organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(1,3-Di­thio­lan-2-yl)meth­yl]-6-methyl-8-nitro-1,2,3,5,6,7-hexa­hydro­imidazo[1,2-c]pyrimidine

aShandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, People's Republic of China, and bSchool of Sciences, University of Jinan, People's Republic of China
*Correspondence e-mail: chm_lidm@ujn.edu.cn

(Received 1 August 2010; accepted 10 August 2010; online 18 August 2010)

In the title compound, C11H18N4O2S2, the dithiol­ane ring displays an envelope conformation, the tetra­hydro­pyrimidine ring has a conformation that is between half-chair and screw-boat, and the imidazole ring is essentially planar (r.m.s. deviation = 0.0017 Å). No significant directional inter­molecular inter­actions are present in the structure.

Related literature

For related structures, see: Tian et al. (2009[Tian, Z., Li, D. & Li, Z. (2009). Acta Cryst. E65, o2517.]). For background to neonicotinoid insecticides, see Mori et al. (2001[Mori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2001). Pest. Manage. Sci. 46, 40-46.]); Kagabu (1997[Kagabu, S. (1997). Rev. Toxicol. 1, 75-129.]); Tian et al. (2007[Tian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288-2292.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18N4O2S2

  • Mr = 302.41

  • Triclinic, [P \overline 1]

  • a = 8.0326 (7) Å

  • b = 9.3521 (8) Å

  • c = 10.1109 (9) Å

  • α = 80.461 (1)°

  • β = 83.497 (1)°

  • γ = 68.043 (1)°

  • V = 693.62 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.26 × 0.23 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.934

  • 7993 measured reflections

  • 3178 independent reflections

  • 2826 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.06

  • 3178 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Imidacloprid, a commercially sold insecticide modeled after nicotine, gains its activity by acting on the nicotinic acetylcholine receptor (nAChR) of insect neuronal systems (Mori et al., 2001). Imidacloprid and other neonicotinoid insecticides have become a major insecticide class with high activities and are widely used for crop protection and veterinary pest control (Kagabu, 1997). Our interest was introducing sulfur atoms into the lead struture and synthesizing a series of new compounds, in which the title compound exhibited moderate insecticidal activities against pea aphids.

The structure of the title compound is shown in Fig. 1 with the atom-numbering scheme. The dithiolane ring displays a typical envelope conformation. The nitro group is almost coplanar with the olefin-amine plane [C7—C1—N1—O2 = 173.30 (14)°]. Around N3 and N4 the sums of the angles are 353.32° and 349.31°, respectively, indicating that they are nearly sp2 hybridized and leading to an essentially planar imidazole ring. The N2 atom exhibits a hybridization close to sp3 with C—N—C angles between 109.41 (13)° and 110.33 (14)°. The tetrahydropyrimidine ring has a conformation that is in between half-chair and screw-boat. No significant directional intermolecular interactions are present in the structure and the packing is dominated by van der Waals forces.

Related literature top

For related structures, see: Tian et al. (2009). For background to neonicotinoid insecticides, see Mori et al. (2001); Kagabu (19977); Tian et al. (2007).

Experimental top

The title compound was synthesized according to the literature (Tian et al., 2007). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of dichloromethane and ethyl acetate of the title compound.

Refinement top

All H atoms were placed in their calculated positions and then refined using a riding model with C—H = 0.95–0.99 Å, Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

Imidacloprid, a commercially sold insecticide modeled after nicotine, gains its activity by acting on the nicotinic acetylcholine receptor (nAChR) of insect neuronal systems (Mori et al., 2001). Imidacloprid and other neonicotinoid insecticides have become a major insecticide class with high activities and are widely used for crop protection and veterinary pest control (Kagabu, 1997). Our interest was introducing sulfur atoms into the lead struture and synthesizing a series of new compounds, in which the title compound exhibited moderate insecticidal activities against pea aphids.

The structure of the title compound is shown in Fig. 1 with the atom-numbering scheme. The dithiolane ring displays a typical envelope conformation. The nitro group is almost coplanar with the olefin-amine plane [C7—C1—N1—O2 = 173.30 (14)°]. Around N3 and N4 the sums of the angles are 353.32° and 349.31°, respectively, indicating that they are nearly sp2 hybridized and leading to an essentially planar imidazole ring. The N2 atom exhibits a hybridization close to sp3 with C—N—C angles between 109.41 (13)° and 110.33 (14)°. The tetrahydropyrimidine ring has a conformation that is in between half-chair and screw-boat. No significant directional intermolecular interactions are present in the structure and the packing is dominated by van der Waals forces.

For related structures, see: Tian et al. (2009). For background to neonicotinoid insecticides, see Mori et al. (2001); Kagabu (19977); Tian et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary size.
1-[(1,3-Dithiolan-2-yl)methyl]-6-methyl-8-nitro-1,2,3,5,6,7- hexahydroimidazo[1,2-c]pyrimidine top
Crystal data top
C11H18N4O2S2Z = 2
Mr = 302.41F(000) = 320
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0326 (7) ÅCell parameters from 4541 reflections
b = 9.3521 (8) Åθ = 2.4–27.7°
c = 10.1109 (9) ŵ = 0.39 mm1
α = 80.461 (1)°T = 293 K
β = 83.497 (1)°Prism, colourless
γ = 68.043 (1)°0.26 × 0.23 × 0.18 mm
V = 693.62 (10) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3178 independent reflections
Radiation source: fine-focus sealed tube2826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 27.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.906, Tmax = 0.934k = 1211
7993 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.2729P]
where P = (Fo2 + 2Fc2)/3
3178 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C11H18N4O2S2γ = 68.043 (1)°
Mr = 302.41V = 693.62 (10) Å3
Triclinic, P1Z = 2
a = 8.0326 (7) ÅMo Kα radiation
b = 9.3521 (8) ŵ = 0.39 mm1
c = 10.1109 (9) ÅT = 293 K
α = 80.461 (1)°0.26 × 0.23 × 0.18 mm
β = 83.497 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3178 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2826 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.934Rint = 0.020
7993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
3178 reflectionsΔρmin = 0.34 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.92947 (18)0.16249 (17)0.65277 (14)0.0319 (3)
C21.0078 (2)0.10338 (19)0.78875 (16)0.0375 (3)
H2A0.91890.15160.85700.045*
H2B1.03640.00810.80740.045*
C31.2634 (3)0.0458 (2)0.9163 (2)0.0549 (5)
H3A1.29030.06280.91370.082*
H3B1.18760.07700.99490.082*
H3C1.37310.06360.91890.082*
C41.2876 (2)0.0997 (2)0.67697 (17)0.0409 (4)
H4A1.39930.11410.68510.049*
H4B1.31540.00770.66500.049*
C51.2874 (2)0.2345 (2)0.43686 (17)0.0459 (4)
H5A1.35950.13930.40030.055*
H5B1.36350.29140.44660.055*
C61.1325 (2)0.3324 (3)0.35069 (19)0.0544 (5)
H6A1.11060.44220.34660.065*
H6B1.15540.30500.26020.065*
C71.02457 (19)0.22041 (17)0.54533 (14)0.0316 (3)
C80.7976 (2)0.40401 (18)0.38887 (15)0.0361 (3)
H8A0.80200.50740.36460.043*
H8B0.71820.40570.46880.043*
C90.7185 (2)0.36571 (18)0.27473 (15)0.0369 (3)
H90.71400.26140.30050.044*
C100.7343 (3)0.5774 (2)0.0715 (2)0.0580 (5)
H10A0.79050.62890.11790.070*
H10B0.75170.60590.02440.070*
C110.5376 (3)0.6301 (2)0.1105 (2)0.0553 (5)
H11A0.47230.63190.03490.066*
H11B0.49670.73500.13340.066*
N10.78451 (16)0.12503 (15)0.63650 (13)0.0351 (3)
N21.17052 (18)0.13662 (16)0.79623 (13)0.0379 (3)
N31.19480 (17)0.20279 (17)0.56373 (13)0.0392 (3)
N40.97815 (17)0.29393 (16)0.42032 (13)0.0371 (3)
O10.71913 (17)0.14805 (16)0.52435 (12)0.0489 (3)
O20.72085 (16)0.06008 (15)0.73842 (12)0.0468 (3)
S10.83905 (6)0.36969 (6)0.11346 (4)0.04884 (14)
S20.49010 (6)0.50283 (6)0.25217 (5)0.05506 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0265 (6)0.0378 (7)0.0330 (7)0.0138 (6)0.0029 (5)0.0035 (6)
C20.0335 (7)0.0431 (8)0.0374 (8)0.0172 (6)0.0063 (6)0.0011 (6)
C30.0567 (11)0.0614 (11)0.0527 (11)0.0299 (9)0.0264 (9)0.0123 (8)
C40.0278 (7)0.0460 (9)0.0500 (9)0.0147 (6)0.0088 (6)0.0018 (7)
C50.0339 (8)0.0632 (11)0.0447 (9)0.0253 (8)0.0054 (7)0.0052 (8)
C60.0422 (9)0.0823 (13)0.0432 (9)0.0350 (9)0.0002 (7)0.0080 (9)
C70.0273 (6)0.0357 (7)0.0345 (7)0.0137 (6)0.0021 (5)0.0063 (6)
C80.0357 (7)0.0391 (8)0.0330 (7)0.0133 (6)0.0027 (6)0.0035 (6)
C90.0377 (8)0.0389 (8)0.0347 (7)0.0155 (6)0.0057 (6)0.0001 (6)
C100.0654 (12)0.0611 (12)0.0487 (10)0.0323 (10)0.0003 (9)0.0097 (9)
C110.0624 (12)0.0449 (10)0.0529 (11)0.0161 (9)0.0072 (9)0.0039 (8)
N10.0296 (6)0.0421 (7)0.0368 (6)0.0173 (5)0.0016 (5)0.0039 (5)
N20.0367 (7)0.0424 (7)0.0384 (7)0.0187 (6)0.0115 (5)0.0009 (5)
N30.0281 (6)0.0519 (8)0.0399 (7)0.0200 (6)0.0026 (5)0.0010 (6)
N40.0312 (6)0.0487 (7)0.0322 (6)0.0179 (6)0.0007 (5)0.0005 (5)
O10.0481 (7)0.0701 (8)0.0408 (6)0.0360 (6)0.0129 (5)0.0011 (6)
O20.0402 (6)0.0648 (8)0.0420 (6)0.0314 (6)0.0006 (5)0.0030 (5)
S10.0490 (3)0.0596 (3)0.0356 (2)0.0154 (2)0.00023 (17)0.01182 (18)
S20.0342 (2)0.0736 (3)0.0498 (3)0.0182 (2)0.00542 (18)0.0116 (2)
Geometric parameters (Å, º) top
C1—N11.3686 (18)C6—H6B0.9700
C1—C71.408 (2)C7—N31.3455 (18)
C1—C21.509 (2)C7—N41.3552 (19)
C2—N21.4642 (19)C8—N41.4640 (19)
C2—H2A0.9700C8—C91.529 (2)
C2—H2B0.9700C8—H8A0.9700
C3—N21.463 (2)C8—H8B0.9700
C3—H3A0.9600C9—S11.8019 (16)
C3—H3B0.9600C9—S21.8169 (16)
C3—H3C0.9600C9—H90.9800
C4—N31.444 (2)C10—C111.495 (3)
C4—N21.448 (2)C10—S11.802 (2)
C4—H4A0.9700C10—H10A0.9700
C4—H4B0.9700C10—H10B0.9700
C5—N31.452 (2)C11—S21.8068 (19)
C5—C61.508 (2)C11—H11A0.9700
C5—H5A0.9700C11—H11B0.9700
C5—H5B0.9700N1—O11.2559 (17)
C6—N41.488 (2)N1—O21.2641 (17)
C6—H6A0.9700
N1—C1—C7123.33 (13)N4—C8—H8A108.8
N1—C1—C2114.77 (12)C9—C8—H8A108.8
C7—C1—C2120.49 (12)N4—C8—H8B108.8
N2—C2—C1112.09 (12)C9—C8—H8B108.8
N2—C2—H2A109.2H8A—C8—H8B107.7
C1—C2—H2A109.2C8—C9—S1115.71 (11)
N2—C2—H2B109.2C8—C9—S2109.68 (11)
C1—C2—H2B109.2S1—C9—S2106.91 (8)
H2A—C2—H2B107.9C8—C9—H9108.1
N2—C3—H3A109.5S1—C9—H9108.1
N2—C3—H3B109.5S2—C9—H9108.1
H3A—C3—H3B109.5C11—C10—S1110.59 (13)
N2—C3—H3C109.5C11—C10—H10A109.5
H3A—C3—H3C109.5S1—C10—H10A109.5
H3B—C3—H3C109.5C11—C10—H10B109.5
N3—C4—N2107.66 (13)S1—C10—H10B109.5
N3—C4—H4A110.2H10A—C10—H10B108.1
N2—C4—H4A110.2C10—C11—S2111.27 (13)
N3—C4—H4B110.2C10—C11—H11A109.4
N2—C4—H4B110.2S2—C11—H11A109.4
H4A—C4—H4B108.5C10—C11—H11B109.4
N3—C5—C6101.87 (13)S2—C11—H11B109.4
N3—C5—H5A111.4H11A—C11—H11B108.0
C6—C5—H5A111.4O1—N1—O2120.14 (12)
N3—C5—H5B111.4O1—N1—C1122.24 (13)
C6—C5—H5B111.4O2—N1—C1117.56 (12)
H5A—C5—H5B109.3C4—N2—C3110.33 (14)
N4—C6—C5103.53 (13)C4—N2—C2110.28 (12)
N4—C6—H6A111.1C3—N2—C2109.41 (13)
C5—C6—H6A111.1C7—N3—C4120.45 (13)
N4—C6—H6B111.1C7—N3—C5110.88 (13)
C5—C6—H6B111.1C4—N3—C5122.79 (13)
H6A—C6—H6B109.0C7—N4—C8123.79 (12)
N3—C7—N4110.27 (13)C7—N4—C6108.50 (12)
N3—C7—C1117.58 (13)C8—N4—C6117.02 (13)
N4—C7—C1132.15 (13)C10—S1—C993.94 (8)
N4—C8—C9113.81 (13)C11—S2—C998.01 (8)
N1—C1—C2—N2175.52 (13)N4—C7—N3—C513.07 (19)
C7—C1—C2—N28.6 (2)C1—C7—N3—C5166.80 (14)
N3—C5—C6—N420.74 (19)N2—C4—N3—C749.50 (19)
N1—C1—C7—N3157.53 (14)N2—C4—N3—C5159.98 (14)
C2—C1—C7—N38.2 (2)C6—C5—N3—C721.40 (19)
N1—C1—C7—N422.3 (3)C6—C5—N3—C4174.39 (16)
C2—C1—C7—N4171.97 (15)N3—C7—N4—C8144.85 (14)
N4—C8—C9—S162.50 (16)C1—C7—N4—C835.3 (2)
N4—C8—C9—S2176.50 (10)N3—C7—N4—C61.68 (19)
S1—C10—C11—S228.7 (2)C1—C7—N4—C6178.48 (17)
C7—C1—N1—O14.1 (2)C9—C8—N4—C7127.28 (15)
C2—C1—N1—O1170.58 (14)C9—C8—N4—C692.38 (18)
C7—C1—N1—O2173.30 (14)C5—C6—N4—C714.7 (2)
C2—C1—N1—O26.8 (2)C5—C6—N4—C8160.67 (14)
N3—C4—N2—C3174.80 (13)C11—C10—S1—C942.36 (16)
N3—C4—N2—C264.22 (16)C8—C9—S1—C1082.86 (13)
C1—C2—N2—C444.99 (17)S2—C9—S1—C1039.62 (10)
C1—C2—N2—C3166.51 (14)C10—C11—S2—C90.91 (17)
N4—C7—N3—C4166.78 (14)C8—C9—S2—C1199.63 (12)
C1—C7—N3—C413.1 (2)S1—C9—S2—C1126.54 (10)

Experimental details

Crystal data
Chemical formulaC11H18N4O2S2
Mr302.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0326 (7), 9.3521 (8), 10.1109 (9)
α, β, γ (°)80.461 (1), 83.497 (1), 68.043 (1)
V3)693.62 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.26 × 0.23 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.906, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
7993, 3178, 2826
Rint0.020
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.06
No. of reflections3178
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant 20902037), the Opening Fund of Shanghai Key Laboratory of Chemical Biology (grant SKLCB-2008–08) and the Doctoral Foundation of the University of Jinan (B0542) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKagabu, S. (1997). Rev. Toxicol. 1, 75–129.  CAS Google Scholar
First citationMori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2001). Pest. Manage. Sci. 46, 40–46.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z., Li, D. & Li, Z. (2009). Acta Cryst. E65, o2517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288–2292.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds