metal-organic compounds
Poly[[tris(μ2-4,4′-bipyridine N,N′-dioxide)hexanitratodieuropium(III)] dichloromethane disolvate]
aAllegheny College, 520 North Main St., Meadville, PA 16335, USA
*Correspondence e-mail: jknaust@allegheny.edu
The title one-dimensional coordination network, {[Eu2(NO3)6(C10H8N2O2)3]·2CH2Cl2}n, is isostructural with the previously reported Tb and Tl coordination networks and to its Gd analog. The EuIII cation is coordinated in a distorted tricapped trigonal-prismatic fashion by nine O atoms from three bridging 4,4′-bipyridine N,N′-dioxide ligands and three chelating nitrate anions. None of the atoms lie on a special position, but there is an inversion center located between the rings of one of the ligands. The network topology is ladder-like, and each ladder interacts with six neighboring ladders through C—H⋯O hydrogen bonds. The packing motif of the ladders allows for the formation of channels that run parallel to the a axis; these channels are filled with CH2Cl2 solvent molecules that interact with the ladders through C—H⋯O hydrogen bonds.
Related literature
For the isostructural Tb and Tl coordination networks, see: Long et al. (2002); Moitsheki et al. (2006). For the isostructural Gd coordination network, see: Dillner et al. (2010). For additional discussions on Ln+3 (Ln = lanthanide) coordination networks with aromatic N,N'-dioxide ligands, see: Cardoso et al. (2001); Hill et al. (2005); Long et al. (2001); Sun et al. (2004). For background information on the applications of coordination networks, see: Roswell & Yaghi (2004); Rosi et al. (2003); Seo et al. (2000).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED.
Supporting information
https://doi.org/10.1107/S1600536810033246/zl2302sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810033246/zl2302Isup2.hkl
Eu(NO3)3 (0.051 g 0.15 mmol) was placed in the bottom of a test tube and covered with CH2Cl2 (5 ml). 4,4'-bipyridine-N,N'-dioxide.H2O (0.0376 g, 0.182 mmol) was dissolved in methanol (8 ml), and this solution was layered over the CH2Cl2. The two solutions were allowed to slowly mix. Over a period of several weeks the Eu(NO3)3 dissolved, and colorless block-like crystals of the title compound formed.
All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 times Ueq(C).
The synthesis of lanthanide coordination networks has been of recent interest due to the potential of the flexible coordination sphere of the Ln+3 metal ions to produce coordination networks with new, unusual, or high connectivity topologies (Hill et al., 2005; Long et al., 2001; and Sun et al., 2004). Coordination networks with both a high connectivity topology and an open framework have potential for applications in areas such as absorption, ion exchange, or catalysis (Roswell et al., 2004; Rosi et al., 2003; and Seo et al. 2000). Aromatic N,N'-dioxide ligands have been attractive candidates for use with Ln+3 cations as the O-donor atoms of the ligand are complementary to the hard acid character of the lanthanide cations (Cardoso et al., 2001; Hill et al., 2005; Long et al., 2001; Long et al., 2002; and Sun et al., 2004).
The description of the structure of the title compound is part of a set of consecutive papers on one-dimensional ladder-like coordination networks of the type [Ln2(NO3)6(C10H8N2O2)3]n, with Ln = Eu (this publication) and Gd (Dillner et al., 2010), respectively. Both compounds are also isostructural to the previously reported Tb and Tl coordination networks (Long et al., 2002 and Moitsheki et al., 2006).
The
of the title compound contains one Eu+3 cation, one and a half coordinated 4,4'-bipyridine-N,N'-dioxide ligands, three coordinated nitrate anions, and one solvate CH2Cl2 molecule. None of the atoms lie on a special position, but there is an inversion center located between the rings of one of the ligands (O1, N1, C1-C5). The Eu+3 cation is coordinated in a distorted tricapped trigonal prismatic fashion by nine O atoms (Figure 1). Three bridging 4,4'-bipyridine-N,N'-dioxide ligands contribute three O donor atoms, and three nitrate anions contribute six O donor atoms. The network topology is ladder-like; however the sides and rungs of the ladder meet at angles of 70.09(<1)° ( Eui—Eu—Euiii) and 108.91(<1)° (Eui—Eu—Euii) forming a parallelogram rather than a square [Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x, y, z+1; (iii) x, y, z-1] (Figure 2). The ladders run parallel to the c-axis and lie in planes that are approximately parallel with the (1 2 0) plane.Through C-H···O hydrogen bonding interactions the ladders are linked into a three-dimensional structure. Each ladder is linked to two similar ladders that lie in the same plane through four unique C-H···O hydrogen bonds per Eu+3 cation (Figure 3). There is one direct interaction between the ladders via a C-H···O hydrogen bond from a 4,4'-bipyridine-N,N'-dioxide ligand of one ladder to the nitrate anion of another ladder, C9—H9···O9v [Symmetry code:(v) -x+1, -y+2, -z+2]. There is also an indirect interaction between the ladders through hydrogen bonding with the CH2Cl2 solvate molecules. Two O atoms of a nitrate ion hydrogen bond with one of the CH2Cl2 H atoms, C16—H16A···O8 and C16—H16A···O9; the other H atom of the CH2Cl2 molecule then hydrogen bonds with an O atoms of a nitrate ion of the neighboring ladder, C16—H16B···O12v [Symmetry code:(v) -x+1, -y+2, -z+2]. The ladders are further linked to two neighboring ladders in the layer above and two in the layer below through hydrogen bonding interactions between 4,4'-bipyridine-N,N'-dioxide ligands, C12—H12···O2vi, and between a 4,4'-bipyridine-N,N'-dioxide ligand and a nitrate anion, C5—H5···O7iv [Symmetry codes:(iv) x+1, y, z; (vi) -x+2, -y+2, -z+1] (Figure 4).
Though the Eu+3 cation is nine coordinate, the use of the coordinating nitrate counter ion limits the number of bridging 4,4'-bipyridine-N,N'-dioxide ligands resulting in a one-dimensional coordination network rather than a network with a high connectivity topology. However, the packing motif of the ladders allows for the formation of channels that run parallel to the a-axis; these channels are filled with the CH2Cl2 solvate molecules (Figure 5). The CH2Cl2 molecules interact with the ladders through C—H···O hydrogen bonding as described above.
For the isostructural Tb and Tl coordination networks, see: Long et al. (2002); Moitsheki et al. (2006). For the isostructural Gd coordination network, see: Dillner et al. (2010). For additional discussions on Ln+3 coordination networks with aromatic N,N'-dioxide ligands, see: Cardoso et al. (2001); Hill et al. (2005); Long et al. (2001); Sun et al. (2004). For background information on the applications of coordination networks, see: Roswell et al. (2004); Rosi et al. (2003); Seo et al. (2000).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).Fig. 1. The coordination environment of the Eu+3 cation in the title compound with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms have been omitted for clarity. Color scheme: Nd: green, C: grey, N: blue, O: red, Cl: yellow. Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x, y, z+1; (iii) x, y, z-1; (vii) -x+2, -y+1, z+2. | |
Fig. 2. Ladder-like network topology seen in the title compound viewed perpendicular to the (1 2 0) plane. The sides and rungs of the ladder meet at angles of 70.09(<1)° ( Eui—Eu—Euiii) and 108.91(<1)° (Eui—Eu—Euii). Hydrogen atoms and solvate molecules have been omitted for clarity. Color scheme: Nd: green, C: grey, N: blue, O: red. Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x, y, z+1; (iii) x, y, z-1. | |
Fig. 3. C—H···O hydrogen bonding interactions between 4,4'-bipyridine-N,N'-dioxide ligands and between CH2Cl2 solvate molecules and nitrate anions. These interactions are responsible for linking together ladders that lie in the same plane. Hydrogen bonds are shown as dashed red lines. Color scheme: Nd: green, C: grey, H: white, N: blue, O: red, Cl: yellow. Symmetry code: (v) -x+1, -y+2, -z+2. | |
Fig. 4. C—H···O hydrogen bonding interactions between 4,4'-bipyridine-N,N'-dioxide ligands, C12—H12···O2vi, and between a 4,4'-bipyridine-N,N'-dioxide ligand and a nitrate anion, C5—H5···O7iv. These interactions link the ladder shown in aqua to the four ladders above and below it that are shown in blue and yellow. Hydrogen bonds are shown as dashed red lines. Symmetry codes: (iv) x+1, y, z; (vi) -x+2, -y+2, -z+1. | |
Fig. 5. Packing of the title compound viewed along the a-axis with CH2Cl2 solvate molecules represented by van der Waals radii. Color scheme: Nd: green, C: grey, H: white, N: blue, O: red, Cl: yellow. |
[Eu2(NO3)6(C10H8N2O2)3]·2CH2Cl2 | Z = 1 |
Mr = 1410.38 | F(000) = 690 |
Triclinic, P1 | Dx = 2.013 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9841 (5) Å | Cell parameters from 9986 reflections |
b = 11.5723 (7) Å | θ = 2.4–31.4° |
c = 13.0522 (8) Å | µ = 3.00 mm−1 |
α = 86.013 (1)° | T = 100 K |
β = 80.255 (1)° | Block, colourless |
γ = 78.392 (1)° | 0.44 × 0.38 × 0.32 mm |
V = 1163.45 (12) Å3 |
Bruker SMART APEX CCD diffractometer | 7017 independent reflections |
Radiation source: fine-focus sealed tube | 6748 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
ω scans | θmax = 31.5°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→11 |
Tmin = 0.278, Tmax = 0.383 | k = −16→16 |
13873 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.050 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0274P)2 + 0.6833P] where P = (Fo2 + 2Fc2)/3 |
7017 reflections | (Δ/σ)max = 0.004 |
334 parameters | Δρmax = 1.30 e Å−3 |
0 restraints | Δρmin = −0.90 e Å−3 |
[Eu2(NO3)6(C10H8N2O2)3]·2CH2Cl2 | γ = 78.392 (1)° |
Mr = 1410.38 | V = 1163.45 (12) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.9841 (5) Å | Mo Kα radiation |
b = 11.5723 (7) Å | µ = 3.00 mm−1 |
c = 13.0522 (8) Å | T = 100 K |
α = 86.013 (1)° | 0.44 × 0.38 × 0.32 mm |
β = 80.255 (1)° |
Bruker SMART APEX CCD diffractometer | 7017 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 6748 reflections with I > 2σ(I) |
Tmin = 0.278, Tmax = 0.383 | Rint = 0.015 |
13873 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.050 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.30 e Å−3 |
7017 reflections | Δρmin = −0.90 e Å−3 |
334 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Eu1 | 0.777642 (10) | 0.833489 (7) | 0.717497 (6) | 0.01106 (3) | |
O1 | 1.02598 (16) | 0.82745 (11) | 0.59308 (10) | 0.0154 (2) | |
O2 | 0.95680 (16) | 0.87385 (12) | 0.83140 (9) | 0.0161 (2) | |
O3 | 0.62858 (17) | 0.87321 (12) | 0.57648 (9) | 0.0171 (2) | |
O4 | 0.80290 (19) | 0.63688 (12) | 0.64041 (12) | 0.0232 (3) | |
O5 | 0.95209 (19) | 0.63704 (12) | 0.76308 (11) | 0.0220 (3) | |
O6 | 0.9737 (2) | 0.47449 (13) | 0.68284 (15) | 0.0332 (4) | |
O7 | 0.48093 (17) | 0.79129 (13) | 0.77651 (10) | 0.0201 (3) | |
O8 | 0.64275 (17) | 0.77354 (13) | 0.89511 (10) | 0.0202 (3) | |
O9 | 0.37320 (17) | 0.75544 (13) | 0.93758 (11) | 0.0227 (3) | |
O10 | 0.80793 (18) | 1.04165 (12) | 0.66196 (10) | 0.0194 (3) | |
O11 | 0.59940 (17) | 1.02059 (12) | 0.78740 (11) | 0.0195 (3) | |
O12 | 0.6447 (3) | 1.19617 (15) | 0.73702 (16) | 0.0456 (5) | |
N1 | 1.15666 (18) | 0.73751 (13) | 0.56743 (11) | 0.0133 (3) | |
N2 | 0.92011 (18) | 0.86855 (13) | 0.93519 (11) | 0.0132 (3) | |
N3 | 0.69461 (19) | 0.86783 (13) | 0.47577 (11) | 0.0137 (3) | |
N4 | 0.9118 (2) | 0.57887 (14) | 0.69524 (14) | 0.0197 (3) | |
N5 | 0.49525 (19) | 0.77188 (13) | 0.87204 (12) | 0.0150 (3) | |
N6 | 0.6829 (2) | 1.08969 (14) | 0.72861 (13) | 0.0205 (3) | |
C1 | 1.1740 (3) | 0.68713 (17) | 0.47511 (14) | 0.0203 (4) | |
H1 | 1.0935 | 0.7159 | 0.4290 | 0.024* | |
C2 | 1.3082 (3) | 0.59415 (17) | 0.44756 (14) | 0.0206 (4) | |
H2 | 1.3193 | 0.5593 | 0.3824 | 0.025* | |
C3 | 1.4281 (2) | 0.55034 (15) | 0.51380 (13) | 0.0136 (3) | |
C4 | 1.4069 (2) | 0.60727 (17) | 0.60769 (14) | 0.0183 (3) | |
H4 | 1.4871 | 0.5816 | 0.6545 | 0.022* | |
C5 | 1.2711 (2) | 0.69995 (17) | 0.63285 (14) | 0.0188 (3) | |
H5 | 1.2582 | 0.7376 | 0.6969 | 0.023* | |
C6 | 0.9832 (2) | 0.76980 (16) | 0.98827 (14) | 0.0158 (3) | |
H6 | 1.0515 | 0.7039 | 0.9517 | 0.019* | |
C7 | 0.9489 (2) | 0.76417 (16) | 1.09564 (14) | 0.0162 (3) | |
H7 | 0.9927 | 0.6941 | 1.1327 | 0.019* | |
C8 | 0.8500 (2) | 0.86102 (15) | 1.14977 (13) | 0.0130 (3) | |
C9 | 0.7874 (2) | 0.96184 (15) | 1.09182 (13) | 0.0147 (3) | |
H9 | 0.7201 | 1.0294 | 1.1265 | 0.018* | |
C10 | 0.8226 (2) | 0.96384 (15) | 0.98487 (13) | 0.0151 (3) | |
H10 | 0.7784 | 1.0323 | 0.9459 | 0.018* | |
C11 | 0.7453 (2) | 0.96291 (16) | 0.42433 (13) | 0.0166 (3) | |
H11 | 0.7435 | 1.0314 | 0.4610 | 0.020* | |
C12 | 0.7997 (2) | 0.96088 (16) | 0.31839 (13) | 0.0161 (3) | |
H12 | 0.8336 | 1.0286 | 0.2821 | 0.019* | |
C13 | 0.8053 (2) | 0.86034 (15) | 0.26417 (13) | 0.0126 (3) | |
C14 | 0.7613 (3) | 0.76130 (16) | 0.32116 (14) | 0.0184 (3) | |
H14 | 0.7700 | 0.6898 | 0.2872 | 0.022* | |
C15 | 0.7053 (3) | 0.76727 (17) | 0.42647 (14) | 0.0198 (3) | |
H15 | 0.6739 | 0.7000 | 0.4649 | 0.024* | |
C16 | 0.5593 (3) | 0.60128 (19) | 1.10281 (18) | 0.0274 (4) | |
H16A | 0.5804 | 0.6067 | 1.0258 | 0.033* | |
H16B | 0.5400 | 0.6821 | 1.1285 | 0.033* | |
Cl1 | 0.74307 (7) | 0.51437 (4) | 1.14770 (4) | 0.02594 (10) | |
Cl2 | 0.37189 (7) | 0.54009 (6) | 1.14595 (5) | 0.03328 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.01154 (4) | 0.01311 (4) | 0.00801 (4) | −0.00167 (3) | −0.00067 (3) | −0.00117 (3) |
O1 | 0.0136 (5) | 0.0141 (5) | 0.0158 (6) | 0.0005 (4) | 0.0027 (4) | −0.0023 (4) |
O2 | 0.0181 (6) | 0.0241 (6) | 0.0067 (5) | −0.0068 (5) | 0.0001 (4) | −0.0016 (4) |
O3 | 0.0172 (6) | 0.0261 (7) | 0.0070 (5) | −0.0033 (5) | 0.0003 (4) | −0.0003 (5) |
O4 | 0.0248 (7) | 0.0175 (6) | 0.0291 (7) | −0.0008 (5) | −0.0117 (6) | −0.0038 (5) |
O5 | 0.0253 (7) | 0.0188 (6) | 0.0216 (7) | 0.0000 (5) | −0.0075 (5) | −0.0028 (5) |
O6 | 0.0305 (8) | 0.0156 (6) | 0.0535 (11) | 0.0042 (6) | −0.0140 (8) | −0.0097 (7) |
O7 | 0.0183 (6) | 0.0307 (7) | 0.0133 (6) | −0.0089 (5) | −0.0042 (5) | 0.0008 (5) |
O8 | 0.0147 (6) | 0.0315 (7) | 0.0159 (6) | −0.0088 (5) | −0.0042 (5) | 0.0060 (5) |
O9 | 0.0154 (6) | 0.0277 (7) | 0.0220 (7) | −0.0046 (5) | 0.0030 (5) | 0.0063 (5) |
O10 | 0.0206 (6) | 0.0181 (6) | 0.0168 (6) | −0.0015 (5) | 0.0019 (5) | −0.0005 (5) |
O11 | 0.0192 (6) | 0.0187 (6) | 0.0179 (6) | −0.0011 (5) | 0.0024 (5) | −0.0014 (5) |
O12 | 0.0585 (12) | 0.0154 (7) | 0.0507 (12) | 0.0006 (7) | 0.0168 (9) | −0.0023 (7) |
N1 | 0.0121 (6) | 0.0134 (6) | 0.0132 (6) | −0.0018 (5) | 0.0015 (5) | −0.0024 (5) |
N2 | 0.0126 (6) | 0.0196 (7) | 0.0086 (6) | −0.0060 (5) | −0.0007 (5) | −0.0018 (5) |
N3 | 0.0141 (6) | 0.0183 (7) | 0.0085 (6) | −0.0026 (5) | −0.0019 (5) | 0.0000 (5) |
N4 | 0.0167 (7) | 0.0158 (7) | 0.0260 (8) | −0.0026 (6) | −0.0020 (6) | −0.0020 (6) |
N5 | 0.0141 (6) | 0.0145 (6) | 0.0155 (7) | −0.0026 (5) | −0.0010 (5) | 0.0013 (5) |
N6 | 0.0234 (8) | 0.0168 (7) | 0.0187 (7) | 0.0001 (6) | −0.0008 (6) | −0.0004 (6) |
C1 | 0.0230 (9) | 0.0223 (9) | 0.0137 (8) | 0.0040 (7) | −0.0053 (7) | −0.0051 (7) |
C2 | 0.0232 (9) | 0.0232 (9) | 0.0143 (8) | 0.0023 (7) | −0.0052 (7) | −0.0077 (7) |
C3 | 0.0141 (7) | 0.0146 (7) | 0.0122 (7) | −0.0036 (6) | −0.0003 (6) | −0.0025 (6) |
C4 | 0.0157 (8) | 0.0239 (9) | 0.0146 (8) | 0.0005 (7) | −0.0035 (6) | −0.0062 (7) |
C5 | 0.0161 (8) | 0.0239 (9) | 0.0161 (8) | −0.0005 (7) | −0.0026 (6) | −0.0081 (7) |
C6 | 0.0159 (7) | 0.0172 (7) | 0.0137 (7) | −0.0018 (6) | −0.0016 (6) | −0.0024 (6) |
C7 | 0.0172 (8) | 0.0162 (7) | 0.0139 (7) | −0.0006 (6) | −0.0024 (6) | −0.0010 (6) |
C8 | 0.0129 (7) | 0.0167 (7) | 0.0095 (7) | −0.0035 (6) | −0.0012 (5) | −0.0002 (6) |
C9 | 0.0161 (7) | 0.0151 (7) | 0.0113 (7) | −0.0002 (6) | −0.0008 (6) | −0.0014 (6) |
C10 | 0.0171 (7) | 0.0162 (7) | 0.0112 (7) | −0.0025 (6) | −0.0014 (6) | 0.0012 (6) |
C11 | 0.0213 (8) | 0.0155 (7) | 0.0129 (7) | −0.0038 (6) | −0.0018 (6) | −0.0022 (6) |
C12 | 0.0210 (8) | 0.0161 (7) | 0.0116 (7) | −0.0058 (6) | −0.0011 (6) | −0.0006 (6) |
C13 | 0.0120 (7) | 0.0147 (7) | 0.0103 (7) | −0.0010 (6) | −0.0014 (5) | −0.0007 (6) |
C14 | 0.0277 (9) | 0.0154 (8) | 0.0126 (8) | −0.0049 (7) | −0.0027 (6) | −0.0018 (6) |
C15 | 0.0292 (9) | 0.0181 (8) | 0.0133 (8) | −0.0087 (7) | −0.0025 (7) | 0.0012 (6) |
C16 | 0.0267 (10) | 0.0251 (10) | 0.0280 (10) | −0.0022 (8) | −0.0047 (8) | 0.0073 (8) |
Cl1 | 0.0292 (2) | 0.0207 (2) | 0.0281 (2) | −0.00046 (18) | −0.01003 (19) | −0.00127 (18) |
Cl2 | 0.0274 (2) | 0.0405 (3) | 0.0291 (3) | −0.0046 (2) | −0.0018 (2) | 0.0059 (2) |
Eu1—O3 | 2.3279 (13) | C1—H1 | 0.9500 |
Eu1—O1 | 2.3332 (12) | C2—C3 | 1.395 (2) |
Eu1—O2 | 2.3579 (12) | C2—H2 | 0.9500 |
Eu1—O11 | 2.4781 (13) | C3—C4 | 1.400 (2) |
Eu1—O7 | 2.4979 (13) | C3—C3i | 1.479 (3) |
Eu1—O8 | 2.4994 (13) | C4—C5 | 1.376 (2) |
Eu1—O5 | 2.5061 (14) | C4—H4 | 0.9500 |
Eu1—O4 | 2.5090 (14) | C5—H5 | 0.9500 |
Eu1—O10 | 2.5137 (14) | C6—C7 | 1.381 (2) |
Eu1—N6 | 2.9160 (16) | C6—H6 | 0.9500 |
Eu1—N5 | 2.9271 (15) | C7—C8 | 1.394 (2) |
Eu1—N4 | 2.9424 (16) | C7—H7 | 0.9500 |
O1—N1 | 1.3331 (18) | C8—C9 | 1.398 (2) |
O2—N2 | 1.3365 (18) | C8—C13ii | 1.475 (2) |
O3—N3 | 1.3316 (18) | C9—C10 | 1.376 (2) |
O4—N4 | 1.276 (2) | C9—H9 | 0.9500 |
O5—N4 | 1.268 (2) | C10—H10 | 0.9500 |
O6—N4 | 1.220 (2) | C11—C12 | 1.378 (2) |
O7—N5 | 1.2717 (19) | C11—H11 | 0.9500 |
O8—N5 | 1.2680 (19) | C12—C13 | 1.393 (2) |
O9—N5 | 1.220 (2) | C12—H12 | 0.9500 |
O10—N6 | 1.270 (2) | C13—C14 | 1.395 (2) |
O11—N6 | 1.276 (2) | C13—C8iii | 1.475 (2) |
O12—N6 | 1.217 (2) | C14—C15 | 1.374 (2) |
N1—C5 | 1.344 (2) | C14—H14 | 0.9500 |
N1—C1 | 1.349 (2) | C15—H15 | 0.9500 |
N2—C6 | 1.348 (2) | C16—Cl1 | 1.767 (2) |
N2—C10 | 1.351 (2) | C16—Cl2 | 1.773 (2) |
N3—C11 | 1.345 (2) | C16—H16A | 0.9900 |
N3—C15 | 1.349 (2) | C16—H16B | 0.9900 |
C1—C2 | 1.376 (3) | ||
O3—Eu1—O1 | 85.10 (4) | C5—N1—C1 | 120.97 (15) |
O3—Eu1—O2 | 154.66 (5) | O2—N2—C6 | 119.71 (14) |
O1—Eu1—O2 | 83.73 (4) | O2—N2—C10 | 118.95 (14) |
O3—Eu1—O11 | 86.31 (5) | C6—N2—C10 | 121.33 (15) |
O1—Eu1—O11 | 122.68 (4) | O3—N3—C11 | 119.85 (14) |
O2—Eu1—O11 | 80.76 (5) | O3—N3—C15 | 119.01 (15) |
O3—Eu1—O7 | 72.54 (4) | C11—N3—C15 | 121.12 (15) |
O1—Eu1—O7 | 151.35 (4) | O6—N4—O5 | 122.25 (17) |
O2—Eu1—O7 | 123.72 (4) | O6—N4—O4 | 122.21 (17) |
O11—Eu1—O7 | 74.46 (5) | O5—N4—O4 | 115.54 (15) |
O3—Eu1—O8 | 123.44 (4) | O6—N4—Eu1 | 177.07 (15) |
O1—Eu1—O8 | 148.50 (4) | O5—N4—Eu1 | 57.72 (9) |
O2—Eu1—O8 | 74.50 (4) | O4—N4—Eu1 | 57.89 (9) |
O11—Eu1—O8 | 76.41 (5) | O9—N5—O8 | 122.22 (16) |
O7—Eu1—O8 | 51.03 (4) | O9—N5—O7 | 121.86 (15) |
O3—Eu1—O5 | 125.27 (5) | O8—N5—O7 | 115.90 (14) |
O1—Eu1—O5 | 79.17 (5) | O9—N5—Eu1 | 174.99 (12) |
O2—Eu1—O5 | 74.59 (5) | O8—N5—Eu1 | 58.05 (8) |
O11—Eu1—O5 | 144.99 (5) | O7—N5—Eu1 | 58.00 (8) |
O7—Eu1—O5 | 99.04 (5) | O12—N6—O10 | 122.03 (18) |
O8—Eu1—O5 | 73.32 (5) | O12—N6—O11 | 121.27 (17) |
O3—Eu1—O4 | 74.83 (5) | O10—N6—O11 | 116.70 (15) |
O1—Eu1—O4 | 78.66 (5) | O12—N6—Eu1 | 177.57 (16) |
O2—Eu1—O4 | 124.69 (5) | O10—N6—Eu1 | 59.16 (9) |
O11—Eu1—O4 | 150.55 (5) | O11—N6—Eu1 | 57.57 (9) |
O7—Eu1—O4 | 78.35 (5) | N1—C1—C2 | 120.10 (17) |
O8—Eu1—O4 | 95.14 (5) | N1—C1—H1 | 120.0 |
O5—Eu1—O4 | 50.81 (5) | C2—C1—H1 | 120.0 |
O3—Eu1—O10 | 76.78 (5) | C1—C2—C3 | 121.05 (17) |
O1—Eu1—O10 | 71.43 (4) | C1—C2—H2 | 119.5 |
O2—Eu1—O10 | 78.12 (5) | C3—C2—H2 | 119.5 |
O11—Eu1—O10 | 51.46 (4) | C2—C3—C4 | 116.71 (16) |
O7—Eu1—O10 | 118.58 (5) | C2—C3—C3i | 121.90 (19) |
O8—Eu1—O10 | 124.05 (5) | C4—C3—C3i | 121.39 (19) |
O5—Eu1—O10 | 141.62 (5) | C5—C4—C3 | 120.72 (17) |
O4—Eu1—O10 | 140.06 (5) | C5—C4—H4 | 119.6 |
O3—Eu1—N6 | 81.12 (5) | C3—C4—H4 | 119.6 |
O1—Eu1—N6 | 96.98 (5) | N1—C5—C4 | 120.42 (16) |
O2—Eu1—N6 | 77.77 (5) | N1—C5—H5 | 119.8 |
O11—Eu1—N6 | 25.77 (4) | C4—C5—H5 | 119.8 |
O7—Eu1—N6 | 96.99 (5) | N2—C6—C7 | 120.21 (16) |
O8—Eu1—N6 | 100.24 (5) | N2—C6—H6 | 119.9 |
O5—Eu1—N6 | 152.34 (5) | C7—C6—H6 | 119.9 |
O4—Eu1—N6 | 155.82 (5) | C6—C7—C8 | 120.18 (16) |
O10—Eu1—N6 | 25.70 (4) | C6—C7—H7 | 119.9 |
O3—Eu1—N5 | 97.96 (4) | C8—C7—H7 | 119.9 |
O1—Eu1—N5 | 164.53 (4) | C7—C8—C9 | 117.82 (15) |
O2—Eu1—N5 | 98.86 (4) | C7—C8—C13ii | 123.07 (15) |
O11—Eu1—N5 | 72.75 (4) | C9—C8—C13ii | 119.09 (15) |
O7—Eu1—N5 | 25.58 (4) | C10—C9—C8 | 120.41 (16) |
O8—Eu1—N5 | 25.50 (4) | C10—C9—H9 | 119.8 |
O5—Eu1—N5 | 86.78 (5) | C8—C9—H9 | 119.8 |
O4—Eu1—N5 | 87.47 (5) | N2—C10—C9 | 120.05 (16) |
O10—Eu1—N5 | 124.04 (4) | N2—C10—H10 | 120.0 |
N6—Eu1—N5 | 98.47 (4) | C9—C10—H10 | 120.0 |
O3—Eu1—N4 | 100.07 (5) | N3—C11—C12 | 119.90 (16) |
O1—Eu1—N4 | 76.92 (4) | N3—C11—H11 | 120.0 |
O2—Eu1—N4 | 99.44 (5) | C12—C11—H11 | 120.0 |
O11—Eu1—N4 | 160.06 (5) | C11—C12—C13 | 120.50 (16) |
O7—Eu1—N4 | 89.34 (5) | C11—C12—H12 | 119.7 |
O8—Eu1—N4 | 84.39 (5) | C13—C12—H12 | 119.7 |
O5—Eu1—N4 | 25.32 (5) | C12—C13—C14 | 117.84 (15) |
O4—Eu1—N4 | 25.52 (5) | C12—C13—C8iii | 120.62 (15) |
O10—Eu1—N4 | 148.34 (5) | C14—C13—C8iii | 121.50 (15) |
N6—Eu1—N4 | 173.61 (5) | C15—C14—C13 | 119.88 (16) |
N5—Eu1—N4 | 87.60 (4) | C15—C14—H14 | 120.1 |
N1—O1—Eu1 | 129.42 (10) | C13—C14—H14 | 120.1 |
N2—O2—Eu1 | 125.13 (10) | N3—C15—C14 | 120.59 (17) |
N3—O3—Eu1 | 127.65 (10) | N3—C15—H15 | 119.7 |
N4—O4—Eu1 | 96.59 (10) | C14—C15—H15 | 119.7 |
N4—O5—Eu1 | 96.97 (10) | Cl1—C16—Cl2 | 111.26 (12) |
N5—O7—Eu1 | 96.43 (10) | Cl1—C16—H16A | 109.4 |
N5—O8—Eu1 | 96.46 (10) | Cl2—C16—H16A | 109.4 |
N6—O10—Eu1 | 95.15 (10) | Cl1—C16—H16B | 109.4 |
N6—O11—Eu1 | 96.66 (10) | Cl2—C16—H16B | 109.4 |
O1—N1—C5 | 119.59 (14) | H16A—C16—H16B | 108.0 |
O1—N1—C1 | 119.42 (15) |
Symmetry codes: (i) −x+3, −y+1, −z+1; (ii) x, y, z+1; (iii) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O7iv | 0.95 | 2.41 | 3.081 (2) | 128 |
C9—H9···O9v | 0.95 | 2.57 | 3.286 (2) | 132 |
C12—H12···O2vi | 0.95 | 2.44 | 3.309 (2) | 152 |
C16—H16B···O12v | 0.99 | 2.42 | 3.242 (3) | 140 |
C16—H16A···O8 | 0.99 | 2.55 | 3.307 (3) | 133 |
C16—H16A···O9 | 0.99 | 2.50 | 3.086 (3) | 118 |
Symmetry codes: (iv) x+1, y, z; (v) −x+1, −y+2, −z+2; (vi) −x+2, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Eu2(NO3)6(C10H8N2O2)3]·2CH2Cl2 |
Mr | 1410.38 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.9841 (5), 11.5723 (7), 13.0522 (8) |
α, β, γ (°) | 86.013 (1), 80.255 (1), 78.392 (1) |
V (Å3) | 1163.45 (12) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 3.00 |
Crystal size (mm) | 0.44 × 0.38 × 0.32 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.278, 0.383 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13873, 7017, 6748 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.736 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.050, 1.06 |
No. of reflections | 7017 |
No. of parameters | 334 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.30, −0.90 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O7i | 0.95 | 2.41 | 3.081 (2) | 127.8 |
C9—H9···O9ii | 0.95 | 2.57 | 3.286 (2) | 131.9 |
C12—H12···O2iii | 0.95 | 2.44 | 3.309 (2) | 151.9 |
C16—H16B···O12ii | 0.99 | 2.42 | 3.242 (3) | 139.7 |
C16—H16A···O8 | 0.99 | 2.55 | 3.307 (3) | 132.7 |
C16—H16A···O9 | 0.99 | 2.50 | 3.086 (3) | 117.6 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+2, −z+2; (iii) −x+2, −y+2, −z+1. |
Acknowledgements
The authors are thankful to Allegheny College for providing funding in support of this research. The diffractometer was funded by the NSF (grant No. 0087210), the Ohio Board of Regents (grant No. CAP-491) and by Youngstown State University. The authors would like to acknowledge Youngstown State University and the STaRBURSTT CyberInstrumentation Consortium for assistance with the crystallography.
References
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cardoso, M. C. C., Zinner, L. B., Zukerman-Scheptor, J., Araújo Melo, D. M. & Vincentini, G. J. (2001). J. Alloys Compd, 323–324, 22–25. Web of Science CSD CrossRef CAS Google Scholar
Dillner, A. J., Lilly, C. P. & Knaust, J. M. (2010). Acta Cryst. E66, m1158–m1159. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hill, R. J., Long, D. L., Champness, N. R., Hubberstry, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 335–348. Web of Science CrossRef PubMed CAS Google Scholar
Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2001). Angew. Chem. Int. Ed. 40, 2444–2447. CAS Google Scholar
Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026–2033. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moitsheki, L. J., Bourne, S. A. & Nassimbeni, L. R. (2006). Acta Cryst. E62, m542–m544. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129. Web of Science CSD CrossRef PubMed CAS Google Scholar
Roswell, J. L. C. & Yaghi, O. M. (2004). Microporous Mesoporous Mater. 73, 3–14. Google Scholar
Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jin Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986. PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89–95. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of lanthanide coordination networks has been of recent interest due to the potential of the flexible coordination sphere of the Ln+3 metal ions to produce coordination networks with new, unusual, or high connectivity topologies (Hill et al., 2005; Long et al., 2001; and Sun et al., 2004). Coordination networks with both a high connectivity topology and an open framework have potential for applications in areas such as absorption, ion exchange, or catalysis (Roswell et al., 2004; Rosi et al., 2003; and Seo et al. 2000). Aromatic N,N'-dioxide ligands have been attractive candidates for use with Ln+3 cations as the O-donor atoms of the ligand are complementary to the hard acid character of the lanthanide cations (Cardoso et al., 2001; Hill et al., 2005; Long et al., 2001; Long et al., 2002; and Sun et al., 2004).
The description of the structure of the title compound is part of a set of consecutive papers on one-dimensional ladder-like coordination networks of the type [Ln2(NO3)6(C10H8N2O2)3]n, with Ln = Eu (this publication) and Gd (Dillner et al., 2010), respectively. Both compounds are also isostructural to the previously reported Tb and Tl coordination networks (Long et al., 2002 and Moitsheki et al., 2006).
The asymmetric unit of the title compound contains one Eu+3 cation, one and a half coordinated 4,4'-bipyridine-N,N'-dioxide ligands, three coordinated nitrate anions, and one solvate CH2Cl2 molecule. None of the atoms lie on a special position, but there is an inversion center located between the rings of one of the ligands (O1, N1, C1-C5). The Eu+3 cation is coordinated in a distorted tricapped trigonal prismatic fashion by nine O atoms (Figure 1). Three bridging 4,4'-bipyridine-N,N'-dioxide ligands contribute three O donor atoms, and three nitrate anions contribute six O donor atoms. The network topology is ladder-like; however the sides and rungs of the ladder meet at angles of 70.09(<1)° ( Eui—Eu—Euiii) and 108.91(<1)° (Eui—Eu—Euii) forming a parallelogram rather than a square [Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x, y, z+1; (iii) x, y, z-1] (Figure 2). The ladders run parallel to the c-axis and lie in planes that are approximately parallel with the (1 2 0) plane.
Through C-H···O hydrogen bonding interactions the ladders are linked into a three-dimensional structure. Each ladder is linked to two similar ladders that lie in the same plane through four unique C-H···O hydrogen bonds per Eu+3 cation (Figure 3). There is one direct interaction between the ladders via a C-H···O hydrogen bond from a 4,4'-bipyridine-N,N'-dioxide ligand of one ladder to the nitrate anion of another ladder, C9—H9···O9v [Symmetry code:(v) -x+1, -y+2, -z+2]. There is also an indirect interaction between the ladders through hydrogen bonding with the CH2Cl2 solvate molecules. Two O atoms of a nitrate ion hydrogen bond with one of the CH2Cl2 H atoms, C16—H16A···O8 and C16—H16A···O9; the other H atom of the CH2Cl2 molecule then hydrogen bonds with an O atoms of a nitrate ion of the neighboring ladder, C16—H16B···O12v [Symmetry code:(v) -x+1, -y+2, -z+2]. The ladders are further linked to two neighboring ladders in the layer above and two in the layer below through hydrogen bonding interactions between 4,4'-bipyridine-N,N'-dioxide ligands, C12—H12···O2vi, and between a 4,4'-bipyridine-N,N'-dioxide ligand and a nitrate anion, C5—H5···O7iv [Symmetry codes:(iv) x+1, y, z; (vi) -x+2, -y+2, -z+1] (Figure 4).
Though the Eu+3 cation is nine coordinate, the use of the coordinating nitrate counter ion limits the number of bridging 4,4'-bipyridine-N,N'-dioxide ligands resulting in a one-dimensional coordination network rather than a network with a high connectivity topology. However, the packing motif of the ladders allows for the formation of channels that run parallel to the a-axis; these channels are filled with the CH2Cl2 solvate molecules (Figure 5). The CH2Cl2 molecules interact with the ladders through C—H···O hydrogen bonding as described above.