metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tris­­(μ2-4,4′-bi­pyridine N,N′-di­oxide)hexa­nitratodieuropium(III)] di­chloro­methane disolvate]

aAllegheny College, 520 North Main St., Meadville, PA 16335, USA
*Correspondence e-mail: jknaust@allegheny.edu

(Received 16 August 2010; accepted 18 August 2010; online 21 August 2010)

The title one-dimensional coordination network, {[Eu2(NO3)6(C10H8N2O2)3]·2CH2Cl2}n, is isostructural with the previously reported Tb and Tl coordination networks and to its Gd analog. The EuIII cation is coordinated in a distorted tricapped trigonal-prismatic fashion by nine O atoms from three bridging 4,4′-bipyridine N,N′-dioxide ligands and three chelating nitrate anions. None of the atoms lie on a special position, but there is an inversion center located between the rings of one of the ligands. The network topology is ladder-like, and each ladder inter­acts with six neighboring ladders through C—H⋯O hydrogen bonds. The packing motif of the ladders allows for the formation of channels that run parallel to the a axis; these channels are filled with CH2Cl2 solvent mol­ecules that inter­act with the ladders through C—H⋯O hydrogen bonds.

Related literature

For the isostructural Tb and Tl coordination networks, see: Long et al. (2002[Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026-2033.]); Moitsheki et al. (2006[Moitsheki, L. J., Bourne, S. A. & Nassimbeni, L. R. (2006). Acta Cryst. E62, m542-m544.]). For the isostructural Gd coordination network, see: Dillner et al. (2010[Dillner, A. J., Lilly, C. P. & Knaust, J. M. (2010). Acta Cryst. E66, m1158-m1159.]). For additional discussions on Ln+3 (Ln = lanthanide) coordination networks with aromatic N,N'-dioxide ligands, see: Cardoso et al. (2001[Cardoso, M. C. C., Zinner, L. B., Zukerman-Scheptor, J., Araújo Melo, D. M. & Vincentini, G. J. (2001). J. Alloys Compd, 323-324, 22-25.]); Hill et al. (2005[Hill, R. J., Long, D. L., Champness, N. R., Hubberstry, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 335-348.]); Long et al. (2001[Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2001). Angew. Chem. Int. Ed. 40, 2444-2447.]); Sun et al. (2004[Sun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89-95.]). For background information on the applications of coordination networks, see: Roswell & Yaghi (2004[Roswell, J. L. C. & Yaghi, O. M. (2004). Microporous Mesoporous Mater. 73, 3-14.]); Rosi et al. (2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]); Seo et al. (2000[Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jin Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982-986.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(NO3)6(C10H8N2O2)3]·2CH2Cl2

  • Mr = 1410.38

  • Triclinic, [P \overline 1]

  • a = 7.9841 (5) Å

  • b = 11.5723 (7) Å

  • c = 13.0522 (8) Å

  • α = 86.013 (1)°

  • β = 80.255 (1)°

  • γ = 78.392 (1)°

  • V = 1163.45 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.00 mm−1

  • T = 100 K

  • 0.44 × 0.38 × 0.32 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.278, Tmax = 0.383

  • 13873 measured reflections

  • 7017 independent reflections

  • 6748 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.050

  • S = 1.06

  • 7017 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 1.30 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O7i 0.95 2.41 3.081 (2) 128
C9—H9⋯O9ii 0.95 2.57 3.286 (2) 132
C12—H12⋯O2iii 0.95 2.44 3.309 (2) 152
C16—H16B⋯O12ii 0.99 2.42 3.242 (3) 140
C16—H16A⋯O8 0.99 2.55 3.307 (3) 133
C16—H16A⋯O9 0.99 2.50 3.086 (3) 118
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+2; (iii) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The synthesis of lanthanide coordination networks has been of recent interest due to the potential of the flexible coordination sphere of the Ln+3 metal ions to produce coordination networks with new, unusual, or high connectivity topologies (Hill et al., 2005; Long et al., 2001; and Sun et al., 2004). Coordination networks with both a high connectivity topology and an open framework have potential for applications in areas such as absorption, ion exchange, or catalysis (Roswell et al., 2004; Rosi et al., 2003; and Seo et al. 2000). Aromatic N,N'-dioxide ligands have been attractive candidates for use with Ln+3 cations as the O-donor atoms of the ligand are complementary to the hard acid character of the lanthanide cations (Cardoso et al., 2001; Hill et al., 2005; Long et al., 2001; Long et al., 2002; and Sun et al., 2004).

The description of the structure of the title compound is part of a set of consecutive papers on one-dimensional ladder-like coordination networks of the type [Ln2(NO3)6(C10H8N2O2)3]n, with Ln = Eu (this publication) and Gd (Dillner et al., 2010), respectively. Both compounds are also isostructural to the previously reported Tb and Tl coordination networks (Long et al., 2002 and Moitsheki et al., 2006).

The asymmetric unit of the title compound contains one Eu+3 cation, one and a half coordinated 4,4'-bipyridine-N,N'-dioxide ligands, three coordinated nitrate anions, and one solvate CH2Cl2 molecule. None of the atoms lie on a special position, but there is an inversion center located between the rings of one of the ligands (O1, N1, C1-C5). The Eu+3 cation is coordinated in a distorted tricapped trigonal prismatic fashion by nine O atoms (Figure 1). Three bridging 4,4'-bipyridine-N,N'-dioxide ligands contribute three O donor atoms, and three nitrate anions contribute six O donor atoms. The network topology is ladder-like; however the sides and rungs of the ladder meet at angles of 70.09(<1)° ( Eui—Eu—Euiii) and 108.91(<1)° (Eui—Eu—Euii) forming a parallelogram rather than a square [Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x, y, z+1; (iii) x, y, z-1] (Figure 2). The ladders run parallel to the c-axis and lie in planes that are approximately parallel with the (1 2 0) plane.

Through C-H···O hydrogen bonding interactions the ladders are linked into a three-dimensional structure. Each ladder is linked to two similar ladders that lie in the same plane through four unique C-H···O hydrogen bonds per Eu+3 cation (Figure 3). There is one direct interaction between the ladders via a C-H···O hydrogen bond from a 4,4'-bipyridine-N,N'-dioxide ligand of one ladder to the nitrate anion of another ladder, C9—H9···O9v [Symmetry code:(v) -x+1, -y+2, -z+2]. There is also an indirect interaction between the ladders through hydrogen bonding with the CH2Cl2 solvate molecules. Two O atoms of a nitrate ion hydrogen bond with one of the CH2Cl2 H atoms, C16—H16A···O8 and C16—H16A···O9; the other H atom of the CH2Cl2 molecule then hydrogen bonds with an O atoms of a nitrate ion of the neighboring ladder, C16—H16B···O12v [Symmetry code:(v) -x+1, -y+2, -z+2]. The ladders are further linked to two neighboring ladders in the layer above and two in the layer below through hydrogen bonding interactions between 4,4'-bipyridine-N,N'-dioxide ligands, C12—H12···O2vi, and between a 4,4'-bipyridine-N,N'-dioxide ligand and a nitrate anion, C5—H5···O7iv [Symmetry codes:(iv) x+1, y, z; (vi) -x+2, -y+2, -z+1] (Figure 4).

Though the Eu+3 cation is nine coordinate, the use of the coordinating nitrate counter ion limits the number of bridging 4,4'-bipyridine-N,N'-dioxide ligands resulting in a one-dimensional coordination network rather than a network with a high connectivity topology. However, the packing motif of the ladders allows for the formation of channels that run parallel to the a-axis; these channels are filled with the CH2Cl2 solvate molecules (Figure 5). The CH2Cl2 molecules interact with the ladders through C—H···O hydrogen bonding as described above.

Related literature top

For the isostructural Tb and Tl coordination networks, see: Long et al. (2002); Moitsheki et al. (2006). For the isostructural Gd coordination network, see: Dillner et al. (2010). For additional discussions on Ln+3 coordination networks with aromatic N,N'-dioxide ligands, see: Cardoso et al. (2001); Hill et al. (2005); Long et al. (2001); Sun et al. (2004). For background information on the applications of coordination networks, see: Roswell et al. (2004); Rosi et al. (2003); Seo et al. (2000).

Experimental top

Eu(NO3)3 (0.051 g 0.15 mmol) was placed in the bottom of a test tube and covered with CH2Cl2 (5 ml). 4,4'-bipyridine-N,N'-dioxide.H2O (0.0376 g, 0.182 mmol) was dissolved in methanol (8 ml), and this solution was layered over the CH2Cl2. The two solutions were allowed to slowly mix. Over a period of several weeks the Eu(NO3)3 dissolved, and colorless block-like crystals of the title compound formed.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

The synthesis of lanthanide coordination networks has been of recent interest due to the potential of the flexible coordination sphere of the Ln+3 metal ions to produce coordination networks with new, unusual, or high connectivity topologies (Hill et al., 2005; Long et al., 2001; and Sun et al., 2004). Coordination networks with both a high connectivity topology and an open framework have potential for applications in areas such as absorption, ion exchange, or catalysis (Roswell et al., 2004; Rosi et al., 2003; and Seo et al. 2000). Aromatic N,N'-dioxide ligands have been attractive candidates for use with Ln+3 cations as the O-donor atoms of the ligand are complementary to the hard acid character of the lanthanide cations (Cardoso et al., 2001; Hill et al., 2005; Long et al., 2001; Long et al., 2002; and Sun et al., 2004).

The description of the structure of the title compound is part of a set of consecutive papers on one-dimensional ladder-like coordination networks of the type [Ln2(NO3)6(C10H8N2O2)3]n, with Ln = Eu (this publication) and Gd (Dillner et al., 2010), respectively. Both compounds are also isostructural to the previously reported Tb and Tl coordination networks (Long et al., 2002 and Moitsheki et al., 2006).

The asymmetric unit of the title compound contains one Eu+3 cation, one and a half coordinated 4,4'-bipyridine-N,N'-dioxide ligands, three coordinated nitrate anions, and one solvate CH2Cl2 molecule. None of the atoms lie on a special position, but there is an inversion center located between the rings of one of the ligands (O1, N1, C1-C5). The Eu+3 cation is coordinated in a distorted tricapped trigonal prismatic fashion by nine O atoms (Figure 1). Three bridging 4,4'-bipyridine-N,N'-dioxide ligands contribute three O donor atoms, and three nitrate anions contribute six O donor atoms. The network topology is ladder-like; however the sides and rungs of the ladder meet at angles of 70.09(<1)° ( Eui—Eu—Euiii) and 108.91(<1)° (Eui—Eu—Euii) forming a parallelogram rather than a square [Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x, y, z+1; (iii) x, y, z-1] (Figure 2). The ladders run parallel to the c-axis and lie in planes that are approximately parallel with the (1 2 0) plane.

Through C-H···O hydrogen bonding interactions the ladders are linked into a three-dimensional structure. Each ladder is linked to two similar ladders that lie in the same plane through four unique C-H···O hydrogen bonds per Eu+3 cation (Figure 3). There is one direct interaction between the ladders via a C-H···O hydrogen bond from a 4,4'-bipyridine-N,N'-dioxide ligand of one ladder to the nitrate anion of another ladder, C9—H9···O9v [Symmetry code:(v) -x+1, -y+2, -z+2]. There is also an indirect interaction between the ladders through hydrogen bonding with the CH2Cl2 solvate molecules. Two O atoms of a nitrate ion hydrogen bond with one of the CH2Cl2 H atoms, C16—H16A···O8 and C16—H16A···O9; the other H atom of the CH2Cl2 molecule then hydrogen bonds with an O atoms of a nitrate ion of the neighboring ladder, C16—H16B···O12v [Symmetry code:(v) -x+1, -y+2, -z+2]. The ladders are further linked to two neighboring ladders in the layer above and two in the layer below through hydrogen bonding interactions between 4,4'-bipyridine-N,N'-dioxide ligands, C12—H12···O2vi, and between a 4,4'-bipyridine-N,N'-dioxide ligand and a nitrate anion, C5—H5···O7iv [Symmetry codes:(iv) x+1, y, z; (vi) -x+2, -y+2, -z+1] (Figure 4).

Though the Eu+3 cation is nine coordinate, the use of the coordinating nitrate counter ion limits the number of bridging 4,4'-bipyridine-N,N'-dioxide ligands resulting in a one-dimensional coordination network rather than a network with a high connectivity topology. However, the packing motif of the ladders allows for the formation of channels that run parallel to the a-axis; these channels are filled with the CH2Cl2 solvate molecules (Figure 5). The CH2Cl2 molecules interact with the ladders through C—H···O hydrogen bonding as described above.

For the isostructural Tb and Tl coordination networks, see: Long et al. (2002); Moitsheki et al. (2006). For the isostructural Gd coordination network, see: Dillner et al. (2010). For additional discussions on Ln+3 coordination networks with aromatic N,N'-dioxide ligands, see: Cardoso et al. (2001); Hill et al. (2005); Long et al. (2001); Sun et al. (2004). For background information on the applications of coordination networks, see: Roswell et al. (2004); Rosi et al. (2003); Seo et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The coordination environment of the Eu+3 cation in the title compound with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms have been omitted for clarity. Color scheme: Nd: green, C: grey, N: blue, O: red, Cl: yellow. Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x, y, z+1; (iii) x, y, z-1; (vii) -x+2, -y+1, z+2.
[Figure 2] Fig. 2. Ladder-like network topology seen in the title compound viewed perpendicular to the (1 2 0) plane. The sides and rungs of the ladder meet at angles of 70.09(<1)° ( Eui—Eu—Euiii) and 108.91(<1)° (Eui—Eu—Euii). Hydrogen atoms and solvate molecules have been omitted for clarity. Color scheme: Nd: green, C: grey, N: blue, O: red. Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x, y, z+1; (iii) x, y, z-1.
[Figure 3] Fig. 3. C—H···O hydrogen bonding interactions between 4,4'-bipyridine-N,N'-dioxide ligands and between CH2Cl2 solvate molecules and nitrate anions. These interactions are responsible for linking together ladders that lie in the same plane. Hydrogen bonds are shown as dashed red lines. Color scheme: Nd: green, C: grey, H: white, N: blue, O: red, Cl: yellow. Symmetry code: (v) -x+1, -y+2, -z+2.
[Figure 4] Fig. 4. C—H···O hydrogen bonding interactions between 4,4'-bipyridine-N,N'-dioxide ligands, C12—H12···O2vi, and between a 4,4'-bipyridine-N,N'-dioxide ligand and a nitrate anion, C5—H5···O7iv. These interactions link the ladder shown in aqua to the four ladders above and below it that are shown in blue and yellow. Hydrogen bonds are shown as dashed red lines. Symmetry codes: (iv) x+1, y, z; (vi) -x+2, -y+2, -z+1.
[Figure 5] Fig. 5. Packing of the title compound viewed along the a-axis with CH2Cl2 solvate molecules represented by van der Waals radii. Color scheme: Nd: green, C: grey, H: white, N: blue, O: red, Cl: yellow.
poly[[tris(µ2-4,4'-bipyridine N,N'-dioxide)hexanitratodieuropium(III)] dichloromethane disolvate] top
Crystal data top
[Eu2(NO3)6(C10H8N2O2)3]·2CH2Cl2Z = 1
Mr = 1410.38F(000) = 690
Triclinic, P1Dx = 2.013 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9841 (5) ÅCell parameters from 9986 reflections
b = 11.5723 (7) Åθ = 2.4–31.4°
c = 13.0522 (8) ŵ = 3.00 mm1
α = 86.013 (1)°T = 100 K
β = 80.255 (1)°Block, colourless
γ = 78.392 (1)°0.44 × 0.38 × 0.32 mm
V = 1163.45 (12) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
7017 independent reflections
Radiation source: fine-focus sealed tube6748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 31.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.278, Tmax = 0.383k = 1616
13873 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.6833P]
where P = (Fo2 + 2Fc2)/3
7017 reflections(Δ/σ)max = 0.004
334 parametersΔρmax = 1.30 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Eu2(NO3)6(C10H8N2O2)3]·2CH2Cl2γ = 78.392 (1)°
Mr = 1410.38V = 1163.45 (12) Å3
Triclinic, P1Z = 1
a = 7.9841 (5) ÅMo Kα radiation
b = 11.5723 (7) ŵ = 3.00 mm1
c = 13.0522 (8) ÅT = 100 K
α = 86.013 (1)°0.44 × 0.38 × 0.32 mm
β = 80.255 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
7017 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6748 reflections with I > 2σ(I)
Tmin = 0.278, Tmax = 0.383Rint = 0.015
13873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.06Δρmax = 1.30 e Å3
7017 reflectionsΔρmin = 0.90 e Å3
334 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.777642 (10)0.833489 (7)0.717497 (6)0.01106 (3)
O11.02598 (16)0.82745 (11)0.59308 (10)0.0154 (2)
O20.95680 (16)0.87385 (12)0.83140 (9)0.0161 (2)
O30.62858 (17)0.87321 (12)0.57648 (9)0.0171 (2)
O40.80290 (19)0.63688 (12)0.64041 (12)0.0232 (3)
O50.95209 (19)0.63704 (12)0.76308 (11)0.0220 (3)
O60.9737 (2)0.47449 (13)0.68284 (15)0.0332 (4)
O70.48093 (17)0.79129 (13)0.77651 (10)0.0201 (3)
O80.64275 (17)0.77354 (13)0.89511 (10)0.0202 (3)
O90.37320 (17)0.75544 (13)0.93758 (11)0.0227 (3)
O100.80793 (18)1.04165 (12)0.66196 (10)0.0194 (3)
O110.59940 (17)1.02059 (12)0.78740 (11)0.0195 (3)
O120.6447 (3)1.19617 (15)0.73702 (16)0.0456 (5)
N11.15666 (18)0.73751 (13)0.56743 (11)0.0133 (3)
N20.92011 (18)0.86855 (13)0.93519 (11)0.0132 (3)
N30.69461 (19)0.86783 (13)0.47577 (11)0.0137 (3)
N40.9118 (2)0.57887 (14)0.69524 (14)0.0197 (3)
N50.49525 (19)0.77188 (13)0.87204 (12)0.0150 (3)
N60.6829 (2)1.08969 (14)0.72861 (13)0.0205 (3)
C11.1740 (3)0.68713 (17)0.47511 (14)0.0203 (4)
H11.09350.71590.42900.024*
C21.3082 (3)0.59415 (17)0.44756 (14)0.0206 (4)
H21.31930.55930.38240.025*
C31.4281 (2)0.55034 (15)0.51380 (13)0.0136 (3)
C41.4069 (2)0.60727 (17)0.60769 (14)0.0183 (3)
H41.48710.58160.65450.022*
C51.2711 (2)0.69995 (17)0.63285 (14)0.0188 (3)
H51.25820.73760.69690.023*
C60.9832 (2)0.76980 (16)0.98827 (14)0.0158 (3)
H61.05150.70390.95170.019*
C70.9489 (2)0.76417 (16)1.09564 (14)0.0162 (3)
H70.99270.69411.13270.019*
C80.8500 (2)0.86102 (15)1.14977 (13)0.0130 (3)
C90.7874 (2)0.96184 (15)1.09182 (13)0.0147 (3)
H90.72011.02941.12650.018*
C100.8226 (2)0.96384 (15)0.98487 (13)0.0151 (3)
H100.77841.03230.94590.018*
C110.7453 (2)0.96291 (16)0.42433 (13)0.0166 (3)
H110.74351.03140.46100.020*
C120.7997 (2)0.96088 (16)0.31839 (13)0.0161 (3)
H120.83361.02860.28210.019*
C130.8053 (2)0.86034 (15)0.26417 (13)0.0126 (3)
C140.7613 (3)0.76130 (16)0.32116 (14)0.0184 (3)
H140.77000.68980.28720.022*
C150.7053 (3)0.76727 (17)0.42647 (14)0.0198 (3)
H150.67390.70000.46490.024*
C160.5593 (3)0.60128 (19)1.10281 (18)0.0274 (4)
H16A0.58040.60671.02580.033*
H16B0.54000.68211.12850.033*
Cl10.74307 (7)0.51437 (4)1.14770 (4)0.02594 (10)
Cl20.37189 (7)0.54009 (6)1.14595 (5)0.03328 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01154 (4)0.01311 (4)0.00801 (4)0.00167 (3)0.00067 (3)0.00117 (3)
O10.0136 (5)0.0141 (5)0.0158 (6)0.0005 (4)0.0027 (4)0.0023 (4)
O20.0181 (6)0.0241 (6)0.0067 (5)0.0068 (5)0.0001 (4)0.0016 (4)
O30.0172 (6)0.0261 (7)0.0070 (5)0.0033 (5)0.0003 (4)0.0003 (5)
O40.0248 (7)0.0175 (6)0.0291 (7)0.0008 (5)0.0117 (6)0.0038 (5)
O50.0253 (7)0.0188 (6)0.0216 (7)0.0000 (5)0.0075 (5)0.0028 (5)
O60.0305 (8)0.0156 (6)0.0535 (11)0.0042 (6)0.0140 (8)0.0097 (7)
O70.0183 (6)0.0307 (7)0.0133 (6)0.0089 (5)0.0042 (5)0.0008 (5)
O80.0147 (6)0.0315 (7)0.0159 (6)0.0088 (5)0.0042 (5)0.0060 (5)
O90.0154 (6)0.0277 (7)0.0220 (7)0.0046 (5)0.0030 (5)0.0063 (5)
O100.0206 (6)0.0181 (6)0.0168 (6)0.0015 (5)0.0019 (5)0.0005 (5)
O110.0192 (6)0.0187 (6)0.0179 (6)0.0011 (5)0.0024 (5)0.0014 (5)
O120.0585 (12)0.0154 (7)0.0507 (12)0.0006 (7)0.0168 (9)0.0023 (7)
N10.0121 (6)0.0134 (6)0.0132 (6)0.0018 (5)0.0015 (5)0.0024 (5)
N20.0126 (6)0.0196 (7)0.0086 (6)0.0060 (5)0.0007 (5)0.0018 (5)
N30.0141 (6)0.0183 (7)0.0085 (6)0.0026 (5)0.0019 (5)0.0000 (5)
N40.0167 (7)0.0158 (7)0.0260 (8)0.0026 (6)0.0020 (6)0.0020 (6)
N50.0141 (6)0.0145 (6)0.0155 (7)0.0026 (5)0.0010 (5)0.0013 (5)
N60.0234 (8)0.0168 (7)0.0187 (7)0.0001 (6)0.0008 (6)0.0004 (6)
C10.0230 (9)0.0223 (9)0.0137 (8)0.0040 (7)0.0053 (7)0.0051 (7)
C20.0232 (9)0.0232 (9)0.0143 (8)0.0023 (7)0.0052 (7)0.0077 (7)
C30.0141 (7)0.0146 (7)0.0122 (7)0.0036 (6)0.0003 (6)0.0025 (6)
C40.0157 (8)0.0239 (9)0.0146 (8)0.0005 (7)0.0035 (6)0.0062 (7)
C50.0161 (8)0.0239 (9)0.0161 (8)0.0005 (7)0.0026 (6)0.0081 (7)
C60.0159 (7)0.0172 (7)0.0137 (7)0.0018 (6)0.0016 (6)0.0024 (6)
C70.0172 (8)0.0162 (7)0.0139 (7)0.0006 (6)0.0024 (6)0.0010 (6)
C80.0129 (7)0.0167 (7)0.0095 (7)0.0035 (6)0.0012 (5)0.0002 (6)
C90.0161 (7)0.0151 (7)0.0113 (7)0.0002 (6)0.0008 (6)0.0014 (6)
C100.0171 (7)0.0162 (7)0.0112 (7)0.0025 (6)0.0014 (6)0.0012 (6)
C110.0213 (8)0.0155 (7)0.0129 (7)0.0038 (6)0.0018 (6)0.0022 (6)
C120.0210 (8)0.0161 (7)0.0116 (7)0.0058 (6)0.0011 (6)0.0006 (6)
C130.0120 (7)0.0147 (7)0.0103 (7)0.0010 (6)0.0014 (5)0.0007 (6)
C140.0277 (9)0.0154 (8)0.0126 (8)0.0049 (7)0.0027 (6)0.0018 (6)
C150.0292 (9)0.0181 (8)0.0133 (8)0.0087 (7)0.0025 (7)0.0012 (6)
C160.0267 (10)0.0251 (10)0.0280 (10)0.0022 (8)0.0047 (8)0.0073 (8)
Cl10.0292 (2)0.0207 (2)0.0281 (2)0.00046 (18)0.01003 (19)0.00127 (18)
Cl20.0274 (2)0.0405 (3)0.0291 (3)0.0046 (2)0.0018 (2)0.0059 (2)
Geometric parameters (Å, º) top
Eu1—O32.3279 (13)C1—H10.9500
Eu1—O12.3332 (12)C2—C31.395 (2)
Eu1—O22.3579 (12)C2—H20.9500
Eu1—O112.4781 (13)C3—C41.400 (2)
Eu1—O72.4979 (13)C3—C3i1.479 (3)
Eu1—O82.4994 (13)C4—C51.376 (2)
Eu1—O52.5061 (14)C4—H40.9500
Eu1—O42.5090 (14)C5—H50.9500
Eu1—O102.5137 (14)C6—C71.381 (2)
Eu1—N62.9160 (16)C6—H60.9500
Eu1—N52.9271 (15)C7—C81.394 (2)
Eu1—N42.9424 (16)C7—H70.9500
O1—N11.3331 (18)C8—C91.398 (2)
O2—N21.3365 (18)C8—C13ii1.475 (2)
O3—N31.3316 (18)C9—C101.376 (2)
O4—N41.276 (2)C9—H90.9500
O5—N41.268 (2)C10—H100.9500
O6—N41.220 (2)C11—C121.378 (2)
O7—N51.2717 (19)C11—H110.9500
O8—N51.2680 (19)C12—C131.393 (2)
O9—N51.220 (2)C12—H120.9500
O10—N61.270 (2)C13—C141.395 (2)
O11—N61.276 (2)C13—C8iii1.475 (2)
O12—N61.217 (2)C14—C151.374 (2)
N1—C51.344 (2)C14—H140.9500
N1—C11.349 (2)C15—H150.9500
N2—C61.348 (2)C16—Cl11.767 (2)
N2—C101.351 (2)C16—Cl21.773 (2)
N3—C111.345 (2)C16—H16A0.9900
N3—C151.349 (2)C16—H16B0.9900
C1—C21.376 (3)
O3—Eu1—O185.10 (4)C5—N1—C1120.97 (15)
O3—Eu1—O2154.66 (5)O2—N2—C6119.71 (14)
O1—Eu1—O283.73 (4)O2—N2—C10118.95 (14)
O3—Eu1—O1186.31 (5)C6—N2—C10121.33 (15)
O1—Eu1—O11122.68 (4)O3—N3—C11119.85 (14)
O2—Eu1—O1180.76 (5)O3—N3—C15119.01 (15)
O3—Eu1—O772.54 (4)C11—N3—C15121.12 (15)
O1—Eu1—O7151.35 (4)O6—N4—O5122.25 (17)
O2—Eu1—O7123.72 (4)O6—N4—O4122.21 (17)
O11—Eu1—O774.46 (5)O5—N4—O4115.54 (15)
O3—Eu1—O8123.44 (4)O6—N4—Eu1177.07 (15)
O1—Eu1—O8148.50 (4)O5—N4—Eu157.72 (9)
O2—Eu1—O874.50 (4)O4—N4—Eu157.89 (9)
O11—Eu1—O876.41 (5)O9—N5—O8122.22 (16)
O7—Eu1—O851.03 (4)O9—N5—O7121.86 (15)
O3—Eu1—O5125.27 (5)O8—N5—O7115.90 (14)
O1—Eu1—O579.17 (5)O9—N5—Eu1174.99 (12)
O2—Eu1—O574.59 (5)O8—N5—Eu158.05 (8)
O11—Eu1—O5144.99 (5)O7—N5—Eu158.00 (8)
O7—Eu1—O599.04 (5)O12—N6—O10122.03 (18)
O8—Eu1—O573.32 (5)O12—N6—O11121.27 (17)
O3—Eu1—O474.83 (5)O10—N6—O11116.70 (15)
O1—Eu1—O478.66 (5)O12—N6—Eu1177.57 (16)
O2—Eu1—O4124.69 (5)O10—N6—Eu159.16 (9)
O11—Eu1—O4150.55 (5)O11—N6—Eu157.57 (9)
O7—Eu1—O478.35 (5)N1—C1—C2120.10 (17)
O8—Eu1—O495.14 (5)N1—C1—H1120.0
O5—Eu1—O450.81 (5)C2—C1—H1120.0
O3—Eu1—O1076.78 (5)C1—C2—C3121.05 (17)
O1—Eu1—O1071.43 (4)C1—C2—H2119.5
O2—Eu1—O1078.12 (5)C3—C2—H2119.5
O11—Eu1—O1051.46 (4)C2—C3—C4116.71 (16)
O7—Eu1—O10118.58 (5)C2—C3—C3i121.90 (19)
O8—Eu1—O10124.05 (5)C4—C3—C3i121.39 (19)
O5—Eu1—O10141.62 (5)C5—C4—C3120.72 (17)
O4—Eu1—O10140.06 (5)C5—C4—H4119.6
O3—Eu1—N681.12 (5)C3—C4—H4119.6
O1—Eu1—N696.98 (5)N1—C5—C4120.42 (16)
O2—Eu1—N677.77 (5)N1—C5—H5119.8
O11—Eu1—N625.77 (4)C4—C5—H5119.8
O7—Eu1—N696.99 (5)N2—C6—C7120.21 (16)
O8—Eu1—N6100.24 (5)N2—C6—H6119.9
O5—Eu1—N6152.34 (5)C7—C6—H6119.9
O4—Eu1—N6155.82 (5)C6—C7—C8120.18 (16)
O10—Eu1—N625.70 (4)C6—C7—H7119.9
O3—Eu1—N597.96 (4)C8—C7—H7119.9
O1—Eu1—N5164.53 (4)C7—C8—C9117.82 (15)
O2—Eu1—N598.86 (4)C7—C8—C13ii123.07 (15)
O11—Eu1—N572.75 (4)C9—C8—C13ii119.09 (15)
O7—Eu1—N525.58 (4)C10—C9—C8120.41 (16)
O8—Eu1—N525.50 (4)C10—C9—H9119.8
O5—Eu1—N586.78 (5)C8—C9—H9119.8
O4—Eu1—N587.47 (5)N2—C10—C9120.05 (16)
O10—Eu1—N5124.04 (4)N2—C10—H10120.0
N6—Eu1—N598.47 (4)C9—C10—H10120.0
O3—Eu1—N4100.07 (5)N3—C11—C12119.90 (16)
O1—Eu1—N476.92 (4)N3—C11—H11120.0
O2—Eu1—N499.44 (5)C12—C11—H11120.0
O11—Eu1—N4160.06 (5)C11—C12—C13120.50 (16)
O7—Eu1—N489.34 (5)C11—C12—H12119.7
O8—Eu1—N484.39 (5)C13—C12—H12119.7
O5—Eu1—N425.32 (5)C12—C13—C14117.84 (15)
O4—Eu1—N425.52 (5)C12—C13—C8iii120.62 (15)
O10—Eu1—N4148.34 (5)C14—C13—C8iii121.50 (15)
N6—Eu1—N4173.61 (5)C15—C14—C13119.88 (16)
N5—Eu1—N487.60 (4)C15—C14—H14120.1
N1—O1—Eu1129.42 (10)C13—C14—H14120.1
N2—O2—Eu1125.13 (10)N3—C15—C14120.59 (17)
N3—O3—Eu1127.65 (10)N3—C15—H15119.7
N4—O4—Eu196.59 (10)C14—C15—H15119.7
N4—O5—Eu196.97 (10)Cl1—C16—Cl2111.26 (12)
N5—O7—Eu196.43 (10)Cl1—C16—H16A109.4
N5—O8—Eu196.46 (10)Cl2—C16—H16A109.4
N6—O10—Eu195.15 (10)Cl1—C16—H16B109.4
N6—O11—Eu196.66 (10)Cl2—C16—H16B109.4
O1—N1—C5119.59 (14)H16A—C16—H16B108.0
O1—N1—C1119.42 (15)
Symmetry codes: (i) x+3, y+1, z+1; (ii) x, y, z+1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7iv0.952.413.081 (2)128
C9—H9···O9v0.952.573.286 (2)132
C12—H12···O2vi0.952.443.309 (2)152
C16—H16B···O12v0.992.423.242 (3)140
C16—H16A···O80.992.553.307 (3)133
C16—H16A···O90.992.503.086 (3)118
Symmetry codes: (iv) x+1, y, z; (v) x+1, y+2, z+2; (vi) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Eu2(NO3)6(C10H8N2O2)3]·2CH2Cl2
Mr1410.38
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9841 (5), 11.5723 (7), 13.0522 (8)
α, β, γ (°)86.013 (1), 80.255 (1), 78.392 (1)
V3)1163.45 (12)
Z1
Radiation typeMo Kα
µ (mm1)3.00
Crystal size (mm)0.44 × 0.38 × 0.32
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.278, 0.383
No. of measured, independent and
observed [I > 2σ(I)] reflections
13873, 7017, 6748
Rint0.015
(sin θ/λ)max1)0.736
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.050, 1.06
No. of reflections7017
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.30, 0.90

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7i0.952.413.081 (2)127.8
C9—H9···O9ii0.952.573.286 (2)131.9
C12—H12···O2iii0.952.443.309 (2)151.9
C16—H16B···O12ii0.992.423.242 (3)139.7
C16—H16A···O80.992.553.307 (3)132.7
C16—H16A···O90.992.503.086 (3)117.6
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+2; (iii) x+2, y+2, z+1.
 

Acknowledgements

The authors are thankful to Allegheny College for providing funding in support of this research. The diffractometer was funded by the NSF (grant No. 0087210), the Ohio Board of Regents (grant No. CAP-491) and by Youngstown State University. The authors would like to acknowledge Youngstown State University and the STaRBURSTT CyberInstrumentation Consortium for assistance with the crystallography.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCardoso, M. C. C., Zinner, L. B., Zukerman-Scheptor, J., Araújo Melo, D. M. & Vincentini, G. J. (2001). J. Alloys Compd, 323–324, 22–25.  Web of Science CSD CrossRef CAS Google Scholar
First citationDillner, A. J., Lilly, C. P. & Knaust, J. M. (2010). Acta Cryst. E66, m1158–m1159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHill, R. J., Long, D. L., Champness, N. R., Hubberstry, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 335–348.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLong, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2001). Angew. Chem. Int. Ed. 40, 2444–2447.  CAS Google Scholar
First citationLong, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026–2033.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoitsheki, L. J., Bourne, S. A. & Nassimbeni, L. R. (2006). Acta Cryst. E62, m542–m544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRoswell, J. L. C. & Yaghi, O. M. (2004). Microporous Mesoporous Mater. 73, 3–14.  Google Scholar
First citationSeo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jin Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89–95.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds