metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tris­­(μ2-4,4′-bi­pyridine N,N′-di­oxide)hexa­nitratodigadolinium(III)] di­chloro­methane disolvate]

aAllegheny College, 520 North Main St., Meadville, PA 16335, USA
*Correspondence e-mail: jknaust@allegheny.edu

(Received 16 August 2010; accepted 18 August 2010; online 21 August 2010)

The title one-dimensional coordination network, {[Gd2(NO3)6(C10H8N2O2)3]·2CH2Cl2}n, is isostructural with the previously reported Tb and Tl coordination networks and to its Eu analog. The GdIII cation is coordinated in a distorted tricapped trigonal-prismatic fashion by nine O atoms from three bridging 4,4′-bipyridine N,N′-dioxide ligands and three chelating nitrate anions. None of the atoms lie on a special position, but there is an inversion center located between the rings of one of the ligands. The network topology is ladder-like, and each ladder inter­acts with six neighboring ladders through C—H⋯O hydrogen bonds. The packing motif of the ladders allows for the formation of channels that run parallel to the a axis; these channels are filled with CH2Cl2 solvent mol­ecules that inter­act with the ladders through C—H⋯O hydrogen bonds

Related literature

For the isostructural Tb and Tl, coordination networks, see: Long et al. (2002[Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026-2033.]); Moitsheki et al. (2006[Moitsheki, L. J., Bourne, S. A. & Nassimbeni, L. R. (2006). Acta Cryst. E62, m542-m544.]). For the isostructural Eu coordination network and detailed background to this study, see: Dillner et al. (2010[Dillner, A. J., Lilly, C. P. & Knaust, J. M. (2010). Acta Cryst. E66, m1156-m1157.]).

[Scheme 1]

Experimental

Crystal data
  • [Gd2(NO3)6(C10H8N2O2)3]·2CH2Cl2

  • Mr = 1420.96

  • Triclinic, [P \overline 1]

  • a = 7.9917 (5) Å

  • b = 11.5668 (7) Å

  • c = 13.0347 (8) Å

  • α = 86.059 (1)°

  • β = 80.134 (1)°

  • γ = 78.255 (1)°

  • V = 1161.52 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 100 K

  • 0.51 × 0.48 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.529, Tmax = 0.746

  • 13791 measured reflections

  • 6990 independent reflections

  • 6776 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.051

  • S = 1.06

  • 6990 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O7i 0.95 2.41 3.082 (2) 127
C9—H9⋯O9ii 0.95 2.57 3.287 (2) 132
C12—H12⋯O2iii 0.95 2.43 3.300 (2) 152
C16—H16B⋯O12ii 0.99 2.43 3.246 (3) 139
C16—H16A⋯O8 0.99 2.56 3.302 (3) 132
C16—H16A⋯O9 0.99 2.50 3.084 (3) 117
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+2; (iii) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The description of the structure of the title compound is part of a set of consecutive papers on one-dimensional ladder-like coordination networks of the type [Ln2(NO3)6(C10H8N2O2)3]n, with Ln = Eu (Dillner et al., 2010) and Gd (this publication), respectively. Both compounds are also isostructural to the previously reported Tb and Tl, coordination networks (Long et al., 2002 and Moitsheki et al., 2006). The background to this study is given in Dillner et al. (2010).

Related literature top

For the isostructural Tb and Tl, coordination networks, see: Long et al. (2002); Moitsheki et al. (2006). For the isostructural Eu coordination network and detailed background to this study, see: Dillner et al. (2010).

Experimental top

Gd(NO3)3 (0.051 g 0.15 mmol) was placed in the bottom of a test tube and covered with CH2Cl2 (5 ml). 4,4'-bipyridine-N,N'-dioxide.H2O (0.0376 g, 0.182 mmol) was dissolved in methanol (8 ml), and this solution was layered over the CH2Cl2. The two solutions were allowed to slowly mix. Over a period of several weeks the Gd(NO3)3 dissolved, and yellow plate-like crystals of the title compound formed.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

The description of the structure of the title compound is part of a set of consecutive papers on one-dimensional ladder-like coordination networks of the type [Ln2(NO3)6(C10H8N2O2)3]n, with Ln = Eu (Dillner et al., 2010) and Gd (this publication), respectively. Both compounds are also isostructural to the previously reported Tb and Tl, coordination networks (Long et al., 2002 and Moitsheki et al., 2006). The background to this study is given in Dillner et al. (2010).

For the isostructural Tb and Tl, coordination networks, see: Long et al. (2002); Moitsheki et al. (2006). For the isostructural Eu coordination network and detailed background to this study, see: Dillner et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The coordination environment of the Gd+3 cation in the title compound with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms have been omitted for clarity. Color scheme: Gd: green, C: grey, N: blue, O: red, Cl: yellow. Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x, y, z+1; (iii) x, y, z-1; (vii) -x+2, -y+1, z+2.
Poly[[tris(µ2-4,4'-bipyridine N,N'-dioxide)hexanitratodigadolinium(III)] dichloromethane disolvate] top
Crystal data top
[Gd2(NO3)6(C10H8N2O2)3]·2CH2Cl2Z = 1
Mr = 1420.96F(000) = 692
Triclinic, P1Dx = 2.031 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9917 (5) ÅCell parameters from 9995 reflections
b = 11.5668 (7) Åθ = 2.4–31.4°
c = 13.0347 (8) ŵ = 3.16 mm1
α = 86.059 (1)°T = 100 K
β = 80.134 (1)°Plate, yellow
γ = 78.255 (1)°0.51 × 0.48 × 0.25 mm
V = 1161.52 (12) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6990 independent reflections
Radiation source: fine-focus sealed tube6776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 31.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.529, Tmax = 0.746k = 1616
13791 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.7108P]
where P = (Fo2 + 2Fc2)/3
6990 reflections(Δ/σ)max = 0.003
334 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
[Gd2(NO3)6(C10H8N2O2)3]·2CH2Cl2γ = 78.255 (1)°
Mr = 1420.96V = 1161.52 (12) Å3
Triclinic, P1Z = 1
a = 7.9917 (5) ÅMo Kα radiation
b = 11.5668 (7) ŵ = 3.16 mm1
c = 13.0347 (8) ÅT = 100 K
α = 86.059 (1)°0.51 × 0.48 × 0.25 mm
β = 80.134 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6990 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6776 reflections with I > 2σ(I)
Tmin = 0.529, Tmax = 0.746Rint = 0.019
13791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.06Δρmax = 1.34 e Å3
6990 reflectionsΔρmin = 1.26 e Å3
334 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.777386 (9)0.833312 (7)0.717678 (6)0.01052 (3)
O11.02444 (16)0.82720 (11)0.59321 (10)0.0154 (2)
O20.95666 (17)0.87415 (12)0.83066 (9)0.0156 (2)
O30.62864 (17)0.87372 (12)0.57713 (9)0.0165 (2)
O40.80192 (19)0.63739 (12)0.64108 (12)0.0228 (3)
O50.95223 (19)0.63785 (12)0.76314 (11)0.0215 (3)
O60.9729 (2)0.47510 (14)0.68376 (16)0.0329 (4)
O70.48223 (18)0.79088 (13)0.77573 (10)0.0200 (3)
O80.64333 (17)0.77345 (13)0.89476 (11)0.0200 (3)
O90.37413 (18)0.75493 (13)0.93691 (11)0.0224 (3)
O100.80809 (18)1.04012 (12)0.66218 (10)0.0186 (3)
O110.59902 (18)1.01912 (12)0.78729 (11)0.0191 (3)
O120.6429 (3)1.19502 (15)0.73675 (17)0.0438 (5)
N11.15539 (19)0.73739 (13)0.56764 (11)0.0133 (3)
N20.91991 (19)0.86889 (13)0.93448 (11)0.0126 (3)
N30.69504 (19)0.86834 (13)0.47630 (11)0.0132 (3)
N40.9111 (2)0.57955 (14)0.69595 (14)0.0191 (3)
N50.49582 (19)0.77173 (13)0.87144 (12)0.0149 (3)
N60.6826 (2)1.08859 (15)0.72846 (13)0.0201 (3)
C11.1729 (3)0.68680 (17)0.47533 (15)0.0200 (4)
H11.09240.71540.42930.024*
C21.3074 (3)0.59355 (18)0.44774 (15)0.0204 (4)
H21.31850.55810.38270.024*
C31.4277 (2)0.55043 (15)0.51390 (13)0.0129 (3)
C41.4065 (2)0.60763 (17)0.60766 (14)0.0177 (3)
H41.48690.58230.65440.021*
C51.2700 (2)0.70055 (17)0.63297 (14)0.0179 (3)
H51.25690.73870.69690.021*
C60.9834 (2)0.76999 (16)0.98742 (14)0.0154 (3)
H61.05190.70400.95060.018*
C70.9492 (2)0.76424 (15)1.09522 (14)0.0153 (3)
H70.99320.69411.13220.018*
C80.8502 (2)0.86129 (15)1.14956 (13)0.0126 (3)
C90.7879 (2)0.96209 (15)1.09168 (13)0.0147 (3)
H90.72081.02981.12660.018*
C100.8227 (2)0.96446 (15)0.98455 (13)0.0149 (3)
H100.77851.03310.94580.018*
C110.7464 (2)0.96300 (15)0.42487 (14)0.0158 (3)
H110.74561.03120.46170.019*
C120.8003 (2)0.96117 (16)0.31859 (13)0.0158 (3)
H120.83411.02890.28220.019*
C130.8053 (2)0.86070 (15)0.26447 (13)0.0125 (3)
C140.7610 (3)0.76171 (16)0.32125 (14)0.0182 (3)
H140.76940.69030.28710.022*
C150.7051 (3)0.76792 (17)0.42680 (14)0.0192 (3)
H150.67330.70080.46530.023*
C160.5603 (3)0.60138 (19)1.10231 (18)0.0274 (4)
H16A0.58160.60581.02520.033*
H16B0.54140.68261.12730.033*
Cl10.74334 (7)0.51440 (4)1.14775 (4)0.02581 (10)
Cl20.37217 (7)0.54128 (6)1.14632 (5)0.03300 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.01086 (4)0.01200 (4)0.00842 (4)0.00199 (3)0.00084 (3)0.00099 (3)
O10.0135 (6)0.0135 (5)0.0165 (6)0.0004 (4)0.0023 (4)0.0032 (4)
O20.0171 (6)0.0228 (6)0.0077 (5)0.0069 (5)0.0002 (4)0.0010 (4)
O30.0157 (6)0.0253 (6)0.0072 (5)0.0025 (5)0.0004 (4)0.0001 (4)
O40.0244 (7)0.0162 (6)0.0299 (8)0.0021 (5)0.0116 (6)0.0034 (5)
O50.0256 (7)0.0168 (6)0.0221 (7)0.0001 (5)0.0081 (5)0.0025 (5)
O60.0301 (8)0.0153 (7)0.0541 (11)0.0024 (6)0.0136 (8)0.0090 (7)
O70.0187 (6)0.0300 (7)0.0136 (6)0.0096 (5)0.0040 (5)0.0010 (5)
O80.0145 (6)0.0303 (7)0.0169 (6)0.0085 (5)0.0045 (5)0.0055 (5)
O90.0146 (6)0.0271 (7)0.0223 (7)0.0042 (5)0.0027 (5)0.0063 (5)
O100.0202 (6)0.0169 (6)0.0166 (6)0.0025 (5)0.0012 (5)0.0002 (5)
O110.0180 (6)0.0176 (6)0.0190 (6)0.0021 (5)0.0025 (5)0.0009 (5)
O120.0555 (12)0.0136 (7)0.0512 (12)0.0006 (7)0.0156 (9)0.0018 (7)
N10.0120 (6)0.0130 (6)0.0139 (6)0.0021 (5)0.0007 (5)0.0016 (5)
N20.0129 (6)0.0171 (7)0.0090 (6)0.0055 (5)0.0011 (5)0.0020 (5)
N30.0130 (6)0.0172 (7)0.0094 (6)0.0027 (5)0.0020 (5)0.0000 (5)
N40.0162 (7)0.0153 (7)0.0253 (8)0.0028 (6)0.0022 (6)0.0017 (6)
N50.0131 (6)0.0137 (6)0.0175 (7)0.0027 (5)0.0018 (5)0.0012 (5)
N60.0220 (8)0.0162 (7)0.0195 (8)0.0003 (6)0.0005 (6)0.0008 (6)
C10.0214 (9)0.0221 (9)0.0145 (8)0.0037 (7)0.0051 (7)0.0047 (7)
C20.0222 (9)0.0225 (9)0.0153 (8)0.0028 (7)0.0057 (7)0.0082 (7)
C30.0124 (7)0.0140 (7)0.0124 (7)0.0043 (6)0.0002 (6)0.0025 (6)
C40.0143 (8)0.0231 (9)0.0152 (8)0.0008 (6)0.0030 (6)0.0071 (6)
C50.0151 (8)0.0233 (9)0.0154 (8)0.0016 (6)0.0025 (6)0.0085 (6)
C60.0155 (8)0.0158 (7)0.0139 (8)0.0013 (6)0.0008 (6)0.0032 (6)
C70.0167 (8)0.0142 (7)0.0141 (8)0.0004 (6)0.0024 (6)0.0009 (6)
C80.0120 (7)0.0153 (7)0.0105 (7)0.0027 (6)0.0016 (5)0.0007 (5)
C90.0157 (8)0.0148 (7)0.0121 (7)0.0007 (6)0.0007 (6)0.0016 (6)
C100.0163 (8)0.0153 (7)0.0124 (7)0.0021 (6)0.0020 (6)0.0002 (6)
C110.0205 (8)0.0136 (7)0.0138 (8)0.0039 (6)0.0028 (6)0.0014 (6)
C120.0211 (8)0.0146 (7)0.0125 (7)0.0064 (6)0.0017 (6)0.0001 (6)
C130.0118 (7)0.0146 (7)0.0105 (7)0.0013 (5)0.0017 (5)0.0000 (5)
C140.0278 (9)0.0140 (8)0.0134 (8)0.0051 (7)0.0033 (7)0.0012 (6)
C150.0295 (10)0.0168 (8)0.0133 (8)0.0095 (7)0.0039 (7)0.0015 (6)
C160.0267 (10)0.0235 (10)0.0293 (11)0.0009 (8)0.0048 (8)0.0068 (8)
Cl10.0292 (2)0.0199 (2)0.0288 (2)0.00077 (18)0.01067 (19)0.00114 (17)
Cl20.0267 (3)0.0391 (3)0.0304 (3)0.0049 (2)0.0016 (2)0.0060 (2)
Geometric parameters (Å, º) top
Gd1—O32.3216 (13)C1—H10.9500
Gd1—O12.3230 (13)C2—C31.395 (2)
Gd1—O22.3534 (13)C2—H20.9500
Gd1—O112.4601 (13)C3—C41.398 (2)
Gd1—O82.4879 (14)C3—C3i1.481 (3)
Gd1—O72.4872 (14)C4—C51.379 (2)
Gd1—O52.4958 (14)C4—H40.9500
Gd1—O42.4967 (14)C5—H50.9500
Gd1—O102.4992 (14)C6—C71.384 (2)
Gd1—N62.9021 (17)C6—H60.9500
Gd1—N52.9152 (15)C7—C81.394 (2)
Gd1—N42.9277 (16)C7—H70.9500
O1—N11.3308 (18)C8—C91.396 (2)
O2—N21.3346 (18)C8—C13ii1.479 (2)
O3—N31.3310 (18)C9—C101.376 (2)
O4—N41.277 (2)C9—H90.9500
O5—N41.265 (2)C10—H100.9500
O6—N41.219 (2)C11—C121.379 (2)
O7—N51.271 (2)C11—H110.9500
O8—N51.271 (2)C12—C131.391 (2)
O9—N51.217 (2)C12—H120.9500
O10—N61.268 (2)C13—C141.394 (2)
O11—N61.280 (2)C13—C8iii1.479 (2)
O12—N61.215 (2)C14—C151.374 (3)
N1—C51.343 (2)C14—H140.9500
N1—C11.347 (2)C15—H150.9500
N2—C61.348 (2)C16—Cl11.766 (2)
N2—C101.352 (2)C16—Cl21.774 (2)
N3—C111.343 (2)C16—H16A0.9900
N3—C151.349 (2)C16—H16B0.9900
C1—C21.378 (3)
O3—Gd1—O185.06 (5)C5—N1—C1121.14 (15)
O3—Gd1—O2154.22 (5)O2—N2—C6119.65 (14)
O1—Gd1—O283.54 (5)O2—N2—C10119.01 (14)
O3—Gd1—O1185.96 (5)C6—N2—C10121.33 (15)
O1—Gd1—O11122.79 (4)O3—N3—C11120.02 (15)
O2—Gd1—O1180.97 (5)O3—N3—C15118.90 (15)
O3—Gd1—O8123.47 (4)C11—N3—C15121.06 (15)
O1—Gd1—O8148.53 (5)O6—N4—O5122.12 (18)
O2—Gd1—O874.82 (4)O6—N4—O4122.15 (18)
O11—Gd1—O876.46 (5)O5—N4—O4115.72 (15)
O3—Gd1—O772.31 (4)O6—N4—Gd1177.12 (15)
O1—Gd1—O7150.94 (5)O5—N4—Gd157.84 (9)
O2—Gd1—O7124.33 (4)O4—N4—Gd157.95 (9)
O11—Gd1—O774.51 (5)O9—N5—O8122.12 (16)
O8—Gd1—O751.32 (4)O9—N5—O7122.00 (16)
O3—Gd1—O5125.67 (5)O8—N5—O7115.87 (15)
O1—Gd1—O579.17 (5)O9—N5—Gd1175.14 (13)
O2—Gd1—O574.49 (5)O8—N5—Gd158.03 (9)
O11—Gd1—O5144.96 (5)O7—N5—Gd158.00 (8)
O8—Gd1—O573.25 (5)O12—N6—O10122.46 (18)
O7—Gd1—O599.15 (5)O12—N6—O11121.17 (17)
O3—Gd1—O475.01 (5)O10—N6—O11116.37 (15)
O1—Gd1—O478.88 (5)O12—N6—Gd1177.69 (16)
O2—Gd1—O4124.87 (5)O10—N6—Gd159.06 (9)
O11—Gd1—O4150.14 (5)O11—N6—Gd157.34 (8)
O8—Gd1—O494.89 (5)N1—C1—C2120.02 (17)
O7—Gd1—O477.84 (5)N1—C1—H1120.0
O5—Gd1—O451.08 (5)C2—C1—H1120.0
O3—Gd1—O1076.63 (5)C1—C2—C3120.99 (16)
O1—Gd1—O1071.20 (4)C1—C2—H2119.5
O2—Gd1—O1077.83 (5)C3—C2—H2119.5
O11—Gd1—O1051.76 (4)C2—C3—C4116.88 (16)
O8—Gd1—O10124.27 (5)C2—C3—C3i121.81 (19)
O7—Gd1—O10118.86 (5)C4—C3—C3i121.3 (2)
O5—Gd1—O10141.26 (5)C5—C4—C3120.61 (17)
O4—Gd1—O10140.09 (5)C5—C4—H4119.7
O3—Gd1—N680.79 (5)C3—C4—H4119.7
O1—Gd1—N696.87 (5)N1—C5—C4120.33 (16)
O2—Gd1—N677.73 (5)N1—C5—H5119.8
O11—Gd1—N625.98 (4)C4—C5—H5119.8
O8—Gd1—N6100.45 (5)N2—C6—C7120.24 (16)
O7—Gd1—N697.21 (5)N2—C6—H6119.9
O5—Gd1—N6152.20 (5)C7—C6—H6119.9
O4—Gd1—N6155.69 (5)C6—C7—C8120.07 (16)
O10—Gd1—N625.79 (4)C6—C7—H7120.0
O3—Gd1—N597.81 (4)C8—C7—H7120.0
O1—Gd1—N5164.46 (4)C7—C8—C9117.78 (15)
O2—Gd1—N599.36 (4)C7—C8—C13ii123.06 (15)
O11—Gd1—N572.72 (4)C9—C8—C13ii119.14 (15)
O8—Gd1—N525.68 (4)C10—C9—C8120.69 (16)
O7—Gd1—N525.68 (4)C10—C9—H9119.7
O5—Gd1—N586.86 (5)C8—C9—H9119.7
O4—Gd1—N587.08 (5)N2—C10—C9119.89 (16)
O10—Gd1—N5124.33 (4)N2—C10—H10120.1
N6—Gd1—N598.67 (5)C9—C10—H10120.1
O3—Gd1—N4100.41 (5)N3—C11—C12120.02 (16)
O1—Gd1—N477.11 (5)N3—C11—H11120.0
O2—Gd1—N499.46 (5)C12—C11—H11120.0
O11—Gd1—N4159.79 (5)C11—C12—C13120.29 (16)
O8—Gd1—N484.12 (5)C11—C12—H12119.9
O7—Gd1—N489.07 (5)C13—C12—H12119.9
O5—Gd1—N425.41 (5)C12—C13—C14118.11 (15)
O4—Gd1—N425.69 (5)C12—C13—C8iii120.50 (15)
O10—Gd1—N4148.30 (5)C14—C13—C8iii121.35 (15)
N6—Gd1—N4173.67 (5)C15—C14—C13119.68 (16)
N5—Gd1—N487.36 (4)C15—C14—H14120.2
N1—O1—Gd1129.39 (10)C13—C14—H14120.2
N2—O2—Gd1124.82 (10)N3—C15—C14120.67 (17)
N3—O3—Gd1127.48 (10)N3—C15—H15119.7
N4—O4—Gd196.36 (10)C14—C15—H15119.7
N4—O5—Gd196.75 (11)Cl1—C16—Cl2111.26 (12)
N5—O7—Gd196.32 (10)Cl1—C16—H16A109.4
N5—O8—Gd196.29 (10)Cl2—C16—H16A109.4
N6—O10—Gd195.16 (11)Cl1—C16—H16B109.4
N6—O11—Gd196.67 (10)Cl2—C16—H16B109.4
O1—N1—C5119.58 (14)H16A—C16—H16B108.0
O1—N1—C1119.26 (15)
Symmetry codes: (i) x+3, y+1, z+1; (ii) x, y, z+1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7iv0.952.413.082 (2)127
C9—H9···O9v0.952.573.287 (2)132
C12—H12···O2vi0.952.433.300 (2)152
C16—H16B···O12v0.992.433.246 (3)139
C16—H16A···O80.992.563.302 (3)132
C16—H16A···O90.992.503.084 (3)117
Symmetry codes: (iv) x+1, y, z; (v) x+1, y+2, z+2; (vi) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Gd2(NO3)6(C10H8N2O2)3]·2CH2Cl2
Mr1420.96
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9917 (5), 11.5668 (7), 13.0347 (8)
α, β, γ (°)86.059 (1), 80.134 (1), 78.255 (1)
V3)1161.52 (12)
Z1
Radiation typeMo Kα
µ (mm1)3.16
Crystal size (mm)0.51 × 0.48 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.529, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
13791, 6990, 6776
Rint0.019
(sin θ/λ)max1)0.736
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.06
No. of reflections6990
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.34, 1.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7i0.952.413.082 (2)127.3
C9—H9···O9ii0.952.573.287 (2)132.0
C12—H12···O2iii0.952.433.300 (2)151.9
C16—H16B···O12ii0.992.433.246 (3)139.2
C16—H16A···O80.992.563.302 (3)131.9
C16—H16A···O90.992.503.084 (3)117.2
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+2; (iii) x+2, y+2, z+1.
 

Acknowledgements

The authors are thankful to Allegheny College for providing funding in support of this research. The diffractometer was funded by the NSF (grant No. 0087210), the Ohio Board of Regents (grant No. CAP-491) and by Youngstown State University. The authors would like to acknowledge Youngstown State University and the STaRBURSTT CyberInstrumentation Consortium for assistance with the crystallography.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDillner, A. J., Lilly, C. P. & Knaust, J. M. (2010). Acta Cryst. E66, m1156–m1157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLong, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026–2033.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoitsheki, L. J., Bourne, S. A. & Nassimbeni, L. R. (2006). Acta Cryst. E62, m542–m544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds