372 (7)
Fe2—N32.116 (3)C17—H170.9300
Fe2—N42.119 (3)C18—C191.366 (7)
O1—C11.329 (5)C18—H180.9300
O2—C201.325 (5)C19—C201.421 (6)
O3—C211.327 (5)C19—H190.9300
O4—C401.325 (5)C21—C261.403 (6)
O6—C411.424 (6)C21—C221.405 (6)
O6—H60.8200C22—C231.364 (6)
O7—H7WB0.9910C22—H220.9300
O7—H7WA0.9611C23—C241.386 (7)
O8—O101.063 (14)C23—H230.9300
O8—O91.280 (12)C24—C251.356 (7)
O9—O101.18 (2)C24—H240.9300
N1—C71.307 (5)C25—C261.430 (6)
N1—C81.416 (5)C25—H250.9300
N2—C141.304 (5)C26—C271.428 (6)
N2—C131.409 (5)C27—H270.9300
N3—C271.301 (5)C28—C291.398 (5)
N3—C281.418 (5)C28—C331.405 (5)
N4—C341.300 (5)C29—C301.371 (6)
N4—C331.416 (4)C29—H290.9300
C1—C61.403 (6)C30—C311.388 (6)
C1—C21.407 (6)C30—H300.9300
C2—C31.370 (7)C31—C321.387 (6)
C2—H20.9300C31—H310.9300
C3—C41.386 (8)C32—C331.387 (5)
C3—H30.9300C32—H320.9300
C4—C51.351 (7)C34—C351.427 (5)
C4—H40.9300C34—H340.9300
C5—C61.421 (6)C35—C401.400 (5)
C5—H50.9300C35—C361.418 (5)
C6—C71.428 (6)C36—C371.369 (6)
C7—H70.9300C36—H360.9300
C8—C91.387 (5)C37—C381.374 (6)
C8—C131.408 (5)C37—H370.9300
C9—C101.376 (6)C38—C391.379 (6)
C9—H90.9300C38—H380.9300
C10—C111.374 (7)C39—C401.416 (6)
C10—H100.9300C39—H390.9300
C11—C121.357 (6)C41—H41A0.9600
C11—H110.9300C41—H41B0.9600
C12—C131.393 (5)C41—H41C0.9600
O5—Fe1—O1109.47 (13)C20—C15—C16118.4 (4)
O5—Fe1—O2109.06 (13)C20—C15—C14123.6 (4)
O1—Fe1—O289.13 (13)C16—C15—C14117.9 (4)
O5—Fe1—N2102.31 (12)C17—C16—C15121.9 (5)
O1—Fe1—N2147.27 (13)C17—C16—H16119.0
O2—Fe1—N287.79 (13)C15—C16—H16119.0
O5—Fe1—N1106.82 (12)C16—C17—C18119.1 (5)
O1—Fe1—N187.13 (12)C16—C17—H17120.4
O2—Fe1—N1143.05 (12)C18—C17—H17120.4
N2—Fe1—N176.19 (12)C19—C18—C17121.7 (5)
O5—Fe2—O4110.14 (13)C19—C18—H18119.1
O5—Fe2—O3107.68 (12)C17—C18—H18119.1
O4—Fe2—O390.01 (12)C18—C19—C20120.3 (5)
O5—Fe2—N3102.33 (12)C18—C19—H19119.9
O4—Fe2—N3146.57 (13)C20—C19—H19119.9
O3—Fe2—N387.54 (12)O2—C20—C15123.3 (4)
O5—Fe2—N4106.81 (12)O2—C20—C19118.2 (4)
O4—Fe2—N487.08 (12)C15—C20—C19118.5 (4)
O3—Fe2—N4144.17 (12)O3—C21—C26122.6 (3)
N3—Fe2—N475.93 (12)O3—C21—C22118.8 (4)
C1—O1—Fe1133.1 (3)C26—C21—C22118.5 (4)
C20—O2—Fe1131.4 (3)C23—C22—C21121.0 (5)
C21—O3—Fe2130.6 (3)C23—C22—H22119.5
C40—O4—Fe2131.8 (3)C21—C22—H22119.5
Fe2—O5—Fe1146.68 (16)C22—C23—C24121.4 (5)
C41—O6—H6109.5C22—C23—H23119.3
H7WB—O7—H7WA90.6C24—C23—H23119.3
O10—O8—O959.4 (14)C25—C24—C23119.0 (5)
O10—O9—O851.1 (9)C25—C24—H24120.5
O8—O10—O969.5 (12)C23—C24—H24120.5
C7—N1—C8121.2 (3)C24—C25—C26121.7 (5)
C7—N1—Fe1125.4 (3)C24—C25—H25119.2
C8—N1—Fe1113.4 (2)C26—C25—H25119.2
C14—N2—C13120.9 (3)C21—C26—C27124.1 (4)
C14—N2—Fe1124.9 (3)C21—C26—C25118.3 (4)
C13—N2—Fe1114.2 (2)C27—C26—C25117.3 (4)
C27—N3—C28121.3 (3)N3—C27—C26126.0 (4)
C27—N3—Fe2123.7 (3)N3—C27—H27117.0
C28—N3—Fe2114.8 (2)C26—C27—H27117.0
C34—N4—C33120.2 (3)C29—C28—C33119.3 (3)
C34—N4—Fe2125.6 (2)C29—C28—N3126.0 (3)
C33—N4—Fe2114.2 (2)C33—C28—N3114.7 (3)
O1—C1—C6123.0 (4)C30—C29—C28120.9 (4)
O1—C1—C2118.1 (4)C30—C29—H29119.6
C6—C1—C2118.8 (4)C28—C29—H29119.6
C3—C2—C1120.3 (5)C29—C30—C31119.6 (4)
C3—C2—H2119.9C29—C30—H30120.2
C1—C2—H2119.9C31—C30—H30120.2
C2—C3—C4121.5 (5)C32—C31—C30120.7 (4)
C2—C3—H3119.2C32—C31—H31119.7
C4—C3—H3119.2C30—C31—H31119.7
C5—C4—C3119.0 (5)C33—C32—C31119.9 (4)
C5—C4—H4120.5C33—C32—H32120.0
C3—C4—H4120.5C31—C32—H32120.0
C4—C5—C6121.9 (5)C32—C33—C28119.6 (3)
C4—C5—H5119.1C32—C33—N4125.0 (3)
C6—C5—H5119.1C28—C33—N4115.4 (3)
C1—C6—C5118.4 (4)N4—C34—C35125.7 (3)
C1—C6—C7123.4 (4)N4—C34—H34117.2
C5—C6—C7118.2 (4)C35—C34—H34117.2
N1—C7—C6126.0 (4)C40—C35—C36119.8 (4)
N1—C7—H7117.0C40—C35—C34123.4 (3)
C6—C7—H7117.0C36—C35—C34116.8 (3)
C9—C8—C13119.3 (4)C37—C36—C35121.0 (4)
C9—C8—N1125.4 (4)C37—C36—H36119.5
C13—C8—N1115.2 (3)C35—C36—H36119.5
C10—C9—C8119.7 (4)C36—C37—C38119.6 (4)
C10—C9—H9120.1C36—C37—H37120.2
C8—C9—H9120.1C38—C37—H37120.2
C11—C10—C9120.7 (4)C37—C38—C39121.0 (4)
C11—C10—H10119.6C37—C38—H38119.5
C9—C10—H10119.6C39—C38—H38119.5
C12—C11—C10120.6 (4)C38—C39—C40121.1 (4)
C12—C11—H11119.7C38—C39—H39119.4
C10—C11—H11119.7C40—C39—H39119.5
C11—C12—C13120.3 (4)O4—C40—C35123.5 (3)
C11—C12—H12119.9O4—C40—C39118.9 (4)
C13—C12—H12119.8C35—C40—C39117.6 (4)
C12—C13—C8119.3 (4)O6—C41—H41A109.5
C12—C13—N2125.6 (4)O6—C41—H41B109.5
C8—C13—N2115.1 (3)H41A—C41—H41B109.5
N2—C14—C15126.0 (4)O6—C41—H41C109.5
N2—C14—H14117.0H41A—C41—H41C109.5
C15—C14—H14117.0H41B—C41—H41C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O7i0.822.152.916 (6)156
O7—H7WB···O60.991.872.808 (6)158
O7—H7WA···O30.962.173.090 (5)160
O7—H7WA···O40.962.623.330 (5)131
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe2(C20H14N2O2)2O]·CH4O·2H2O
Mr824.44
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)13.042 (3), 13.249 (3), 13.724 (3)
α, β, γ (°)116.60 (3), 110.50 (3), 93.80 (3)
V3)1914.4 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerRigaku Model? CCD area-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.841, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
15784, 6858, 4753
Rint0.040
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.158, 1.05
No. of reflections6858
No. of parameters519
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.34

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O7i0.822.152.916 (6)156.0
O7—H7WB···O60.991.872.808 (6)157.7
O7—H7WA···O30.962.173.090 (5)159.6
O7—H7WA···O40.962.623.330 (5)130.6
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Jiangsu Province (No. BK2009196) for financial support.

References

First citationAshmawy, F. M. & Ujaimi, A. R. (1991). Inorg. Chim. Acta, 187, 155–158.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationElmali, A., Atakol, O., Svoboda, I. & Fuess, H. (1993). Z. Kristallogr. 203, 275–278.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan.  Google Scholar
First citationKurtz, D. M. Jr (1990). Chem. Rev. 90, 585–606.  CrossRef CAS Web of Science Google Scholar
First citationOyaizu, K., Dewi, E. L. & Tsuchida, E. (2001). Inorg. Chim. Acta, 321, 205–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationReedijk, J. & Bouwman, E. (1999). Bioinorganic Catalysis, 2nd ed. New York: Marcel Dekker.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVincent, J. B., Oliver-Lilley, G. L. & Averill, B. A. (1990). Chem. Rev. 90, 1447–1467.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds